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PREFACE

This book is intended to provide a thorough introduction to the theory of general
relativity. It is intended to serve as both a text for graduate students and a reference
book for researchers. These two goals are somewhat contradictory, and to the extent
that they are, part I of the book emphasizes the first goal. It treats the topics usually
covered in introductory relativity courses: basic differential geometry, Einstein's
equation, gravitational radiation, the standard cosmological models, and the
Schwarzschild solution. More emphasis is placed on the second goal in part II of the
book, which treats a wide variety of advanced topics. However, even here I have
attempted to explain all the basic ideas at an introductory level.

If I were teaching a one term introductory course on general relativity, I would
cover most of the material of part I together with much of appendices B and C. For
a full year course, I then would choose several chapters from part II as the basis for
the material covered in the second term. For example, chapters 8 and 9 and parts of
chapter 12 could comprise a one term course on global methods. Chapter 7, supple
mented by current literature, could serve as the basis for a course on methods for
obtaining solutions. Chapter 10 and appendix E, supplemented by further reading,
could be used for a course on the dynamics of general relativity. Chapter 12 (supple
mented by background material from chapters 8, 9, and 11) and chapter 14 could
comprise a course on the classical and quantum properties of black holes. It should
be noted that the chapters in part II of the book are largely independent of each other
and, for the most part, can be read out of sequence with the following major
exceptions: prior reading of chapter 8 is essential for chapter 9, and chapter 8
together with parts of chapters 9 and 11 are essential for the first two sections of
chapter 12.

One of the most difficult issues which arises during the writing of a book on
general relativity is where in the book to present the rather substantial amount of
mathematical material that is needed. Much of this material (e.g., tensor calculus and
curvature) is required even for the formulation of general relativity. Some material
(e.g., Lie derivatives and Killing fields) could be avoided initially but soon becomes
necessary to make the discussion clearer and to simplify computations. Finally, some
of the mathematical material (e.g., many of the theorems on topological spaces) is
not really needed until part II of the book. If all this material were presented at the
beginning of the book, it would comprise a truly formidable obstacle to learning
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x Preface

general relativity. On the other hand, if the mathematical results were introduced
only "as needed" in the later chapters, the mathematical discussion would become
greatly fragmented and these fragments would interrupt the discussion of physical
issues. The best solution I could find to this problem was to put all the mathematical
material essential for the formulation of general relativity into chapters 2 and 3, and
then to put the remaining mathematical topics into appendices A, B, and C. In this
way, the reader can get to chapter 4 without unnecessary detours, but the discussion
of all the mathematical topics remains intact and can be referenced as needed in the
text. Thus, it should be emphasized that appendices A, B, and C are an essential part
of this book. The results derived in appendices B and C are used in many places
throughout the book, and the definitions and results on topological spaces which are
compiled in appendix A are referred to frequently in chapters 8 and 9.

One other somewhat unusual organizational feature of the book is that the La
grangian and Hamiltonian formulations of general relativity also have been put in an
appendix. Often, the Hamiltonian formulation is presented in conjunction with the
initial value formulation of general relativity, but since the statements and proofs of
the initial value results do not rely upon the Hamiltonian formulation, I found it
logically clearer to discuss them independently. This left the Lagrangian and Ham
iltonian formulations as topics which are unlinked to the material in the other
chapters, too short to comprise a whole chapter on their own, and too important to
omit. Thus, they ended up being treated in appendix E.

Problems are given at the end of each chapter in text. There is significant variation
in the amount of thought and computation required to solve the problems, but there
are very few trivial, "mechanical" exercises and none which are, in my opinion,
inordinately difficult (Le., I think I can solve them). Part of my purpose in giving
some of the problems (particularly in the second half of the book) was to introduce
important side points for which I did not want to make a detour in the text. Hence,
even the reader who is determined not to do any exercises may still wish to read the
problems.

I have benefited from numerous interactions with many colleagues while planning
and writing this book. The influence of Robert Geroch should be apparent to readers
familiar with his viewpoints on general relativity. Some of the arguments used in
chapter 3 are adopted directly from the notes from a course we taught jointly in 1975.
I particularly wish to thank colleagues who took the time and trouble to read parts
(and, in a few cases, all) of the book and send me their suggestions for im
provements. These include Abhay Ashtekar, Arvind Borde, S. Chandrasekhar,
David Garfinkle, John Friedman, Robert Geroch, James Hartle, James Isenberg,
Bernard Kay, Karel Kuchar, Liang Can-bin, Roger Penrose, Michael Turner, and
William Unruh. Additional thanks are due David Garfinkle for checking most of the
equations.

I wish to thank Susan Lancaster and Roxy Boersma for typing drafts of the
manuscript and Fred Flowers for typing the final product on a word processor.
Support by NSF grant PHY 80 26043 to the University of Chicago during the writing
of this book is gratefully acknowledged. Finally, I wish to thank my wife, Veronica,
for the considerable amount of patience displayed during the three years it took me
to write this book.



NOTATION AND CONVENTIONS

In this book we shall follow the sign conventions of Misner, Thome, and Wheeler
(1973). In particular, we use metric signature - + + +, we define the Riemann
tensor by equation (3.2.3), and we define the Ricci tensor by equation (3.2.25).
However, we shall make one important exception to these conventions. We choose
to use the metric signature - + + + because it is generally much more convenient
than the alternative choice + - - - in that it induces a positive definite (rather than
negative definite) metric on spacelike hypersurfaces. Unfortunately, for the reasons
explained in chapter 13, it is much more convenient to use the metric signature
+ - - - for the treatment of spinors. Furthermore, the standard references on
spinors all use this signature. Hence, in chapter 13-and only in chapter 13-we will
change our metric signature convention to + - - -. The confusion which might
result from this should be minimized by the fact that the equations of chapter 13 are
written in spinor notation, so the reader need only remember to change the sign of
the metric when transcribing equations from spinor notation to tensor notation for use
elsewhere in the book. With regard to these changes of sign, it is useful to note that
the derivative operator, v", associated with the metric is unaffected by a sign change
of the metric. Hence, the Riemann tensor with index structure Rab/ also is un
affected, since it is defined purely in terms of v". (However, it should be noted that
some authors define the Riemann tensor with sign opposite that of equation [3.2.3];
see Misner, Thome, and Wheeler (1973) for a table of sign conventions.) Similarly,
it is conventional to take the stress-energy tensor Tab and Maxwell field tensor Fab to
be unaffected by a change of metric signature. However, each raising or lowering
of an index on Rabc d, Tab, Fab' and any other tensor results in a change of sign.

Throughout most of this book, we shall use "geometrized units," where the
gravitational constant, G, and the speed of light, c, are set equal to one. However,
for the convenience of the reader we have restored the G's and c's in section 5.4 and
in many of the formulas elsewhere in the book where observational predictions are
made. A conversion table from "geometrized" to "nongeometrized" units is given in
appendix F.

Our notation differs from standard conventions in one important respect. Most
relativity texts use an index notation for components of tensors. Usually, greek
indices are used to denote space or time components of a tensor, while latin indices
are used to denote purely spatial components, although in some references (e.g.,
Landau and Lifshitz 1962) these conventions are reversed. This index notation
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xii Notation and Conventions

provides an extremely efficient scheme for denoting tensor operations such as con
traction, covariant differentiation, and the taking of outer products. However, this
standard notational convention suffers from the serious drawback that it is impossible
to distinguish a relation between tensors from a relation which holds only for tensor
components with respect to a specially chosen basis. We shall overcome this
difficulty by employing an abstract index notation discussed by Penrose (1968) and
Penrose and Rindler (1984) and used extensively by Geroch. In our notation, latin
indices on a tensor do not represent components but are part of the notation for the
tensor itself, much like the arrow used to denote a vector in ordinary three
dimensional space. Thus, in this book any equation involving tensors which employs
latin indices represents a relation between tensors; the taking of basis components
need not even be contemplated. The complete rules for interpreting the notation are
given in section 2.4. On the other hand, greek indices on a tensor represent com
ponents, as in the usual convention. Any equation employing greek indices is a
relation between tensor components and, usually, holds only with respect to a
specially chosen basis. Unfortunately, in our notation we cannot denote purely
spatial tensor components without introducing yet another alphabet. However, only
rarely in this book do equations arise which hold only for spatial components, and
in such cases we simply shall state explicitly for which components a given equation
applies.

For the benefit of the reader who is not well versed in mathematical notation, we
list below the definitions of some of the standard mathematical symbols used fre
quently in the text:

U A U B denotes the union of sets A and B
nAn B denotes the intersection of sets A and B
cAe B denotes that A is a subset of B

B - A denotes the complement in B of the set A
E pEA denotes that p is an element of A
{I} {p E A IQ} denotes the set consisting of those elements p of the

set A which satisfy condition Q
x Cartesian product; A x B is the set {(a, b) Ia E A and b E B}
~ the empty set
lR the set of real numbers
lRn the set of n-tuples of real numbers
e the set of complex numbers
en the set of n-tuples of complex numbers

: - j: A - B denotes that j is a map from the set A to the set B
o jog denotes the composition of maps g:A - B andj:B - C, i.e.,

for pEA we have (f og)(p) = j[g(p)].
[ ] j[A] denotes the image of the set A under the map j, Le., the set

{f(x) Ix E A}.
Cn the set of n-times continuously differentiable functions
Coo the set of infinitely continuously differentiable (Le., smooth)

functions
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In addition, a number of symbols defined in the book appear frequently and are not
always redefined each time they are used. Hence, for the convenience of the reader
we list these symbols below, together with the section of the book where they are
defined:

the closure of the set S (appendix A)
interior of the set S (appendix A)
boundary of the set S (appendix A)
Lie derivative with respect to the vector field va (appendix C)
the set of smooth functions from a manifold Minto IR (section
2.2)
tangent space at point p of a manifold (section 2.2)
dual space to Vp (section 2.3)
chronological future of the set S (section 8.1)
causal future of the set S (section 8.1)
future domain of dependence of the closed, achronal set S
(section 8.3)

H+(S) future Cauchy horizon ofthe closed, achronal set S (section 8.3)
j+ future null infinity (section 11.1)
jO spatial infinity (section 11.1)

The symbols reS), res), D-(S), H-(S), and j- are defined as above with "past"
replacing "future." D(S) denotes D+(S) U D-(S), and H(S) denotes H+(S) U
H-(S). Finally, round and square brackets around tensor indices denote, re
spectively, symmetrization and antisymmetrization, as defined by equations (2.4.3)
and (2.4.4).



PART I

FUNDAMENTALS



ONE

INTRODUCTION

1.1 Introduction
General relativity is the theory of space, time, and gravitation formulated by

Einstein in 1915. It is often regarded as a very abstruse and difficult theory, partly
because the new viewpoint it introduced on the nature of space and time takes some
effort to get used to since it goes against some deeply ingrained, intuitive notions,
and partly because the mathematics required for a precise formulation of the ideas
and equations of general relativity (namely, differential geometry) is not familiar to
most physicists. Although it has been universally acknowledged as being a beautiful
theory, the potential relevance of general relativity to the rest of physics has not been
universally acknowledged and, indeed, probably for this reason, the subject has lain
nearly dormant during much of its history.

Strong interest in general relativity began to be revived starting in the late 1950s,
particularly by the Princeton group led by John Wheeler and the London group led
by Herman Bondi. Although it is difficult to determine the reasons for trends in
physics, two developments-relating general relativity to other areas of physics and
astronomy-have contributed greatly to the sustained interest in general relativity
which has continued since then. The first is the astronomical discovery of highly
energetic, compact objects-in particular, quasars and compact X-ray sources. It is
likely that gravitational collapse and/or strong gravitational fields play an important
role here, and if so, general relativity would be needed to understand the structure
of these objects. The modern theory of gravitational collapse, singularities, and black
holes was developed beginning in the mid-1960s largely in response to this impetus.

A second factor prompting renewed interest in general relativity is the realization
that although gravitation may be too weak to play an important role in laboratory
experiments in particle physics, nevertheless it is of great importance to our further
understanding of the laws of nature that a quantum theory of gravitation be devel
oped. In order to make progress toward this goal, a deeper understanding of some
aspects of the classical theory of gravitation-general relativity-may be needed.
Interest in this program has been greatly strengthened by the prediction of quantum
particle creation in the gravitational field of a black hole, as well as by advances in
the study of gauge theories in particle physics.

But even aside from the potential impact of general relativity on astronomy and
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4 Introduction

on other branches of physics, the theory in its own right makes many remarkable
statements concerning the structure of space and time and the nature of the grav
itational field. After one has learned the theory, one cannot help feeling that one has
gained some deep insights into how nature works.

The purpose of this book is to present the theory of general relativity. We will take
a more modem, geometrical viewpoint than Einstein had, and we will, of course,
discuss the recent advances and developments, but the essential content of the theory
is the one Einstein gave over half a century ago. We begin in this chapter by
discussing the structure of space and time and the basic ideas of relativity theory from
an intuitive, physical point of view. More complete introductory discussions are
given by Geroch (1978a) and Wald (1977a). The remainder of this book will be
devoted to making these ideas mathematically precise and exploring their con
sequences.

1.2 Space and Time in Prerelativity Physics and in Special Relativity
Perhaps the greatest obstacle to understanding the theories of special and general

relativity arises from the difficulty in realizing that a number of previously held basic
assumptions about the nature of space and time are simply wrong. We begin,
therefore, by spelling out some key assumptions about space and time. In both the
past and modem viewpoints, space and time have at least the following structure in
common. We can consider space and time (= spacetime) to be a continuum com
posed of events, where each event can be thought of as a point of space at an instant
of time. Furthermore, all events (or, at least, all events in a sufficiently small
neighborhood of a given event) can be uniquely characterized by four numbers: in
ordinary language, three numbers for the spatial position and one for the time. As
will be discussed in chapter 2, a mathematically precise statement of these ideas is
that spacetime is a four-dimensional manifold.

However, prior to relativity theory it was believed that spacetime had the follow
ing additional structure: Given an event p in spacetime, there is a natural, observer
independent notion of events occurring "at the same time" as p. More precisely,
given two events p and q, one of the following three mutually exclusive possibilities
must hold: (1) It is possible, in principle, for an observer or material body to go from
event q to event p, in which case one says q is to the past of p. (2) It is possible to
go from p to q, in which case one says q is to the future of p. (3) It is impossible,
in principle, for an observer or material body to be present at both events p and q.
In prerelativity physics, events in the third category are assumed to form a three
dimensional set and define the notion of simultaneity with p, as is illustrated in
Figure 1.1.

The belief that the causal structure of spacetime has the character shown in Figure
1.1 turns out to be wrong. In special relativity theory the above classification of the
causal relationships between events still holds. The crucial difference is that events
in category (3) form more than a three-dimensional set; the causal relation between
p and other events has the structure sketched in Figure 1.2. The events in category
(3) can be further subdivided as follows: (i) Events that lie on the boundary of the
set of points to the future of p. These events cannot be reached by a material particle
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t'ime
~e

Future

P.

Post

Fig. 1.1. A diagram showing the causal structure of spacetime in prerelativity
physics. Given an event p, all other events in spacetime either are to the future of p,
to the past of p, or simultaneous with p. The simultaneous events fonn a
three-dimensional surface in spacetime.

starting at p but can be reached by a light signal emitted from p. They form the
"future light cone" of p (a iliree-dimensional set). (ii) Events on the past light cone
ofp, defined similarly. (iii) Events in category (3) which are on neither the past nor
the future light cone. These events are said to be spacelike related to p and comprise
a four-dimensional set.

A key fact closely related to the above is that in special relativity there is no notion
of absolute simultaneity; there are no absolute three-dimensional surfaces in space
time as in Figure 1.1. As we shall see below, an observer still can define a notion
of which events occur "at the same time" as a given event-thus defining a three
dimensional surface in spacetime-but the notion he gets depends upon his state of
motion. (On the other hand, the light cones of Fig. 1.2 are absolute surfaces.) The
notion that there is absolute simultaneity is a deeply ingrained one. The fact that there
is no such notion is one of the most difficult ideas to adjust to in the theory of special
relativity.

Post light cone

Post
Fig. 1.2. A diagram showing the causal structure of spacetime in special relativity.
The "light cone" of p rather than a "surface of simultaneity" with p now plays a
fundamental role in detennining the causal relationship of p to other events.



6 Introduction

In special relativity (as in prerelativity physics) one has the notion of inertial,
"nonaccelerating" motion, namely the motion a material body would undergo if
subjected to no external forces. An inertial observer can label the events of spacetime
in the following manner. He can build himself a rigid frame and label the grid points
of the frame with the Cartesian coordinates x, y, z of the (assumed Euclidean)
geometry of the frame. He can then have a clock placed at each grid point and can
synchronize each clock with his by a symmetrical procedure, e.g., by making sure
that a given clock and his give the same reading when they receive a signal sent out
in a symmetrical manner by an observer stationed halfway between the two. (Be
cause the causal structure of spacetime is that of Figure 1.2, not Figure 1.1, syn
chronization is not a trivial issue.) The observer may carry the grid, complete with
synchronized clocks, in a nonrotating manner. Each event in spacetime can now be
labeled with the coordinates x, y, z of the grid point at which the event occurred and
the reading t of the (synchronized) clock at that event. The labels t, x, y, z assigned
to events in this manner are referred to as global inertial coordinates.

If two such inertial observers go through this procedure, one may compare the
coordinate labels they assign to events. In prerelativity physics (where the same
labeling procedure works, the only difference being that clock synchronization is
trivial), if observer 0 labels an event p with coordinates t, x, y, z and 0' moves with
velocity v in the x-direction, passing observer 0 at the event labeled by
t = x = y = z = 0, the coordinate labels that 0' assigns to event p are

t' = t,

x' = x - vt,

y' = y,

z' = z.

(1.2.1)

(1.2.2)

(1.2.3)

(1.2.4)

In special relativity, however, the labeling by 0' will be related to that of 0 by a
Lorentz transformation,

t' = (t - vx/c 2)/(1 - V 2/C
2)1/2,

x' = (x - vt)/(1 - V 2/C 2)1/2 ,

y' = y,

z' = z,

(1.2.5)

(1.2.6)

(1.2.7)

(1.2.8)

where c is the speed of light. Equation (1.2.5) shows that the notion of simultaneity
determined by 0 (namely, t = constant) differs from that determined by 0'
(t' = constant), as illustrated in Figure 1.3.

1.3 The Spacetime Metric
In the previous section, we gave a prescription for how an inertial observer 0 can

label the events in spacetime with global inertial coordinates t, x, y, z. However, a
fundamental tenet of special relativity is that there are no preferred inertial observers.
As seen above, a different inertial observer using the same procedure assigns differ-
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Fig. 1.3. A spacetime diagram illustrating the fact that in special relativity the
inertial observers 0 and 0' disagree over the definition of simultaneity with event p.

ent labels t ' , x', y', Z' to the events in spacetime. Thus, the coordinate labels
themselves do not have intrinsic significance since they depend as much on which
observer does the labeling as they do on the properties of spacetime itself. It is of
great interest to determine what quantities have absolute, observer-independent
significance, Le., truly measure intrinsic structure of spacetime. This is equivalent
to determining what functions of global inertial coordinates are independent of the
choice of inertial frame.

In prerelativity physics the answer is the following. The time interval At between
two events has absolute significance; all observers will agree on the value of A.t.
Furthermore, the spatial interval IA. xl between two simultaneous events is observer
independent. However, these quantities (or functions of them) are the only ones with
absolute significance. For example, observers moving with nonzero relative velocity
will disagree over the spatial interval between nonsimultaneous events.

In special relativity neither the time interval nor the space interval between
"relatively simultaneous" events (Le., events determined to be simultaneous by a
particular observer) has absolute significance. The quantity which is observer inde
pendent is the spacetime interval, I, defined by

(1.3.1)

Indeed, the Poincare transformations (the set of all possible transformations between
global inertial coordinates) consist precisely of the linear transformations which
leave I unchanged. The spacetime interval I and functions of I are the only observer
independent quantities characterizing the spacetime relationships between events.

What is truly remarkable about the expression for I is that it is quadratic in the
coordinate differences, just like the distance function in Euclidean (Le., flat, positive
definite) geometry. Indeed, the only difference is the minus sign in front of (At)2,
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allowing I to become zero or negative. We shall refer to I as the metric of spacetime
in analogy to an ordinary Euclidean metric. (More precisely, the metric of spacetime
in special relativity will be defined later to be a tensor field associated with the
formula for the spacetime interval between two "infinitesimally nearby" events; see
eq. [4.2.2] below.) As we shall see in chapter 3, this difference in metric signature
makes very little difference in the mathematical analysis of metrics. In particular
definitions of geodesics ("straightest possible lines") and curvature carry through in
the same way for metrics with the signature of I as for ordinary positive definite
metrics. It is interesting to note that, as discussed more fully in chapter 4, the paths
in spacetime of inertial observers in special relativity are geodesics of the spacetime
metric, and the curvature associated with I is zero, i.e., the spacetime geometry in
special relativity is flat.

1.4 General Relativity
Prior to special relativity, the prerelativity notions of space and time pervaded

among many other things-the formulation of the laws of physics. When these
notions were overthrown, the task remained of modifying and reformulating physical
laws to be consistent with the spacetime structure given by the theory of special
relativity. Maxwell's theory of electromagnetism was already consistent with special
relativity. Indeed, its incompatibility with prerelativity notions of spacetime struc
ture unless preferred inertial frames were introduced led directly to the discovery of
special relativity. Newton's theory of gravitation is not consistent with special
relativity since it invokes notions of instantaneous influence of one body on another,
but it might be thought that one could simply modify it to fit within the framework
of special relativity.

However, two key ideas motivated Einstein not to follow this path but rather to
seek an entirely new theory of spacetime and gravitation-a theory that revolu
tionized our notions of space and time every bit as much as special relativity already
had done.

The first idea is that all bodies are influenced by gravity and, indeed, all bodies
fall precisely the same way in a gravitational field. This fact, known as the equiv
alence principle, is expressed in the Newtonian theory of gravitation by the statement
that the gravitational force on a body is proportional to its inertial mass. Because
motion is independent of the nature of the bodies, the paths of freely falling bodies
define a preferred set of curves in spacetime just as in special relativity the paths in
spacetime of inertial bodies define a preferred set of curves, independent of the
nature of the bodies. This suggests the possibility of ascribing properties of the grav
itational field to the structure of spacetime itself. As already mentioned in the
previous section, the paths of inertial bodies in special relativity are geodesics of the
spacetime metric. Perhaps, then, the paths of freely falling bodies are always geodes
ics, but the spacetime metric is not always that given by special relativity. What we
think of as a gravitational field would then not be a new field at all, but rather would
correspond to a deviation of the spacetime geometry from the flat geometry of special
relativity. We shall discuss these ideas further in chapter 4.
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The second much less precise set of ideas which motivated the formulation of
general relativity goes under the name of Mach's principle. In special relativity as
in prerelativity notions of spacetime, the structure of spacetime is given once and for
all and is unaffected by the material bodies that may be present. In particular,
"inertial motion" and "nonrotating" are not influenced by matter in the universe.
Mach as well as a number of earlier philosophers and scholars (in particular, Rie
mann) found this idea unsatisfactory. Rather, Mach felt that all matter in the universe
should contribute to the local definition of "nonaccelerating" and "nonrotating"; that
in a universe devoid of matter there should be no meaning to these concepts. Einstein
accepted this idea and was strongly motivated to seek a theory where, unlike special
relativity, the structure of spacetime is influenced by the presence of matter.

The new theory of space, time, and gravitation-general relativity-proposed by
Einstein states the following: The intrinsic, observer-independent, properties of
spacetime are described by a spacetime metric, as in special relativity. However, the
spacetime metric need not have the (flat) form it has in special relativity. Indeed,
curvature, i.e., the deviation of the spacetime metric from flatness, accounts for the
physical effects usually ascribed to a gravitational field. Furthermore, the curvature
of spacetime is related to the stress-energy-momentum tensor of the matter in space
time via an equation postulated by Einstein. In this way, the structure of spacetime
(as embodied in the spacetime metric) is related to the matter content of spacetime,
in accordance with some (but not all!) of Mach's ideas. Thus far, the predictions of
general relativity have been found to be in excellent agreement with experiments and
observations (see section 6.3 below and Will 1981).

Most of the remainder of this book is devoted to exploring the consequences of
this theory. Our first task, however, is to give a precise, mathematical expression to
the ideas discussed in this chapter. To begin with, we must give a precise formulation
of the notion that spacetime is a four-dimensional continuum. This will be accom
plished with the definition of a manifold given in section 2.1. We must then introduce
the basic mathematical framework needed to discuss curved geometry: vectors and
tensors (2.2), the metric (2.3), derivative operators (3.1), curvature (3.2), and
geodesics (3.3). Almost all of the discussion we shall give applies equally well to
the differential geometry of ordinary surfaces (positive definite metric) as to the
geometry of spacetime (metric of Lorentz signature). After development of these
mathematical tools and techniques, we will then be in position to begin our study of
general relativity in chapter 4.

Problem
1. Car and garage paradox: The lack of a notion of absolute simultaneity in special
relativity leads to many supposed paradoxes. One of the most famous of these
involves a car and a garage of equal proper length. The driver speeds toward the
garage, and a doorman at the garage is instructed to slam the door shut as soon as
the back end of the car enters the garage. According to the doorman, "the car Lorentz
contracted and easily fitted into the garage when I slammed the door." According to
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the driver, "the garage Lorentz contracted and was too small for the car when I
entered the garage." Draw a spacetime diagram showing the above events and
explain what really happens. Is the doorman's statement correct? Is the driver's
statement correct? For definiteness, assume that the car crashes through the back wall
of the garage without stopping or slowing down.



TWO

MANIFOLDS AND TENSOR FIELDS

In this chapter we lay the foundations for a precise, mathematical formulation of
general relativity by obtaining some basic properties of manifolds and tensor fields.
As defined in section 2.1, an n-dimensional manifold is a set that has the local
differential structure of IRn but not necessarily its global properties. In section 2.2 we
define tangent vectors as directional derivative operators acting on functions defined
on a manifold. We obtain there some important properties of coordinate bases of the
tangent space and tangents to curves. Tensors are introduced in section 2.3, and the
notion of a metric is defined. Finally, in section 2.4 we introduce the abstract index
notation for tensors, which we shall use throughout the remainder of this book. We
will use a fair number of standard mathematical symbols in this chapter, and the
reader unfamiliar with these symbols should consult the section "Notation and
Conventions" at the beginning of this book.

2.1 Manifolds
As mentioned in the previous chapter, our experience tells us that spacetime is a

"four-dimensional continuum" in the sense that it requires four numbers to character
ize an event. In prerelativity physics as well as in special relativity it is assumed that
this is globally true, Le., that all events in spacetime can be put into one-to-one
continuous correspondence with the points of 1R4

• However, in general relativity we
will be solving for the spacetime geometry and we do not wish to prejudice in
advance any aspects of the global nature of spacetime structure. Our situation is very
similar to that of hypothetical investigators of the structure of the surface of Earth
prior to the explorations of Columbus and Magellan. Such investigators might notice
that in their vicinity they can characterize positions on the surface of the Earth by two
numbers. However, they would be making a serious error is they were to extrapolate
from this fact to the conclusion that the entire collection of points on the surface of
the Earth can be put into one-to-one correspondence with points of 1R2 in a continuous
manner. Thus, what is needed as a mathematical basis for beginning the investigation
of spacetime structure (as well as the surface of the Earth) is a precise notion of a
manifold, that is, a set in which the vicinity of every point "looks like" IRn but which
may have quite different global properties.

In the case of the Earth, our investigators might be aware that its surface "lives"
in the higher dimensional Euclidean space 1R3 of all space points (at least, according

11
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to prerelativity notions of space and time). Thus the study of two-dimensional
surfaces embedded in 1R3 would provide an adequate mathematical framework to
analyze the structure of the Earth's surface, and one could avoid making an abstract
definition of manifolds. However, in general relativity, spacetime itself does not (as
far as we know) naturally live in a higher dimensional Euclidean space, so an abstract
definition is much more natural. Indeed, such a definition turns out to be extremely
useful even for the study of ordinary surfaces in 1R3

.

Before defining the notion of a manifold we remind the reader that an open ball
in IRn of radius r centered around point y = (y 1, ... ,yn) consists of the points x
such that Ix - y I < r, where

[

n ] 1/2
Ix - yl = !:I(XIJ. - yIJ.)2

An open set in IRn is any set which can be expressed as a union of open balls. This
notion of open set makes IRn a topological space in the sense discussed in appen
dix A.

Basically, a manifold is a set made up of pieces that "look like" open subsets of
IRn such that these pieces can be "sewn together" smoothly. More precisely, an
n-dimensional, ex, real manifold M is a set together with a collection of subsets {Oa}
satisfying the following properties:

(1) Each p EM lies in at least one Oa, i.e., the {Oa} cover M.
(2) For each a, there is a one-to-one, onto, map r/Ja :Oa ~ Ua, where Ua is an

open subset of IRn.
(3) If any two sets Oa and Of3 overlap, Oa n Of3 "* ~ (where ~ denotes the empty

set), we can consider the map r/Jf3 0 r/Ja-I (where 0 denotes composition) which takes
points in r/Ja[Oa n Of3] C Ua C IRn to points in r/Jf3[Oa n Of3] C Uf3 C IRn (see Fig.
2.1). We require these subsets of IRn to be open and this map to be ex, i.e., infinitely
continuously differentiable. (Since we are dealing here with maps of IRn into 1Rn, the
advanced calculus notion of ex functions applies.)

Each map r/Ja is generally called a chart by mathematicians and a coordinate
system by physicists. We shall use these terms interchangeably. In order to prevent
one from defining new manifolds by merely deleting or adding in a coordinate
system, it is convenient also to require in the definition of M that the cover {Oa} and
chart family {r/Ja} is maximal, i.e., all coordinate systems compatible with (2) and
(3) are included. The definition of ek or analytic manifolds is the same as above with
the appropriate change in requirement (3). To define a complex manifold, one merely
replaces IR" by en above.

We can define a topology on the manifold M by demanding that all the maps r/Ja
in our maximal collection be homeomorphisms (see appendix A for definitions).
Indeed, it is perhaps more natural to proceed by defining a manifold to be a topo
logical space satisfying the above properties, with each r/Ja a homeomorphism. (We
have not done so simply in order to avoid introducing the machinery of topological
spaces in the main text.) Viewed as topological spaces, we shall consider in this book
only manifolds which are Hausdorff and paracompact; these terms are explained in
appendix A.
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Rn

Fig.2.1. An illustration of the map 1/1/301/1;;' arising when two coordinate systems
overlap.

Euclidean space, IRn
, provides a trivial example of a manifold, which can be

covered by a single chart (0 = 1Rn, r/J = identity map). A more interesting example
of a manifold is the 2-sphere S2,

S2 = {(xl,xz,x 3) E 1R3
1 (X')2 + (X 2)2 + (X 3)2 = I}

The entire 2-sphere S2 cannot be mapped into 1R2in a continuous, 1-1 manner, but
"pieces" of S2 can, and these can be "smoothly sewn together." For example, if we
define the six hemispherical open sets OT for i = 1, 2, 3 by

OT = {(x',X2,X3) E S21 ± Xi > O}

then {On covers S2. Furthermore, each 0=;= can be mapped homeomorphically into
theopendiskD = {(x,y) E 1R2 1x 2 + y2 < l}intheplaneviathe"projectionmaps"
It :ot ~ D,fi:Oi ~ D, etc., defined by it<x', x 2, x 3) = (x 2, x 3), etc. The over
lap functions iT ° (j'j)-' can be checked to be Coo in their domain of definition
(problem 1). Thus, S2 is a two-dimensional manifold. In a similar manner, the
n-dimensional sphere sn is seen to be a manifold.

Given two manifolds M and M' of dimension nand n', respectively, we can make
the product space M x M' consisting of all pairs (p,p') with p EM and p' EM'
into an (n+n')-dimensional manifold as follows. If r/Ja :Oa ~ Ua and r/J~: O~ ~ U~

are charts, we define a chart r/Jaf3:0af3 ~ Uaf3 C IRn
+
n'on M X M' by taking Oaf3 =

On X O~, Ua/3 = Ua X U~, and setting r/Jaf3(P'P') = [r/Ja(P), r/J~(p')]. It is easily
checked that the chart family {r/Jaf3} satisfies the properties required to define a
manifold structure on M x M'. Most manifolds we will consider in this book can be
expressed as products of Euclidean space IRn with spheres sm.

With the structure on manifolds given by the coordinate systems, we may now
define the notion of differentiability and smoothness of maps between manifolds. Let
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M and M' be manifolds and let {l/Ja} and {l/J~} denote the chart maps. A map
j: M ~ M' is said to be Coo if for each a and {3, the map l/J~ 0 j 0 l/J;; I taking Ua C IRn

into U~ C IRn' is Coo in the sense used in advanced calculus. If j:M ~ M' is Coo,
one-to-one, onto, and has Coo inverse,jis called a diffeomorphism and M and M' are
said to be diffeomorphic. Diffeomorphic manifolds have identical manifold struc
ture.

2.2 Vectors
The concept of a vector space is undoubtedly familiar to most readers. In pre

relativity physics it is assumed that space has the natural structure of a three
dimensional vector space once one has designated a point to serve as the origin; the
natural rules for adding and scalar multiplying spatial displacements satisfy the
vector space axioms. I In special relativity, spacetime similarly has the natural struc
ture of a four-dimensional vector space. However, when one considers curved
geometries (as we do in general relativity), this vector space structure is lost. For
example, there is no natural notion of how to "add" two points on a sphere and end
up with a third point on the sphere. Nevertheless, vector space structure can be
recovered in the limit of "infinitesimal displacements" about a point. It is this notion
of "infinitesimal displacements" or tangent vectors which lies at the foundation of
calculus on manifolds. Therefore, we will devote considerable attention below to
giving a precise mathematical definition of this concept.

Fig. 2.2. The tangent plane at point p of a sphere in 1R3
•

For manifolds like the sphere, which arise naturally as surfaces embedded in IRn
,

the intuitive notion of a tangent vector at point p is a vector lying in the tangent plane
illustrated in Figure 2.2. For manifolds embedded in 1Rn, this idea can be made
mathematically precise. However, in many situations-most importantly in general
relativity--one is given a manifold without an embedding of it in IRn

• Thus, it is
important (and, in the long run, much more useful) to define a tangent vector in a
way that refers only to the intrinsic structure of the manifold, not to its possible
embeddings in IRn

•

1. See, e.g., Royden (1963) for the list of vector space axioms.
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Such a definition is provided by the notion of a tangent vector as a directional
derivative. In IRn there is a one-to-one correspondence between vectors and direc
tional derivatives. A vector v = (v 1, ..• , v n

) defines the directional derivative
operator ~ vIJ.(ajaxIJ.) and vice versa. Directional derivatives are characterized by

IJ.
their linearity and "Leibnitz rule" behavior when acting on functions. Thus on a
manifold M let '?J denote the collection of Coo functions from Minto IR. We define
a tangent vector v at point p E M to be a map v: '?J ~ IR which (1) is linear and (2)
obeys the Leibnitz rule:

(1) v(af + bg) = av(f) + bv(g), for allf, g E '?J; a, b E IR;
(2) v(fg) = f(p)v(g) + g(p)v(f).

Note that (1) and (2) imply that if h E '?J is a constant function, Le., h(q) = c for
allq EM, then v(h) = 0, since from (2) we have v(h Z

) = 2cv(h) whereas from (1)
we have v(h Z

) = v(ch) = cv(h).
Though it may not be obvious at first glance, this definition does indeed make

precise and give intrinsic meaning to the concept of an "infinitesimal displacement."
In the first place, it is easy to see that the collection, Yp, of tangent vectors at p has
the structure of a vector space under the addition law (VI + vz)(f) = Vl(f) + vz(f)
and scalar multiplication law (av)(f) = av(f). A second vital property of Yp is given
by the following theorem:

THEOREM 2.2.1. Let M be an n-dimensional manifold. Let p EM and let Yp denote
the tangent space at p. Then dim Yp = n.

Proof. We shall show that dim Yp = n by constructing a basis of Yp, i.e., by
finding n linearly independent tangent vectors which span Yp. Let r/J: 0 ~ U C IRn

be a chart withp EO (see Fig. 2.3). Iff E '?J, then by definitionf 0 r/J-I :U~ IR
is Coo. For f.L = 1, ... , n define XIJ.: '?J ~ IR by

XIJ.(f) = a.a IJ. (f 0 r/J-l) I (2.2.1)
X !/J(p)

M

R
Fig. 2.3. A diagram illustrating the definition of the directional derivatives, XI'-'
used in theorem 2.2.1.
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where (Xl, ... , x n
) are the Cartesian coordinates of IRn

• Then Xlo .•• , Xn are
tangent vectors, and it is easily seen that they are linearly independent. To show that
they span Vp we make use of the following result from advanced calculus (see
problem 2): IfF: IRn~ IR is Coo, then for each a = (ai, ... , an) E IRn there exist
Coo functions HIJ. such that for all x E IRn we have

n

F(x) = F(a) + L (xIJ. - aIJ.)HIJ.(x)
IJ.=1

Furthermore, we have

(2.2.2)

(2.2.3)aF IHIJ.(a) = --;
ax x=a

We apply this result here, letting F = f 0 rjJ-1 and a = rjJ(p). Then, for all q E 0
we have

n

f(q) = f(p) + L[xIJ.orjJ(q) - xIJ.orjJ(p)]HIJ.(rjJ(q» (2.2.4)
IJ.=1

Let v E Vp. We wish to show that v is a linear combination of Xlo ••• ,Xn • To do
so, we apply v to f, using equation (2.2.4), the linearity and Leibnitz properties of
v, and the fact that v applied to a constant [such asf(p)] vanishes. We obtain

v(f) = v[j(p)] + ~1{[XIJ.orjJ(q) - xIJ.orjJ(p)] Iq=p v(HIJ.orjJ)

+ (HIJ. 0 rjJ) IP v[xIJ. 0 rjJ - xIJ. orjJ(p)]}

n

= L [HIJ. 0 rjJ(p)]v (xIJ. 0 rjJ) (2.2.5)
IJ.=1

But by equation (2.2.3), HIJ. 0 rjJ(p) is just XIJ.(f). Thus, for allf E '?J, we have

n

v(f) = L vIJ.XIJ.(j) (2.2.6)
IJ.=1

where the coefficients vIJ. are the values of v applied to the function xIJ. 0 rjJ,

vIJ. = V (xIJ. orjJ) (2.2.7)

Thus, we have expressed an arbitrary tangent vector vas a sum of the XIJ.'

(2.2.8)

which completes the proof. 0

The basis {XIJ.} of Vp introduced in the proof of theorem 2.2.1 is called a coordinate
basis and is of considerable importance in its own right. Frequently, one denotes XIJ.

as simply a/axIJ.. Had we chosen a different chart, rjJ I, we would have obtained a
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different coordinate basis {X~}. We can, of course, express XJi in terms of the new
basis {X:}. Using the chain rule of advanced calculus, we have

X =~ax'·1 X' 9Ji ~ Ji • (2.2. )
.=1 ax !/J(p)

where x'· denotes the vth component of the map rjJ' 0 rjJ-I. Hence, from equations
(2.2.8) and (2.2.9) we find that the components v'· of a vector v in the new
coordinate basis are related to the components v Ji in the old basis by

n ax'.
v'· = ""' v Ji --

~ ax Ji
Ji=l

Equation (2.2.10) is known as the vector transformation law.
A smooth curve, C, on a manifold M is simply a Coo map of IR (or an interval of

IR) into M, C: IR ~ M. At each point p E M lying on the curve C we can associate
with C a tangent vector T E Yp as follows. For f E '?J we set T(f) equal to the
derivative of the function f 0 C : IR ~ IR evaluated at p, i.e., T (f) = d(f 0 C)/ dt.
Note that the above coordinate basis vector XJi associated with a chart rjJ is the tangent
to the curves on M obtained by keeping all coordinate values except x Ji constant.
Notice also that when we choose a coordinate system rjJ, the curve C on M will get
mapped into a curve xJi(t) in IRn

• Then, for any f E '?J, we have

(2.2.11)

Thus, in any coordinate basis, the components TJi of the tangent vector to the curve
are given by

(2.2.12)

In the discussion above, we fixed a point p E M and considered the tangent space,
Yp, at p. At another point q E M we could, of course, define Vq. It is important to
emphasize that, given only the structure of a manifold, there is no natural way of
identifying Vq with Yp; that is, there is no way of determining whether a tangent vector
at q is "the same" as a tangent vector at p. In chapter 3, we shall see that when
additional structure is given (namely, a connection or derivative operator on the
manifold), one has a notion of "parallel transport" of vectors from p to q along a
curve joining these points. However, if the curvature is nonzero, the identification
of Yp with Yq obtained in this manner will depend on the choice of curve.

A tangentfield, v, on a manifold M is an assignment of a tangent vector, v Ip E Yp,
at each point p E M. Despite the fact that the tangent spaces Yp and Vq at different
points are different vector spaces, there is a natural notion of what it means for v to
vary smoothly from point to point. If f is a smooth (COO) function, then at each
p EM, vip (f) is a number, i.e., v(f) is a function on M. The tangent field v is
said to be smooth if for each smooth function f, the function v (f) is also smooth.
Since the coordinate basis fields XJi are easily verified to be smooth, it follows that
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a vector field v is smooth if and only if its coordinate basis components, v JL , are
smooth functions.

In the heuristic discussion above, we described tangent vectors as "infinitesimal
displacements." We shall now show that precise meaning can be given to this idea.
Let M be a manifold. A one-parameter group of diffeomorphisms cPt is a Coo map
from IR X M ~ M such that for fixed t E IR, cPt:M~ M is a diffeomorphism and
for all t, s E IR, we have cPt 0 cPs = cPt+s. (In particular, this last relation implies that
cPt=o is the identity map.) We can associate to cPt a vector field v as follows: for fixed
p EM, cPt (p) : IR ~ M is a curve, called an orbit of cPt, which passes through p at
t = O. Define v Ip to be the tangent to this curve at t = O. Thus, associated to a
one-parameter group of (finite) transformations of M is a vector field, v, which can
be thought of as the infinitesimal generator of these transformations.

Conversely, given a smooth vector field, v, on M we can ask if it is possible to
find integral curves of v, that is, a family of curves in M having the property that
one and only one curve passes through each point p E M and the tangent to this
curve atp is v Ip' The answer is yes: If we pick a coordinate system in a neighborhood
ofp as in the proof of theorem 2.2.1, we see that the problem of finding such curves
reduces to solving the system,

dx JL _ JL( 1 n)-;jf-V X, ... ,X

of ordinary differential equations in IRn
, where v JL is the p,th component of v in the

coordinate basis {aj axJL}. Such a system of equations has a unique solution given a
starting point at t = 0, and thus every smooth vector field v has a unique family of
integral curves (see, e.g., Coddington aI\d Levinson 1955). Given the integral
curves, for each p E M we define cPt(p) to be the point lying at parameter t along
the integral curve of v starting at p. Except for potential problems arising from the
possibility that the integral curves of v may extend to only a finite value of the curve
parameter, cPt will be a one-parameter group of diffeomorphisms.

Finally, we note that given two smooth vector fields v and w it is possible to define
a new vector field, [v, w], called the commutator of v and w, by

[v, w](f) = v[w(f)] - w[v(f)] (2.2.14)

(see problem 3). We note that the commutator of any two vector fields XJL and X.
occurring in a coordinate basis vanishes. (This fact follows directly from the
definition of the coordinate basis given in the proof of theorem 2.2.1 together with
the equality of mixed partial derivatives in IRn

.) Conversely, given a collection
Xl. ... ,Xn of nonvanishing vector fields which commute with each other and are
linearly independent at each point, one can always find a chart for which they are the
coordinate basis vector fields (see problem 5).

2.3 Tensors; the Metric Tensor
Given the notion of displacement vectors, the notion of tensors arises when one

considers other quantities of interest. It turns out that many quantities have a linear
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(or multilinear) dependence on displacements. Consider, for example, a mea
surement of the magnetic field (say, in the context of prerelativity physics). For each
probe orientation, a number is recorded: the magnetic field strength in that given
direction. Since there is an infinite number of possible orientations of the probe, in
principle an infinite number of readings would be needed to determine the magnetic
field. However, this is not necessary because the magnetic field strength has a linear
dependence on the probe orientation. All that is required is readings in three linearly
independent probe directions; the reading in any other probe direction is equal to a
linear combination of these readings.

This fact gives rise to the notion of the magnetic field as a vector or, more
precisely, a dual vector. One could define a dual vector as a collection of three
numbers (Le., the probe readings) associated with a basis of spatial displacement
vectors (the three independent probe directions) which transform in an appropriate
manner when the basis is changed. However, we will give below a simpler and more
direct definition of a dual vector as a linear map from spatial displacement vectors
into numbers. We have defined the magnetic field as a dual vector here, but, as we
shall see at the end of this section, because space has a metric defined on it, we can
naturally associate to any dual vector an ordinary (spatial displacement) vector.

In a similar manner, other quantities that occur in physics have a similar linear
dependence on spatial displacement vectors but may be functions of more than one
such vector. For example, for an ordinary material body in equilibrium, consider the
plane with normal vector ,; passing through a point p in the body. At p, one could
measure the force per unit area, F, in the 7-direction exerted on the matter on one
side of the plane by the matter on the other side. One finds that F depends linearly
on the choice of ,; and 7. Thus, although there is an infinite number of possible
choices of ,; and 7, the value of F for any ,; and 7 can be calculated by knowing
3 x 3 numbers, namely the values F takes when'; and 7 point in basis directions.
This motivates the definition of a tensor which will be given below: A tensor is a
multilinear (Le., linear in each variable) map from vectors (or dual vectors) into
numbers. The tensor which maps the pair of vectors (';,7) into the value of F is
known as the stress tensor of the material body at p.

We give now the precise mathematical definition of tensors and discuss their
properties. Let V be any finite-dimensional vector space over the real numbers. (The
case of prime interest for us is the tangent space, V = Yp.) Consider the collection,
V", oflinear mapsf:V~ IR. If one defines addition and scalar multiplication of such
linear maps in the obvious way, one gets a natural vector space structure on V". We
call V" the dual vector space to V, and elements of V" are called dual vectors. If
VI> ..• , Vn is a basis of V, we can define elements V 1", .•• , v n

" E V" by

v"'"(Vv) = 5"'v (2.3.1)

where 5'"v = 1 if f.L = v and 0 otherwise. (This defines the action of v"," on the basis
elements; its action on an arbitrary vector v E V is determined by this and linearity.)
It follows directly (problem 6) that {v","} is a basis of V", called the dual basis to the
basis {v",} of V. In particular, this shows that dim V" = dim V. The correspondence
v'"~ v"," gives rise to an isomorphism between V and V", but this isomorphism
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depends on the choice of basis {vI'}, so there is no natural way of identifying V' with
V (unless more structure is given on V, such as a preferred basis or, as described
below, a metric).

We now can apply the above construction starting with the vector space V',
thereby obtaining the double dual vector space to V, denoted V". A vector v" in V"
is a linear map from V' into IR. However, V" is naturally isomorphic to the original
vector space V. To each vector v in V we can associate the map in V" whose value
on the vector w' E V' is just w'(v). In this way, we obtain a one-to-one linear map
of V into V" which must be onto since dim V = dim V". Thus, taking the double
dual gives nothing new; we can naturally identify V" with the original vector space
V. This identification will be assumed in the discussion below.

We now are ready to define the notion of a tensor. Let V be a finite dimensional
vector space and let V' denote its dual vector space. A tensor, T, of type (k, I) over
V is a multilinear map

T:~'X~~IR

k I

In other words, given k dual vectors and I ordinary vectors, T produces a number,
and it does so in such a manner that if we fix all but one of the vectors or dual vectors,
it is a linear map on the remaining variable.

Thus, according to the above definition, a tensor of type (0, 1) is precisely a dual
vector. Similarly, a tensor of type (1,0) is an element of V". However, since we
identify V" with V, a tensor of type (1,0) is nothing more than an ordinary vector.
Because of the identification of V" with V, we may view tensors of higher type in
many different (though, or course, equivalent) ways. For example, a tensor T of type
(1, 1) is a multilinear map from V' x V ~ IR. Hence, if we fix v E V, T(', v) is an
element of V", which we identify with an element of V. Thus, given a vector in V,
T produces another vector in V in a linear fashion. In other words, we can view a
tensor of type (1, 1), as a linear map from V into V, and vice versa. Similarly, we
can view T as a linear map from V' into V'.

With the obvious rules for adding and scalar multiplying maps, the collection
'!J(k, I) of all tensors of type (k, I) has the structure of a vector space. Because of the
multilinearity property, a tensor is uniquely specified by giving its values on vectors
in a basis {VI'} of V and its dual basis {v V'} of V'. Since there are nHI independent
ways of filling the slots of a tensor of type (k, I) with such basis vectors (where
n = dim V = dim V'), the dimension of the vector space '!J(k, I) is nHI

.

We now introduce two simple but important operations on tensors, which will be
used commonly in what follows. The first is called contraction with respect to the
ith (dual vector) and jth (vector) slots and is a map C: '!J(k, I) ~ '!J(k-l, 1-1)
defined as follows. If T is a tensor of type (k, I), then

n

CT = 2: T( . ..
a=l

a',v , ... ; ... , vu , . ..) (2.3.2)

where {Va} is a basis of V; {va'} is its dual basis, and these vectors are inserted into
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the ith and jth slots of T. [Note that the contraction of a tensor of type (1, 1), viewed
as a linear map from V into V, is just the trace of the map.] The tensor CT thus
obtained is independent of the choice of basis {VI'}, so the operation of contraction
is indeed well defined (see problem 6).

The second operation on tensors is the outer product. Given a tensor T of type
(k, i) and another tensor T' of type (k', I'), we can construct a new tensor of type
(k+k', Hi') called the outer product of T and T' and denoted T Q9 T', by the
following simple rule. Given (k+k') dual vectors VI', .•• , vk+k" and ([+i') vectors
WI. •.• , WI+I', we define T Q9 T' acting on these vectors to be the product of
T(v l

', ... , v k'; Wh .•. , WI) and T'(Vk+I', ... , vk+k
"; WI+I, ... , WI+I').

Thus, one way of constructing tensors is to take outer products of vectors and dual
vectors. A tensor which can be expressed as such an outer product is called simpie. 2

If {VI'} is a basis of V and {v V'} is its dual basis, it is easy to show that the nk+1 simple
tensors {vJLI Q9 ••• Q9 vJLk Q9 V VI' Q9 .•. Q9 v VI'} yield a basis of '!J(k, i). Thus,
every tensor T of type (k, i) can be expressed as a sum of simple tensors in this
collection

(2.3.3)T=
n
'" TJL I' . 'JLk iO. iO. VI'LJ VI' • , VI VI'I '<Y ••• '<Y V

JLl>"', vl=1

The basis expansion coefficients, TJLI'" JLkVI '" VI' are called the components of the
tensor T with respect to the basis {VJL}' Note that we follow the standard convention
in the notation for components of using superscripts for labels ILl associated with
vectors and subscripts for labels Vj associated with dual vectors.

In terms of components, we have the following formulas for contraction and outer
product. Suppose the tensor T has components TJLI'" JLkVI '" VI as in equation (2.3.3).
Then, the contraction, CT, of T has components given by

n

(CT)JLl"'JLk-1 = '" TJLI"'U"'JLk-1
lit'" Jll-l L.J VI'" (T'" 111-1

u=l

(2.3.4)

If T' has components T'JLi"'JLk'vi ''' vl" then the outer product S
components given by

T Q9 T' has

(2.3.5)

The above discussion applies to an arbitrary finite-dimensional vector space V. Let
us now consider the case of prime interest for us, where V is the tangent space, Yp,
at point p of a manifold M. In this case, V; is commonly called the cotangent space
at p and vectors in V; are called cotangent vectors. We also commonly refer to
vectors in Yp as contravariant vectors and vectors in V; as covariant vectors. As
discussed in section 2.2, given a coordinate system, we can construct a coordinate
basis a/ax l

, ••• , a/ax n of Yp. The associated dual basis of V; is usually denoted
as dx l , ... ,dxn . [Thus, we stress that dx JL is merely the symbol for the linear map

2. In many references, a tensor of type (0, I) which can be expressed as the totally antisymmetric part
of a simple tensor (see eq. [2.4.4] below) also is referred to as simple.
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defined by dxlJ.(a/ ax V) = 5IJ.v .] If we change coordinate systems, we already
showed that the components v'IJ.' of a vector v in the new basis are related to its
components vlJ. in the old basis by the vector transformation law,

, n ax'IJ.'
v'lJ. = 2: vlJ.- (2.3.6)

axlJ.
IJ.=I

If wlJ. denotes the components of a dual vector W with respect to the dual basis
{dx IJ.} , then from equations (2.3.1) and (2.3.6) it follows that under a coordinate
transformation its components become

n axlJ.
w'IJ.' = 2: wlJ. ax'l'"

IJ.=I

In general, the components of a tensor T of type (k, l) transform as

(2.3.7)

" n ax'IJ.I ax VI

T 'IJ.I···lJ.k , ,= 2: TlJ.l·· ·lJ.k -- -- (2 3 8)VI ••• VI VI ••• VI a. ... ,v' • •
XIJ.I ax I

1J.1 •... • vl=1

Equation (2.3.8) is known as the tensor transformation law.
In other treatments, equation (2.3.8) often is used as the defining property of a

tensor. The definition we have given here has the advantage that it generally is much
easier to define a quantity as a tensor by displaying it as a multilinear map on vectors
and dual vectors than it is to display it as a collection of numbers associated with a
coordinate system which changes according to equation (2.3.8) when we change
coordinate systems. In fact, as we shall illustrate throughout this book, it is rarely
worthwhile to introduce a basis and take components of a tensor at all, let alone to
worry about how these components change under a change of basis.

An assignment of a tensor over Vp for each point p in the manifold M is called a
tensorfield. The notions of smoothness of a function and of a (contravariant) vector
field v were already defined in section 2.2. A covariant vector field w is said to be
smooth (COO) if for each smooth vector field v, the function w(v) is smooth. A tensor
T oftype (k, l) is said to be smooth if for all smooth covariant vectors fields Wi, ,

w kand smooth contravariant vector fields VI, ... ,VI, T(w l
, ••. ,wk; VI, ,VI)

is a smooth function. The notion of a tensor field being C k is defined similarly.
We now introduce the notion of a metric. Intuitively, a metric is supposed to tell

us the "infinitesimal squared distance" associated with an "infinitesimal displace
ment." As discussed above in section 2.2, the intuitive notion of an "infinitesimal
displacement" is precisely captured by the concept of a tangent vector. Thus, since
"infinitesimal squared distance" should be quadratic in the displacement, a metric,
g, should be a linear map from Vp x Vp into numbers, i.e. a tensor of type (0,2). In
addition the metric is required to be symmetric and nondegenerate. By symmetric,
we mean that for all VI, V2 E Vp we have g(vJ, V2) = g(V2, VI)' By nondegenerate,
we mean that the only case in which we have g(v, vd = 0 for all V E Vp is the case
VI = O. Thus, a metric, g, on a manifold M is a symmetric, nondegenerate tensor
field of type (0,2). In other words, a metric is a (not necessarily positive definite)
inner product on the tangent space at each point.
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In a coordinate basis, we may expand a metric g in terms of its components g,.v
as

(2.3.9)

Sometimes the notation ds 2 is used in place of g to represent the metric tensor, in
which case we write equation (2.3.9) as

(2.3.10)

where, following standard practice, we have omitted writing the outer product sign
between dx" and dx v

• The notation of equation (2.3.10) conveys the intuitive flavor
of a metric as representing "infinitesimal squared distance."

Given a metric g, we always can find an orthonormal basis VI, ... , Vn of the
tangent space at each point p, i.e., a basis such that g(V,., vv) = 0 if J.L =f v and
g(V,., V,.) = ± 1 (see problem 7). There are, of course, many other orthonormal
bases atp, but the number of basis vectors with g(V,., V,.) = +1 and the number with
g(V,., V,.) = -1 are independent of choice of orthonormal basis (problem 7). The
number of + and - signs occurring is called the signature of the metric. In
ordinary differential geometry, one usually deals with positive definite metrics, i.e.,
metrics with signature + + . . . +. On the other hand, the metric of spacetime has
a signature - + + +. Positive definite metrics are called Riemannian; metrics with
signatures like those on spacetime (one minus and the remainder plus) are called
Lorentzian.

As defined above, at each point p E M a metric g is a tensor of type (0,2) over
Vp, i.e., a multilinear map from Vp x Vp ~ IR. However, we can also view g as a
linear map from Vp into V; via V ~ g (. , v). Because of the nondegeneracy of g, this
map is one-to-one and onto. In particular the inverse map exists. Thus, we can use
g to establish a one-to-one correspondence between vectors and dual vectors. Indeed,
given a metric g we could use this correspondence to entirely circumvent the neces
sity of introducing dual vectors. Normally this is done and accounts for why the
concept of a dual vector is not more familiar to most physicists. However, in general
relativity we shall be solving for the metric of spacetime; since the metric is not
known from the start, it is essential that we keep the distinction between vectors and
dual vectors completely clear.

2.4 The Abstract Index Notation
In the previous section we introduced the notion of tensors and defined a number

of operations that can be performed on them. However, if one performs even the
simplest manipulations, serious notational problems arise for the following reasons:
(1) Tensors of high type are functions of many vectors and dual vectors. In operations
such as contraction one has to keep track of which slots are involved. Introduction
of a new symbol to denote, say, a particular contraction of a given tensor becomes
extremely cumbersome and can make simple operations appear very complicated.
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(2) As mentioned above, a given tensor can be viewed in a variety of equivalent
ways. It is important that a simple, consistent notational scheme be developed so that
the same expressions are written down regardless of the viewpoint taken.

A notation which solves the above problems and is used in most relativity texts
as well as most older differential geometry texts is the following, As noted in section
2.3, if we introduce a basis, we can characterize a tensor by its components
TI-'l - - -I-'k VI VI' The notation consists of writing all equations in terms of these com-
ponents. This solves problems (1) and (2), since one has unique, simple expressions
for operations such as contraction and outer products in terms of components.

However, this component notation has a serious drawback. If we do not specify
how the basis we use is to be chosen, the equations we write down will be true tensor
equations, having basis-independent meaning. However, in some cases it will be
convenient to use a particular type of basis, e.g., a coordinate basis adapted to the
symmetries of a particular spacetime. If we do this, then the equations we write down
for the tensor components may be valid only in this basis. It is important to make
a clear distinction between equations that hold between tensors and equations for
their components that hold only in a special basis. However, this distinction is
blurred by the component notation.

We shall use a notation, the abstract index notation, which in practice is merely
a slight modification of the component notation. It has all the advantages of the
component notation but avoids the above drawback. The idea is not to introduce a
basis but to use a notation for tensors that mirrors the expressions for their basis
components (had we introduced a basis). The rules are as follows. A tensor of type
(k, I) will be denoted by a letter followed by k contravariant and I covariant, lower
case latin indices, Tal- - -ak

bl __-bl' Thus, for example, T
abe

de denotes3 a tensor of type
(3, 2). The latin indices here should be viewed as reminders of the number and type
of variables the tensor acts on, not as basis components. Any lowercase latin letters
can be placed in any slot, but in any equation the same letter must be used to
represent the same slot on both sides of the equation. Mirroring the component
expression, equation (2.3.4) (but omitting the summation sign), we denote the
contraction of a tensor by using the same letter as for the tensor but repeating the
index on the contracted slots. Thus, pbcbe denotes the tensor of type (2, 1), obtained
by contracting pbcde with respect to the second contravariant and first covariant slots,
The outer product of two tensors is denoted by simply writing them adjacent to each
other (and omitting the ® sign). Thus, pbCdeSfg denotes the tensor of type (4,3)
obtained by taking the outer product of pbCde and sab .

Using the index notation, one only can write down true tensor equations, since no
basis has been introduced. If we were to introduce a basis, one could of course take
components and write equations for them. To distinguish between equations for
components and the (very similar looking) tensor equations in the index notation, we

3_ More precisely, we may view Tabcde as consisting of the tensor T and the elements a, b, c, d, e
of a labeling set which mark the "slots" of this tensor_ See Penrose and Rindler (1984) for further
discussion _
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adhere to the following conventions. Component labels in the component notation
always will be denoted with greek letters as has been done above. Thus, for example,
TlJ.vAqp denotes a basis component of the tensor T abc

de . Given any tensor equation
expressed in the index notation, the corresponding equation (with greek letters
replacing latin ones in the superscripts and subscripts) holds for the basis components
in any basis. Conversely, for any equation relating basis components which is a true
tensor equation (i.e., is valid independently of how the basis is chosen), the corre
sponding tensor equation in the index notation is valid.

Thus, the distinction between the index notation and the component notation is
much more one of spirit (i.e., how one thinks of the quantities appearing) than of
substance (i.e., the physical form the equations take). The main advantages of the
index notation are that one is not forced to introduce a basis unnecessarily and one
is assured that all equations written in the index notation are equations holding
between tensors, since only true tensor equations can be expressed in this notation.
In the cases where one wishes to write a nontensorial equation for the basis com
ponents in a particular basis, the component notation may, of course, still be used.
In this manner a clear distinction can be seen in the notation between true tensor
equations and equations for components holding in a particular basis.

Additional notational rules apply to the metric tensor, both in the index and
component notations. Since a metric g is a tensor of type (0,2), it is denoted gab. If
we apply the metric to a vector, va, we get the dual vector gabvb. It is convenient to
denote this vector as simply Va, thus making notationally explicit the isomorphism
between Vp and V;defined by gab. The inverse of gab (which exists, as remarked at
the end of section 2.3, on account of the nondegeneracy of gab) is a tensor of type
(2,0) and could be denoted as (g -1)ab. It is convenient, however, to drop the inverse
sign and denote it simply as gab. No confusion arises from this since the upper
position of the indices distinguishes the inverse metric from the metric. Thus, by
definition, gabgbc = sao where sac (viewed as a map from Vp into Vp) is the identity
map. Ifwe apply the inverse metric to a dual vector Wa , we denote the resultant vector
gabWb as simply w a. In general, raised or lowered indices on any tensor denote
application of the metric or inverse metric to that slot. Thus, for example, if T abc

de
is a tensor of type (3,2), then Tab cde denotes the tensor gbfgdhgejrafchj' This notation
is self-consistent since the tensor resulting from the successive raising and lowering
of a given index is identical to the original tensor. Furthermore, the notation also is
self-consistent when applied to the metric itself, since gab = gacgbdgcd , i.e., gab is the
tensor gab with its indices raised.

The index notation may also be used to express the symmetry properties of
tensors. A tensor Tab of type (0,2) takes a pair of vectors (va, w a) into a number
Tabvawb. We may wish to consider the new tensor obtained by interchanging the
order in which the tensor Tab acts on this pair of vectors, i.e., the tensor which takes
(va, wa) into Tabvbw a. In the index notation this new tensor is denoted Too. Thus, for
example, the equation Tab = Too says that the tensor Tab is symmetric. Similar no
tational rules apply to any pair of covariant or contravariant indices of tensors of
higher type.
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It is convenient to introduce a notation for the totally symmetric and totally
antisymmetric parts of tensors. If Tab is a tensor of type (0,2), we define

1
1(ab) = "2 (Tab + na) (2.4.1)

1
T[ab] = "2 (Tab - Tba)

More generally, for a tensor Tal' .. at of type (0, I) we define

(2.4.3)

(2.4.4)

(2.4.5)

where the sum is taken over all permutations, TT, of 1, ... ,1 and 51' is +1 for even
permutations and -1 for odd permutations. Similar definitions apply for any group
of bracketed covariant or contravariant indices; e.g., we have

T (ab)c - 1 [Tabc + Tbac _ Tabc _ Tbac ]
[de] - 4" de de ed ed

A totally antisymmetric tensor field Tal" 'at of type (0,1),

(2.4.6)

is called a differential11orm. Some properties of differential forms are obtained in
appendix B. If one is dealing strictly with differential forms, it is sometimes con
venient to drop the index notation and denote an I-form Tal ... at as simply T. However,
except for some isolated instances of dealing with differential forms and a few cases
where the index notation can be confusing, such as with commutators and Lie
derivatives (see appendix C), we will use the index notation throughout the book.

Problems
1. a) Show that the overlap functions f'7o(fj)-t are Coo, thus completing the
demonstration given in section 2.1 that S2 is a manifold.

b) Show by explicit construction that two coordinate systems (as opposed to the
six used in the text) suffice to cover S2. (It is impossible to cover S2 with a single
chart, as follows from the fact that S2 is compact, but every open subset of [R2 is
noncompact; see appendix A.)

2. Prove that any smooth function F: IRn~ [R can be written in the form equation
(2.2.2). (Hint: For n = 1, use the identity

F(x) - F(a) = (x - a) f F'[t(x - a) + a] dt

then prove it for general n by induction.)
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3. a) Verify that the commutator, defined by equation (2.2.14), satisfies the linear
ity and Leibnitz properties, and hence defines a vector field.

b) LetX, Y, Z be smooth vector fields on a manifold M. Verify that their commu
tator satisfies the Jacobi identity:

[[X, Y],Z] + [[Y,Z],X] + [[Z, X], Y] = 0

c) Let Yt, ... , Y" be smooth vector fields on an n -dimensional manifold M such
that at each p EM they form a basis of the tangent space Vp. Then, at each point,
we may expand each commutator [Y", >/3] in this basis, thereby defining the functions
C'Ya(3 = -C'Y(3a by

[Y", Y(3] = 2: C'Ya(3Yr
'Y

Use the Jacobi identity to derive an equation satisfied by C'Ya(3' (This equation is a
useful algebraic relation if the C'Ya(3 are constants, as will be the case if Yt, ... , Y"
are left [or right] invariant vector fields on a Lie group [see section 7.2].)

4. a) Show that in any coordinate basis, the components of the commutator of two
vector fields v and w are given by

(
dwJJ. avJJ.)

[V w]JJ. =" vv- - wv-
, ~ ~v ~v

v

b) Let Yt, ... , Y" be as in problem 3(c). Let y 1*, ... , yn* be the dual basis.
Show that the components (P*)JJ. of p* in any coordinate basis satisfy

a(P\. _ a(p*)v = "C'Y (ya*) (y(3*)
~v ~JJ. ~ a(3 JJ. v

a,(3

(Hint: Contract both sides with (Yu)JJ.(YpY.)

5. Let Yt, ... , Y" be smooth vector fields on an n-dimensional manifoldM which
form a basis of Vp at each p E M. Suppose [Y", >/3] = 0 for all a, {3. Prove that in
a neighborhood of each p E M there exist coordinates Yl, . . . ,Yn such that
Yt, . , . , Yn are the coordinate vector fields, ~ = a/ ayJJ.. (Hint: In an open ball of
IRn,theequationsaj/axJJ. = FJJ. with 1-£ = 1, .. " nfortheunknownfunctionjhave
a solution if and only if aFJJ./~v = aFv/ axJJ., [See the end of section B.l of appendix
B for a statement of generalizations of this result.] Use this fact together with the
results of problem 4(b) to obtain the new coordinates.)

6. a) Verify that the dual vectors {vJJ.*} defined by equation (2.3.1) constitute a basis
of V*.
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b) Let Vb ... , Vn be a basis of the vector space l( and let Vi., ... , v n• be its
dual basis. Let w E V and let w E V·. Show that

a

a

c) Prove that the operation of contraction, equation (2.3.2), is independent of the
choice of basis.

7. Let V be an n-dimensional vector space and let g be a metric on l(
a) Show that one always can find an orthonormal basis Vb ... , Vn of V, i.e., a

basis such that g(va, vl3) = ±l)al3' (Hint: Use induction.)
b) Show that the signature of g is independent of the choice of orthonormal basis.

8. a) The metric of flat, three-dimensional Euclidean space is

ds 2 = dx 2 + dy 2 + dz 2

Show that the metric components gl-'~ in spherical polar coordinates r, 0, ¢ defined
by

r = (x 2 + y2 + Z2)1/2

cos 0 = z/r

tan¢ = y/x

is given by

ds 2 = dr 2 + r2d0 2 + r2 sin2 0 d¢2

b) The spacetime metric of special relativity is

ds 2 = -dt2 + dx2 + dy 2 + dz 2

Find the components, gl-'~ and gl-'~, of the metric and inverse metric in "rotating
coordinates," defined by

t' = t

X' = (x 2 + y2)1/2 cos(¢ - wt)

y' = (x 2 + y2)1/2 sin(¢ - wt)

z' = z

where tan ¢ = y/x.
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CURVATURE

Our intuitive notion of curvature arises main!y from two-dimensional surfaces which
are embedded in ordinary three-dimensional Euclidean space. We normally think of
a surface as curved because of the way it bends in [R3. In chapter 9, we will capture
this notion by defining the extrinsic curvature of a surface embedded in a higher
dimensional space. However, our interest here is to investigate the curvature of
spacetime. Our spacetime manifold M with spacetime metric gab is not naturally
embedded (at least so far as we know) in a higher dimensional space. Thus we wish
to develop an intrinsic notion of curvature that can be applied to any manifold
without reference to a higher dimensional space in which it might be embedded.

Such a notion of curvature can be defined in terms of parallel transport. On a
surface such as a plane (Fig. 3.1) or sphere (Fig. 3.2). we have an intuitive notion
(which will be made mathematically precise below) of what it means to keep a vector
"pointing in the same direction" (but always in the tangent space of the manifold) as
one moves it along a path. On the plane, if one parallel-transports a vector around
any closed path, the final vector always coincides with its initial value. However, this
is not so on the sphere. The vector shown in Figure 3.2 comes back rotated with
respect to its initial value when carried along the path shown. This basic idea allows
us to characterize the plane as flat, the sphere as curved, and more generally allows
us to characterize the curvature of any manifold intrinsically once we are told how
to "parallel transport" vectors along curves.

An alternative characterization of curvature also can be given as follows. A
geodesic is a curve whose tangent is parallel-transported along itself, that is, it is a
"straightest possible" curve. A space will be curved if and only if some initially
parallel geodesics fail to remain parallel, i.e., Euclid's fifth postulate fails.

Given only the manifold structure of space, we do not have a natural notion of
parallel transport. The reason is that the tangent space Vp and Vq of two distinct points
p and q are different vector spaces and hence there is no way of saying that a vector

/ '<c>--7
Fig. 3.1. The parallel transport of a vector, va, around a closed curve in the plane.
The vector va always "comes back" pointing in the same direction as it did initially.

29
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Fig. 3.2. The parallel transport of a vector, va, around a closed curve on the
sphere. In the case shown here of a closed curved composed of three mutually
orthogonal segments of great circles, the vector va comes back rotated by 90°.

at p is the same as a vector at q. Thus, the definition of parallel transport requires
more than just the manifold structure. It is not difficult to convince oneself that a
notion of how to parallel-transport vectors should be equivalent to the knowledge of
how to take derivatives of vector fields. If we know how to parallel-transport vectors
along a curve, we can define the derivative of a vector field in the direction of the
curve; similarly, given a notion of derivative, we can define a vector to be parallel
transported if its derivative along the given curve is zero. It turns out to be most
convenient to work directly with the notion of a derivative operator, and we shall do
so in this chapter. The failure of a vector to return to its original value when parallel
transported around an infinitesimal closed curve translates into the lack of commuta
tivity of derivatives. Thus, the notion of curvature can be defined in terms of the
failure of successive differentiations on tensor fields to commute. This is the route
we shall follow in section 3.2.

From where does this extra structure needed to define parallel transport or a
derivative operator arise? We will show in section 3.1 that given a metric (of any
signature), there is a unique definition of parallel transport which preserves inner
products of all pairs of vectors. Thus, the existence of a metric gives rise to a unique
notion of parallel transport and, thus, to an intrinsic notion of the curvature of the
manifold. This is the notion of the curvature of a spacetime (M, gab) in which we are
interested. However, it is more convenient to proceed by giving a general definition
of the notions of derivative operator, parallel transport, and curvature before special
izing to the case where they arise from a metric, and we shall proceed in this manner.

Derivative operators and parallel transport are defined in section 3.1, and curva
ture is defined in section 3.2. In much of our discussion in these sections, we shall
follow closely the treatment given in unpublished notes of Geroch. Geodesics are
introduced in section 3.3, and the geodesic deviation equation-which characterizes
curvature in terms of the failure of initially parallel geodesics to remain parallel-is
derived. Finally, section 3.4 discusses methods for computing curvature.

3.1 ~rivative Operators and Parallel Transport
A derivative operator, V, (sometimes called a covariant derivative) on a manifold

M is a map which takes each smooth (or merely differentiable) tensor field of type
(k, I) to a smooth tensor field of type (k, I + 1) and satisfies the five properties listed
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below. In the index notation, if Tal"'akbl"'bl E CZJ(k, I), we denote the tensor field
resulting from the action of V on T by VcTal' "akbl ,"bl" It is often notationally
convenient to attach an index directly to the derivative operator and write it as v",
although this is to some extent an abuse of the index notation since v" is not a dual
vector. Expressed in the index notation, the five conditions required of a derivative
operator are

1. Linearity: For all A, B E CZJ(k, I) and a, {3 E R,

n (Aal"'ak + (3'na l'''ak )
Vc a bl ' " bl 'D bj , , 'bl

2. Leibnitz rule: For all A E CZJ(k, I), B E CZJ(k', I'),

V [Aal'''ak BCi"'Ck' ]
e bl'''bl dl'''dl'

3. Commutativity with contraction: For all A E CZJ(k, I),

~(Aal" 'c .. 'akbl , .. c" 'b) = ~Aal" 'c' .. akbl " 'C" 'bl

4. Consistency with the notion of tangentvectors as directional derivatives on scalar
fields: For all I E '!J' and all t a E Vp

t(f) = taVai

5. Torsion free:! For alII E '!J',

Va VbI = Vb Va!

The fifth condition is sometimes dropped, and indeed there are theories of grav
itation where it is not imposed. However, in general relativity the derivative operator
is assumed to satisfy condition 5, and, unless otherwise stated, all derivative oper
ators considered in this book will be assumed to be torsion free.

It is worth noting that the conditions 4 and 5 together with the Leibnitz rule allow
us to derive a simple expression for the commutator of two vector fields va, w b in
terms of any derivative operator Va' Applied to any smooth function I, we have

[v, w](f) = v{w(f)} - w{v(f)}

= VaVa(wbVb!) - waVa(vbVb!)

= {VaVaw b - waVavb}VbI

Thus we have

(3.1.2)

I. If condition 5 is not imposed, it can be shown that there must exist a tensor T C

ab antisymmetric in
a and b such that Va Vb! - VbVa! = -Tc

abVcf(see problem I). T C
ab is called the torsion tensor, and thus

our condition 5 states that the torsion tensor vanishes,
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Our first important task is to show that derivative operators exist. Let t/J be a
coordinate system and let {a/ axIL} and {dx IL} be the associated coordinate bases. Then
in the region covered by these coordinates we may define a derivative operator,
aa, called an ordinary derivative, as follows. For any smooth tensor field ra l " 'akbl " 'bl
we take its components TILl'" ILk v I , "vI in this coordinate basis and define
ac ra l .. , ak

bl .. 'b
l
to be the tensor whose components in this coordinate basis are the

partial derivatives a(TiLI'" ILkvI ," v)/axu. All five conditions follow immediately from
the standard properties of partial derivatives. Indeed, by the equality of mixed partial
derivatives, the fifth condition holds for all tensor fields, not just scalar fields. Thus,
given a coordinate system t/J, we can construct an associated derivative operator aa.
Of course, a different choice of coordinate system t/J' will yield a different derivative
operator a~, that is, the components of the tensor acTal' ' 'akbl ' "bl in the new (primed)
coordinates will not be equal to the partial derivatives of the primed components of
ra l " 'ak

br , 'bl with respect to the primed coordinates. Thus, a given ordinary derivative
operator is coordinate dependent, i.e., it is not naturally associated with the structure
of the manifold.

How unique are derivative operators? By condition (4), any two derivative oper
ators Va and Va must agree in their action on scalar fields. To investigate their possible
disagreements on tensors of the next highest rank, let Wb be a dual vector field and
consider the difference Va (jWb) - Va (jWb) for an arbitrary scalar field f. By the
Leibnitz rule we have

Va(jWb) - Va(jWb) = (Va!)Wb + !VaWb - (Vaf)Wb - !'VaWb

=!(VaWb - VaWb) (3.1.3)

where we have used property (4) again. Now at a pointp, VaWb and VaWb each depend
on how Wb changes as one moves away from p. However, equation (3.1.3) shows
that their difference VaWb - VaWb depends only on the value of Wb at point p. To see
this, we suppose that Wh equals Wb at p and show that we get the same answer if we
replace Wb by Wh. By problem 2 of chapter 2, it follows that since Wh - Wb vanishes
at p we can find smooth functions, fi.a). which vanish at p and smooth dual vector
fields, J.L~a), such that

n

Wh - Wb = 2: fi.a)J.L~a)
a=1

Hence, using equation (3.1.3), at point p we have

a

a

since eachfi.a) ~= 0 at p. Thus, we have

VaWh - VaWh = VaWb - VaWb

which proves our assertion.

(3.1.4)

(3.1.5)

(3.1.6)
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Thus, we have shown that Va - Va defines a map of dual vectors at p (as opposed
to dual vector fields defined in a neighborhood of p) to tensors of type (0,2) at p.

By property (1), this map is linear. Consequently (Va - Va) defines a tensor of type
(1,2) at p, which we_will denote as Ccab . Thus, we have shown that given any two
derivative operators Va and Va there exists a tensor field CCab such that

(3.1. 7)

This displays the possible disagreements of the actions of Va and Va on dual vector
fields.

A symmetry property of CCab follows immediately from condition (5). If we let
Wb = Vb! = Vb!, we find

(3.1.8)

Since both Va Vb! and Va tv are symmetric in a and b, it follows that CCab must also
have this property

(3.1. 9)

Equation (3.1.9), of course, need !Jot hold if the torsion-free requirement is dropped.
The difference in the action of Va and Va on vector fields and all higher rank tensor

fields is determined by equation (3.1. 7), the Leibnitz rule, and property (4). For
every vector field ta and one-form field W a , property (4) tells us that

(Va - Va )(Wbtb) = 0

On the other hand, by the Leibnitz rule, we have

(Va - Va)(Wbtb) = (CCabwc)tb + Wb(v" - v,,)tb

Thus, index substituting on contracted indices, we find

Wb[(Va - Va)t b + Cbactc] = 0

for all Wb. This implies

(3.1.10)

(3.1.11)

(3.1.12)

(3.1.13)

Continuing in a similar manner, we can derive the general formula for the action
of Va on an arbitrary"'lensor field in terms of t and Ccab . For T E ?J(k, l) we find

t'7 Tb,·· ·bk = n Tb' .... bk + '" Cbi Tb,. ··d·· 'bk
Va cl"'CI Va cl"'c/ LJ ad "I"'c/

i

(3.1.14)

Thus, the difference between the two derivative operators v" and V" is completely
characterized by the tensor field CCabo Conversely, it is not difficult to check that if
Va is a derivative operator and CCab is an arbitrary smooth tensor field which is
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symmetric in its lower indices, then Va defined by equation (3.1.14) will also be a
derivative operator. This shows that there is a great deal of freedom involved in the
choice of a derivative operator, as on an n-dimensional manifold C Cab has n 2(n+1)/2
independent components to be specified at each point. _

The most important application of equation (3.1. 14) arises from the case where Va
is an ordinary derivative operator aa. In this case, the tensor field CCab is denoted [Cab

and called a Christoffel symbol. Thus, for example, we write

(3.1.15)

Since we know how to compute the ordinary derivative associated with a given
coordinate system, equation (3.1.15) (and, more generally, eq. [3.1.14] with aa and
[bac replacing Va and C b

ac) tells us how to compute the derivative Va if we know [bac •

Note that, as defined here, a Christoffel symbol is a tensor field associated with the
derivative operator Va and the coordinate system used to define aa' However, if we
change coordinates, we also change our ordinary derivative operator from aa to a~

and thus we change our tensor [Cab to a new tensor ['cab' Hence the coordinate
components of [Cab in the unprimed coordinates will not be related to the components
of ['cab in the primed coordinates by the tensor transformation law, equation (2.3.8),
since we change tensors as well as coordinates.

Given a derivative operator Va we can define the notion of the parallel transport
of a vector along a curve C with a tangent tao A vector va given at each point on the
curve is said to be parallelly transported as one moves along the curve if the equation

taVav b = 0 (3.1.16)

is satisfied along the curve. More generally, one can define the parallel transport of
a tensor of arbitrary rank by

an Tbl" 'bk - 0
tVa q'''C[- (3.1.17)

Choosing a coordinate system and using equation (3.1.15), we can express equa
tion (3.1.16) as

(3.1.18)

or, in terms of components in the coordinate basis and the parameter t along the
curve,

dv V

- + '" t/LP"AV
A = 0 (3.1.19)dt LJ ,..

/L.A

This shows that the parallel transport of va depends only on the values of va on the
curve, so we may consider the parallel transport properties of vectors defined only
along the curve as opposed to vector fields. Furthermore, from the properties of
ordinary differential equations it follows that equation (3. 1.19) always has a unique
solution for any given initial value of va. Thus, a vector at a point p on the curve
uniquely defines a "parallel transported vector" everywhere else on the curve. We
may use this notion of parallel transport to identify (i.e., map into each other) the
tangent spaces \{, and Vq of points p and q if we are given a derivative operator and
a curve connecting p and q. The mathematical structure arising from such a curve-
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dependent identification of the tangent spaces of different points is called a con
nection. Conversely, one could start with the general notion of a connection and use
it to define the notion of derivative operator.

As we have seen above, given only the manifold structure, many distinct deriva
tive operators are possible and no one of them is naturally preferred over the others.
However, we show now that if one is given a metric gab on the manifold, a natural
choice of derivative operator is uniquely picked out. This is because the metric gives
rise to a natural condition which we may impose on the notion of parallel transport.
Given two vectors va and wa, we demand that their inner product gabVaWb remain
unchanged if we parallel-transport them along any curve. Thus we require

taVa(gbcvbwc) = 0 (3.1.20)

for Vb and we satisfying equation (3.1.16). Using the Leibnitz rule, we obtain

(3.1.21)

Equation (3.1. 21) will hold for all curves and parallelly transported vectors if and
only if

(3.1.22)

which is the additional condition we wish to impose on Va' That this equation
uniquely determines Va is shown by the following theorem.

THEOREM 3. 1.1. Let gab be a metric. Then there exists a unique derivative operator
Va satisfying Vagbc = O.

Proof. Let Va be any derivative operator, e.g., an ordinary derivative operator
associated with a coordinate system. We attempt to solve for CCab so that the
derivative operator determined by V" and CCab will satisfy the required property. We
will prove the theorem by showing that a unique solution for CCab exists.

By equation (3.1.14), CCab must satisfy

o = Vagbc = V"gbc - Cdabgdc - Cdacgbd (3.1.23)

that is,

Ccab + Chac = Vagbc

By index substitution, we also have

Ccha + Cabc = Vbgac

Cbca + Cacb = Vcgab

(3.1.24)

(3.1.25)

(3.1.26)

We add equations (3.1.24) and (3.1.25) and then subtract equation (3.1.26). Using
the symmetry property of CCab, equation (3.1.9), we find

(3.1.27)

that is,

(3.1.28)



(3.1.30)

(3.1.29)
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This choice of CCab solves equation (3.1.22) and is manifestly unique, which com
pletes the proof. 0

Thus, a metric gab naturally determines a derivative operator Va. For the remainder
of this book, when a metric is present we will always choose the derivative operator
to be this natural one. Furthermore, equations (3.1.14) and (3.1.28) tell us how to
compute Va in terms of any other derivative operator Va. In particular, in terms of an
ordinary derivative operator the Christoffel symbol is

1
[Cab = 2gCd{aagbd + abgad - adgab}

and thus the coordinate basis components of the Christoffel symbol are

fP =1. ~ pu{agvu + ag/J-u _ ag/J-v}
/J-V 2 L.J g ax/J- axV ax U

U

Thus, we can compute [Cab (and thence Va) by taking partial derivatives of the
coordinate basis components of the metric.

3.2 Curvature
In the previous section we showed that given a derivative operator, there exists a

notion of how to parallel transport a vector from p to q along a curve C. However,
the vector in Vq which we get by this parallel transport procedure starting from a
vector in Vp will, in general, depend on the choice of curve connecting them. As
already indicated in the discussion at the beginning of this chapter, we can use the
path dependence of parallel transport to define an intrinsic notion of curvature. In this
section we carry out this program by first defining the Riemann curvature tensor in
terms of the failure of successive operations of differentiation to commute when
applied to a dual vector field. Then we show that this tensor is directly related to the,
patlbdependent nature of parallel transport; specifically, the failure of a vector to
return to its original value when parallel transported around a small closed loop is
governed by the Riemann tensor. In the next section we will show that the Riemann
tensor also fully describes the other characterization of curvature mentioned above:
the failure of initially parallel geodesics to remain parallel.

Let Va be a derivative operator. Let W a be a dual vector field and letfbe a smooth
function. We calculate the action of two derivative operators applied to fwa,

Va Vb (fwc) = Va(WcVbf + fVbwc)

= (Va Vbf)wc + VbfVawc + Va/VbWc + IVa Vbwc (3.2.1)

If we subtract from this the tensor Vb Va (fwc), the first three terms of the right-hand
side of equation (3.2.1) will cancel the corresponding terms of the expression for
Vb Va (fwc) and we obtain the simple result,

(3.2.2)

By exactly the same reasoning as given above in the discussion of derivative oper
ators (see eq. [3.1.3]), it follows that the tensor (v" Vb - ~ v,,)wc at point p depends
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only on the value of We at p. Consequently, (Va Vb - Vb v,,) defines a linear map from
dual vectors at p to type (0,3) tensors at p; i.e., its action is that of a tensor of type
(l, 3). Thus, we have shown that there exists a tensor field Rabe d such that for all dual
vector fields We. we have

(3.2.3)

Rabed is called the Riemann curvature tensor.
We first show that Rabe d is directly related to the failure of a vector to return to its

initial value when parallel transported around a small closed curve. We can con
veniently construct a small closed loop at p E M by choosing a two-dimensional
surface S through p and choosing coordinates t and s in the surface [with the
coordinates of p chosen, for simplicity, to be (0,0)]. Consider the loop formed by
moving /1t along the s = 0 curve, followed by moving /1s along the t = /1t curve,
and then moving back by /1t and /1s as illustrated in Figure 3.3. Let va be a vector
at p (not necessarily tangent to S) and let us parallel transport va around this closed

a (M,t-5)
(O,t-5)

p (M,O)

Fig. 3.3. The parallel transport of a vector va around a small closed loop. As
derived in the text, to second order in fj.t and fj.s, the change in va is governed by
the Riemann tensor at p.

loop. It is easiest to compute the change in va when we return to p by letting Wa be
an arbitrary dual vector field and finding the change in the scalar vawaas we traverse
the loop. For smalll1t the change, 5\, in vawa on the first leg of the path is

51 = /1t aa (vawa)I (3.2.4)
t (AI/Z,O)

where, by evaluating the derivative at the midpoint, we have ensured that this
expression is accurate to second order in the displacement /11. We may rewrite 51 as

51 = I1t TbVb(vawa) I(AI/Z,O)

= /1t vaTbVbwaI(/it/Z, O) (3.2.5)

where Tb is the tangent to the curves of constant sand TbVbV a = 0 by equation
(3.1.16). Similar expressions hold for the changes 5z, 53, and 54 on the other parts
of the path. The two "/1t variations," 51 and 53, combine to yield

51 + 53 = l1t{v aTbVbwaI(Iit/Z,O) - vaTbVbwaI(AI/Z,As)} (3.2.6)

and 5z and 54 combine similarly. Since the term in brackets vanishes as /1s ~ 0, this
shows that to first order in /1t and /1s, the total change in vawa (and thus the total



(3.2.8)

38 Curvature

change in va) vanishes; i.e., parallel transport is path-independent to first order in
/1t and /1s. To calculate the second order change in vawa, we need to evaluate the
tenn in brackets in equation (3.2.6) to first order. We do this by the following
procedure: We consider the curve t = /1t/2 and imagine parallel transporting va and
TbVbWa along this curve from (/1t/2, 0) to (/1t/2, /1s). Now to first order in /1s, va
at (/1t/2, /1s) equals the parallel transport of va at (/1t/2, 0) along this curve since,
as remarked above, parallel transport is path-independent to first order. On the other
hand, to first order, the tenn TbVbWa at (/1t/2, /1s) will differ from the parallel
transport of that quantity from (/1t/2, 0) by the amount /1sSCVc(TbVbWa), where SC
is the tangent to the curves of constant t. Hence, the tenn in brackets is just this
quantity contracted with va. Thus, to second order in /1t, /1s, we find

51 + 53 = -/1t /1s vascVc(TbVbWa) (3.2.7)

where, to this accuracy, we may evaluate all tensors at p. Adding the similar
contribution for ~ and 54' we find the total change in vawa is

5(vawa) = /1t /1s va{TcVc(sbVbwa) - SCVC<TbVbWa)}

= /1t /1s VaTcSb(VcVb - Vb Vc)Wa

= /1t /1s vaTcSbRcba dWd

where in the second line we used the fact that the coordinate vector fields ra and S b

commute (see the end of section 2.2 and eq. [3.1.2]) and we used the definition of
the Riemann tensor equation (3.2.3) in the last step. But equation (3.2.8) can hold
for all Wa if and only if the total change in va (accurate to second order in /1t and /1s)
is

(3.2.9)

This is the desired result. It shows that the Riemann tensor indeed directly measures
the, path dependence of parallel transport.

Using equation (3.2.3) we may-by a procedure completely analogous to the
derivation of equation (3.1.14)--express the action of the commutator of derivative
operators on arbitrary tensor fields in tenns of the Riemann tensor. To find the
expression for a vector field ta, we let Wa be a dual vector field. Then using property
5 of derivative operators together with the Leibnitz rule and equation (3.2.3), we find

Thus, we obtain

= Va(wcVbtC+ tCVbwJ - Vb(wcVatC+ tCVawc)

= WC<VaVb - Vb Va)tC+ tC(VaVb - Vb Va)Wc

= Wc(VaVb - Vb Va)tC+ tCwdRabcd (3.2.10)

(3.2.11)



(3.2.12)
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By induction, for an arbitary tensor field TCI" 'Ckdl " .d/ we find

k

( t'7 t'7 t'7 t'7 )TC, ' .. Ck - '" R c· TC' ' , . e' , 'Ck
Va Vb - Vb Va dl" 'd/ - - LJ abe I d" .. d/

1=1

I

+ '" R eTc", 'CkLJ abdj d" "e' .. d/
j=1

Next we establish four key properties of the Riemann tensor:
1. Rabc

d = -Rbac
d

• (3.2.13)
2. R[abc]d = O. (3.2.14)
3. For the derivative operator Va naturally associated with the metric, Vagbc = 0, we
have

4. The Bianchi identity holds:

R abcd = - R abdc (3.2.15)

VraRbc]de = 0 (3.2.16)

Property (1) follows trivially from the definition of R abc d, equation (3.2.3). To
prove property (2), we note that for an arbitrary dual vector field, W a , and any
derivative operator Va' we have

Vra VbWc] = 0 (3.2.17)

This equation can be proven from equation (3.1.14), substituting an ordinary deriv
ative aa for Va' and using the commutativity of ordinary derivatives and the symmetry
ofcc

ab = r c
ab, equation (3.1.9). (In differential forms notation, it is the statement

that d 2
b) = 0 [see appendix B].) Thus, we have

(3.2.18)

for all Wd, which proves property (2).
Property (3) follows from equation (3.2.12) applied to the metric gab. We find

(3.2.19)

which yields property (3). It follows from properties 1, 2, and 3 that the Riemann
tensor also satisfies the following useful symmetry property (see problem 3):

(3.2.20)

Finally, to prove the Bianchi identity, property (4), we apply the commutator of
derivative operators to the derivative of a dual vector field. We obtain, using equa
tion (3.2.12),

On the other hand, we have

v" (Vb VcWd - VcVbWd) = Va(Rbc/we) = We Va Rbcde + RbcdeVaWe

(3.2.21)

(3.2.22)
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If we antisymmetrize over a, b, and c in equations (3.2.21) and (3.2.22), the
left-hand sides become equal. Equality of the right-hand sides yields

R[abe{VeWd + R[abliVe]wj = We VraRbc]de + R[beld(Va]We (3.2.23)

where the vertical bars indicate that we do not antisymmetrize over d. The first term
on the left-hand side vanishes by equation (3.2.14) while the second terms on both
sides cancel each other. Thus, we obtain, for all We.

(3.2.24)

which yields property (4).
It is useful to decompose the Riemann tensor into a "trace part" and a "trace tree

part." By the antisymmetry properties (1) and (3), the trace of the Riemann tensor
over its first two or last two indices vanishes. However, its trace over the second and
fourth (or equivalently, the first and third) indices defines the Ricci tensor, Rae>

Rae = Rabe b

By equation (3.2.20), Rab satisfies the symmetry property

The scalar curvature, R, is defined as the trace of the Ricci tensor:

R = Raa

(3.2.25)

(3.2.26)

(3.2.27)

The "trace free part" is called the Weyl tensor, Cabed , and is defined for manifolds of
dimension n 2: 3 by the equation

(3.2.28)

The Weyl tensor satisfies the symmetry properties (1), (2), and (3) of the Riemann
tensor as well as being trace free on all its indices. It also behaves in a very simple
manner under conformal transformations of the metric (see appendix D) and for this
reason is sometimes called the conformal tensor.

Contraction of the Bianchi identity (3.2.16) leads to an important equation
satisfied by Rab . We find

(3.2.29)

Raising the index d with the metric and contracting over band d, we obtain

VaRea + VbReb - ~R = 0 (3.2.30)
or

(3.2.31)
where

(3.2.32)
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The tensor Gab is called the Einstein tensor. It appears in Einstein's equation, and the
twice contracted Bianchi identity, equation (3.2.31), plays an important role in
ensuring consistency of Einstein's equation (see chapters 4 and 10).

3.3 Geodesics
Intuitively, geodesics are lines that "curve as little as possible"; they are the

"straightest possible lines" one can draw in a curved geometry. Given a derivative
operator, Va' we define a geodesic to be a curve whose tangent vector is parallel
propagated along itself, i.e. a curve whose tangent, Ta

, satisfies the equation

TaVaT b = 0 (3.3.1)

Actually, in order to satisfy the intuitive requirement that the curve be "as straight
as possible," one might require only that the tangent vector to the curve point in the
same direction as itself when parallel propagated, and not demand that it maintain
the same length. This would yield the weaker condition,

TaVaT b = aTb (3.3.2)

where a is an arbitrary function on the curve. However, it is easy to show that given
a curve which satisfies equation (3.3.2) we can always reparameterize it so that it
satisfies equation (3.3.1) (see problem 5). Thus, there is no true loss of generality
in considering only curves which satisfy equation (3.3.1). A parameterization which
yields equation (3.3.1) is called an affine parameterization. Thus, our definition of
a geodesic requires it to be affinely parameterized. (Some other references apply the
term geodesic to any curve satisfying eq. [3.3.2]')

We can get some insight into the nature of the geodesic equation by writing out
the components of this equation in a coordinate basis. In a coordinate system t/J, the
geodesic is mapped into a curve xJL(t) in IR n

• By equation (3.1.19), the components,
TJL, of ra in this coordinate basis satisfy

dTJL + "rJL TaT" = 0
dt L.J av

a,v
However, by equation (2.2.12), the components TJL are simply

dx JL
TJL =-

dt

Thus, in a coordinate basis, the geodesic equation becomes

d 2x JL dxadx v

dt 2 + 2: P av dt dt = 0
a,v

(3.3.4)

(3.3.5)

Equation (3.3.5) is a coupled system of n second order ordinary differential
equations for the n functions xJL(t). From the theory of ordinary differential equa
tions, it is known that a unique solution of equation (3.3.5) always exists for any
given initial value of x JL and dx JL/ dt. This means that given p E M and any tangent
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vector, Ta E Yp, there always exists a unique geodesic through p with tangent Ta.
Notice that the solutions of the equations of motion in ordinary mechanics share this
property: Given an initial position and velocity, a unique solution exists.

Indeed, the existence and uniqueness of geodesics allow us to use them to con
struct coordinate systems that are very convenient for some computational purposes.
Let p EM. We define a map, called the exponential map, from the tangent space
Yp to M by mapping each ra E Yp into the point in M lying at unit affine parameter
from p along the geodesic through p with tangent T a

. For large ra one might
encounter a singularity before the affine parameter t = 1 is reached. Also geodesics
may cross, thereby making the exponential map fail to be one-to-one. However, one
can show that there always exists a (sufficiently small) neighborhood of the origin
of Yp on which the exponential map is defined and is one-to-one (see, e.g., Bishop
and Crittenden 1964). Since Yp is an n-dimensional vector space, we may identify
it with IRn, and hence use the exponential map to give us a coordinate system, called
Riemannian normal coordinates at p. These coordinates have the property that all
geodesics through p get mapped into straight lines through the origin of IRn. From
equation (3.3.5) it follows that in this coordinate system the Christoffel symbol
components r lL<TV vanish at p. This fact makes Riemannian normal coordinates
particularly useful if one is performing calculations at a given point.

In the case where the derivative operator Va arises from a metric gab a second type
of coordinate system, called Gaussian normal coordinates, or synchronous coordi
nates, often is useful for calculations in situations where one is given a hypersurjace
S, Le., an (n - I)-dimensional embedded submanifold of the n-djmensional man
ifoldM (see appendix B). At each pointp E S, the tangent space Yp ofthe manifold
S can be naturally viewed as an (n - I)-dimensional subspace of the tangent space
Yp of M. Thus, there will be a vector na E Yp, unique _up to scaling, which is
orthogonal (with respect to the metric gab) to all vectors in Yp. This vect<,?r, n a, is said
to be normal to S. In the case of a Riemannian metric, n acannot lie in Yp; in the case
of a metric of indepnite signature, na could be a null vector, gabnanb = 0, in which
case it does lie in Yp and S is said to be a null hypersurjace at point p. If S is nowhere
null, we may normalize na by the condition gabnanb = ± 1. Gaussian normal coor
dinates may be defined for any non-null hypersurface as follows (see Fig. 3.4). For
eachp E S we construct the unique geodesic throughp with tangent na

. We choose
arbitrary coordinates (Xl, .•. ,xn

-
I ) on (a portion of) S and label each point in a

neighborhood of (that portion of) S by the parameter t along the geodesic on which
it lies and the coordinates Xl, ••. ,xn

-
I of the pointpES from which the geodesic

emanated. The geodesics emanating from S may eventually cross or run into singu
larities, but in a (sufficiently small) neighborhood of each pES, the map q ---+ (x 1,

. . . , x n
-

1
, t) defines the chart we wished to construct.

Gaussian normal coordinates satisfy the important property that the geodesics
remain orthogonal to all the hypersurfaces S, defined by the equation t = constant.
This is true by construction for the hypersurface So = S. To show that this remains
true for all S, in the domain of validity of the construction, it suffices to show that
the geodesic tangent field na remains orthogonal to all of the coordinate basis fields
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p

Fig. 3.4. The construction of Gaussian normal coordinates starting from the
hypersurface S. The geodesics orthogonal to S eventually may cross, but until they
do, Gaussian normal coordinates are well defined and the surfaces, S" of constant t
remain orthogonal to the geodesics.

xy, ... ,X~_I which generate the tangent space to St. Denoting by x a anyone of
these fields, we have

nbVb(naXa) = nanbVbXa

= naXbVbna

=0 (3.3.6)

where the first equality comes from the geodesic equation, the second from the fact
that na and Xb-being elements of a coordinate basis on M---commute, the third
follows directly from the Leibnitz rule, and the last follows from the fact that the
normalization condition nana = ± 1 on S is preserved by parallel transport so that
nana is constant on M. Since naXa = 0 on S, equation (3.3.6) shows that this
condition is preserved off of S, which yields the desired result.

A further property of geodesics of a derivative operator arising from a metric is
that they extremize the length of curves connecting given points as measured by the
metric. For a smooth (or merely differentiable) curve C on a manifold M with
Riemannian metric gab, the length, l, of C is defined by

(3.3.7)

where ra is the tangent to C and t is the curve parameter. For a metric of Lorentz
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signature - + + . . . +, a curve is said to be timelike if the norm of its tangent is
everywhere negative, gab TaTb < 0; it is said to be null if gab PTb = 0; it is said to
be spacelike if gab PTb > O. For spacelike curves, the length may again be defined
by equation (3.3.7); for null curves the length is zero; for timelike curves, we change
the sign in the square root and use the term proper time, 'T, rather than length,

'T = J(-gab PTb)1/2 dt

The length of curves which change from timelike to spacelike is not defined. Note
that since a geodesic tangent is parallel transported and thus its norm is constant,
geodesics in a Lorentz manifold cannot change from timelike to spacelike or null.
Note also that the length (or proper time) of a curve does not depend on the way in
which the curve is parameterized. If we define a new parameterization s = s(t), the
new tangent will be sa = (dt/ds)P and the new length will be

(3.3.9)

(3.3.10)

We wish now to derive the condition on a curve which makes it extremize the
length between its endpoints, Le., wish to find those curves whose length does not
change to first order under an arbitrary smooth deformation which keeps the end
points fixed . We will perform the calculation of the change in length of a curve under
a small deformation by choosing a chart and working in IRn. (In chapter 9 we shall
repeat this calculation without introducing coordinates and will calculate also the
second variation of arc length.) For definiteness, we consider a spacelike curve.
Writing equation (3.3.7) in the coordinate basis, we have

-lb [ dx/-' dX
V
] 1/2

l - L g/-'V-d -d dt
a t t

/-'. v

where C(a) = p and C(b) = q are the endpoints of the curve. The extremization
problem for l is mathematically identical to the extremization problem for the action
in Lagrangian mechanics. The variation in l is

(3.3.11)

Without loss of generality (since length is parameterization independent), we may
assume that the original curve was parametrized so that

dx/-'dx v
gab PTb = 1 = L g/-,v dt dt

/-'. v

With this choice of parameterization, the extremization condition is
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o = Lb ~ { dx
a

d(fu;f3) + 1. ~ agaf3dxadxf3 fu;CT}dt
a L.. gaf3 dt dt 2 L.. ax CT dt dt

a.f3 CT

= Lb ~ {_!!-( dx
a
) +1. ~ agaAdXadxA}fu;f3dt

a L.. dt gaf3 dt 2 L.. ax f3 dt dt
~f3 A

(No boundary terms occur in the integration by parts since 5x f3 vanishes at the
endpoints.) Equation (3.3.12) will hold for arbitrary fu;f3 if and only if

(3.3.13)

Using our formula for r CT
aA , equation (3.1.30), we see that equation (3.3.13) is just

the geodesic equation (3.3.5). (Had we not chosen the parameterization
gabPTb = 1 for C, we would have obtained the geodesic equation in the form
[3.3.2]') Thus, a curve extremizes the length between its endpoints if and only if it
is a geodesic.

An identical derivation shows that the curves which extremize proper time be
tween two points are precisely the timelike geodesics. These derivations also show
that the geodesic equation (with affine parameterization) can be obtained from
variation of the Lagrangian,

(3.3.14)

In many cases, the most efficient way of computing the Christoffel symbol P CTV in
a given coordinate basis is to start with the Lagrangian, equation (3.3.14), write
down the corresponding Euler-Lagrange equations, and read off r!LCTV by comparison
with equation (3.3.5).

On a manifold with a Riemannian metric, one can always find curves of arbitrarily
long length connecting any two points. However, the length will be bounded from
below, and the curve of shortest length connecting two points (assuming the lower
bound in length is attained) is necessarily an extremum of length and thus a geodesic.
Thus, the shortest path between two points is always a "straightest possible path."
However, a given geodesic connecting two points need not be the shortest path
between them. For a manifold with a Lorentz metric, given two points that can be
connected by a timelike curve, one can always find timelike curves of arbitrarily
small proper time connecting the points (see Fig. 9.5 of chapter 9). In some space
times the proper time of timelike curves connecting the two given points need not
be bounded from above; but if a curve of greatest proper time exists, it must be a
timelike geodesic. Again, however, a given geodesic need not maximize the proper
time between two points. In chapter 9 we shall introduce the notion of conjugate
points along a geodesic and will show that their absence is the necessary and
sufficient condition for a geodesic to be a local maximum of proper time (or, in the
Riemannian case, a local minimum of length) between two points.
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Our final task is to derive the geodesic deviation equation, the equation which
relates the tendency of geodesics to accelerate toward or away from each other to the
curvature of the manifold. This gives another characterization of curvature, and it
also plays an important role in motivating Einstein's equation (see section 4.3) and
in arguments relating to the singularity theorems (see chapter 9).

Let 'Ys(t) denote a smooth one-parameter family of geodesics (see Fig. 3.5), that
is for each s E IR, the curve 'Ys is a geodesic (parameterized by affine parameter t);

'\\?
Ys

Fig. 3.5. A one-parameter family of geodesics y" with tangent T· and deviation
vector X'.

and the map (t, s) ---+ 'Ys(t) is smooth, is one-to-one, and has smooth inverse. Let ~
denote the two-dimensional submanifold spanned by the curves 'Ys(t). We may
choose s and t as coordinates of L. The vector field P = (aj att is tangent to the
family of geodesics and, thus, satisfies

TaVaTb = 0 (3.3.15)

The vector field xa = (aj ast represents the displacement to an infinitesimally
nearby geodesic, and is called the deviation vector. There is "gauge freedom" in xa

in the sense that xa changes by addition of a multiple of P under a change of the
affine parameterization of the geodesics 'Ys(t), t ---+ t' = b(s)t + c(s) (see problem
5). It is worth noting that in the case where the geodesics arise from the derivative
operator associated with a metric gab, x a always can be chosen orthogonal to P.
Namely, by re-scaling t by an s-dependent factor, we may ensure that gabTaTb
(which is automatically constant along each geodesic) does not vary with s. Since xa

and T a are coordinate vector fields, they commute:

TbVbXa = XbVbTa (3.3.16)

so by the same calculation as equation (3.3.6), we see that XaTa is constant along
each geodesic. By further reparameterizing each 'Ys(t) by adding a constant (de
pending on s) to t, we may ensure that the curve C(s) comprising the points with
t = 0 is orthogonal to all the geodesics. Thus, with this affine parameterization of
'Ys(t) we have Xara = 0 at t = 0 and hence XaTa = 0 everywhere.

The quantity va = TbVbXa gives the rate of change along a geodesic of the



(3.3.18)
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displacement to an infinitesimally nearby geodesic. Thus, we may interpret va as the
relative velocity of an infinitesimally nearby geodesic. Similarly, we may interpret

aa = TcVcva = TCVATbVbXa) (3.3.17)

as the relative acceleration of an infinitesimally nearby geodesic in the family. We
now shall derive an equation which relates aa to the Riemann tensor. We have

aa = TCVc(TbVbXa)

= TCVc(XbVbTa)

= (TcVcXb)(VbP) + XbTcVcVb P

= (XCVc Tb)(VbP) + XbTcVbVc Ta - RcbdaxbTcTd

= XCVc(TbVbP) - RcbdaxbreTd

= -RcbdaXbTcTd

Equation (3.3.18) is known as the geodesic deviation equation. It yields the final
characterization of curvature which we sought: We have aa = 0 for all families of
geodesics if and only if Rabc d = O. Thus, some geodesics will accelerate toward or
away from each other (and, in particular, some initially parallel geodesics-i.e.,
goedesics with va = TbVbXa = 0 initially- will fail to remain parallel) if and only
if Rab/ :f= O.

3.4 Methods for Computing Curvature
In section 3.2 we defined the Riemann curvature tensor by proving existence of

a tensor field which satisfies equation (3.2.3) for all dual vector fields Wa • However,
this existence argument does not tell us directly how to calculate Rabc d given a metric
gab. Since the ability to calculate curvature is crucial for solving Einstein's equation
of general relativity, we devote this section to methods for calculating Rabc d.

3.4a Coordinate Component Method
To calculate the curvature by the coordinate component method, we begin by

choosing a coordinate system. We express the derivative operator Va in terms of the
ordinary derivative aa of this coordinate system and the Christoffel symbol [Cab, as
discussed in section 3.1. For a dual vector field W a , we have

and thus,

Va VbWc = aa(abwc - f"'bcWd)

- f'ab (aeWc - [dec Wd)

- f'ac (ab We - f'"be Wd)

Hence, equation (3.2.3) may be expressed as

Rabcdwd = [-2 a[a[db]c + 2f'c[a[dbJe ]Wd

(3.4.1)

(3.4.2)

(3.4.3)
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where we have used the commutativity of ordinary derivatives and the symmetry,
equation (3.1.9), of [<ab. Since equation (3.4.3) holds for all Wd, we may "cancel"
Wd from both sides to obtain the desired formula for Rabe d. Taking the components
of the tensors appearing in this equation in the coordinate basis associated with our
chart, we obtain the formula

R/-,vP er = a~ v r er/-,P - a~/-' r ervp + 2: (ra /-,p r erav - r a vp r era/-,)
a

(3.4.4)

(3.4.7)

(3.4.8)

where we have used the definition of the ordinary derivative as the partial derivative
of components with respect to the coordinates.

Thus, to calculate Rabe d starting from gab, we first obtain the components, g/-,v, of
the metric in our coordinate basis. We then calculate rer/-,v by equation (3.1.30) (or
by reading them off from the components of the geodesic equation [3.3.5] calculated
from the Lagrangian, equation [3.3.14]). Finally we calculate the components R/-,vp er
via equation (3.4.4). The Ricci tensor components then may be obtained by con
tracting equation (3.4.4):

v

= ~ a~v P/-,p - a~/-' (~ Pvp) + ~ (ra/-,pPav - ravpPa/-,) . (3.4.5)

We take this opportunity to point out several useful facts for calculations in
coordinate bases. We may write the coordinate basis components, g/-,v, of the metric
as a matrix. The components, g/-'v, of the inverse metric gab will then be the inverse
of the matrix (g/-,v)' We define g to be the determinant of (g/-,v),

g = det(g/-,v) (3.4.6)

Then, as discussed in appendix B, the natural volume element on the manifold M
induced by gab is v'jg""I dx 1•• •dx n

.

A simple formula may be derived for the contracted Christoffel symbol P ab . From
equation (3. 1.30) we have

ra =" rv =.!" va agva
a/-, £oJ v/-, 2 £oJ g ax/-'

v p,a

But, using the formula for the inverse of a matrix, it is not difficult to show that

" va ag va _ 1 ag
£oJ g ax/-' - gax/-'
v,a

Thus, we have

1 1 ag a
raa = --- = -In Vj:Igl

/-' 2 g ax/-' ax/-'
(3.4.9)
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This is a useful formula since r a
ab appears in the expression for the Ricci tensor Rab

as well as in the formula for the divergence of an arbitrary vector field, T a
, in terms

of its coordinate basis components. Indeed, using equation (3.4.9), we have

VaP = aaTa + f"ab Tb

1 a
= ~ V1"gj axp. (v'fgj TP.) (3.4.10)

Coordinate basis methods have the advantage of providing a straightforward
mechanical procedure for calculating curvature. One is normally presented a metric
in terms of its components in a coordinate basis, so all one must do to obtain the
curvature is to perform the partial differentiations and summations given in equations
(3.1.30) and (3.4.4). On the other hand, even in the simplest cases, these straight
forward computations are extremely laborious, and the "nongeometrical" nature of
the calculations often makes it difficult to detect algebraic errors.

3.4b Orthonormal Basis (Tetrad) Methods
While coordinate basis methods have the advantage of providing a straightforward

procedure for calculation of va and Rabe d, for many purposes it is advantageous to use
an orthonormal basis in tensor calculations. A coordinate basis {aj axp.}, of course,
it is not orthonormal except for the trivial case of flat spacetime in Cartesian coordi
nates. Thus, we may wish to introduce a "nonholonomic," i.e., noncoordinate,
orthonormal basis of smooth vector fields (e p.t, satisfying

(ep.t(ev)a = Tlp.v (3.4.11)

where Tlp.v = diag( -1, . . , -1, 1, . . , 1). (Here the greek indices IL,ll have the
range 1, . . . , n and label the vector of the basis; the latin a is the usual index of
the index notation designating that ep' is a vector.) In four dimensions-and some
times more generally-{(ep.t} is called a tetrad. Equation (3.4.11) implies the useful
relation

(3.4.12)
p.,v

where sab is the identity map on vectors and Tlp.v is the inverse of Tlp.v (so that
Tlp.v = Tlp.v)' Equation (3.4.12) can be proven by verifying that it gives equality when
contracted with an arbitrary basis vector (eCT)b.

The calculation of curvature by tetrad methods has a sufficiently different appear
ance from the coordinate basis methods that it is worth pointing out explicitly three
key ingredients that must be used in determining the curvature of a metric: (1) The
derivative operator is compatible with the metric, va gbc = O. (2) The derivative
operator is torsion free (property 5 of section 3.1). (3) The Riemann tensor is related
to the derivative operator by equation (3.2.3). In the coordinate basis methods,
ingredient (2) is expressed by equation (3.1.9), ingredient (1) (given (2» is expressed
by equation (3.1.29), and ingredient (3) is expressed by equation (3.4.4). As shown
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below ingredients (l) and (2) are expressed in quite different ways when using an
orthonormal basis.

We begin by defining the connection l-forms, waj.LV, by

waj.Lv = (ej.L)bVa(ev)b (3.4.13)

The components WAj.Lv of waj.LV are called the Ricci rotation coefficients,

WAj.Lv = (eA)a(ej.L)bVa(ev)b (3.4.14)

The orthonormality of {(ej.Lt} implies

Waj.LV = (ej.LiVa(ev)b

= -(ell)bVa (eJ,L)b

-Wavj.L (3.4.15)

where the compatibility condition Va gbc = 0 was used. Conversely, equation
(3.4.15) together with equation (3.4.11) implies v"gbc = O. Thus, in the orthonormal
basis approach, ingredient (1) is expressed by the simple condition

(3.4.16)

(Note, in contrast, that the symmetry of r a j.LV stems from ingredient [2].) The
antisymmetry of the Ricci rotation coefficients as compared with the symmetry of the
Christoffel symbol indicates a significant potential advantage of this approach: There
are n 2(n+ 1)/2 ( = 40 when n = 4) components r\v but only n 2(n-l)/2 ( = 24
when n = 4) components WAj.Lv'

The Riemann tensor can be expressed in terms of the Ricci rotation coefficients
in the following manner. The components of Rabcd in our orthonormal basis are

Rpuj.Lv = Rabcd(ept(eol(ej.LY(ev)d

= (ept(eol(ej.Ly(VaVb - Vb v,,)(ev)c

However, we have

Furthermore, we have

[Va(ej.Ly][Vb(ev)J = [Va(ej.L)f]5Cf[Vb(ev)c]

= L 11al3[Va(ej.Ly](eay(eI3MVb(ev)c]
a.13

(3.4.17)

(3.4.18)

(3.4.19)

Thus, from the definition of the connection one forms, equation (3.4.13), we obtain

Rpuj.Lv = (ept(eol{Va Wbj.Lv - Vb Waj.LV

-L 11 a13[Wal3j.L Wbav - Wbl3j.L WaaV ]}
a,l3

(3.4.20)
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We may rewrite equation (3.4.20) in terms of the Ricci rotation coefficients as

Rpuj.Lv = (eptVa WUj.LV - (eutVawpj.LV

- 2: '11afJ{wpl3j.Lwcrav - wul3j.Lwpav + wpl3u waj.Lv - wul3pwaj.Lv} , (3.4.21)
a.fJ

where the last two terms compensate for taking the components of waj.LV inside the
derivative in the first two terms. Since WUj.LV is a scalar, the derivative va in equation
(3.4.21) may, of course, be replaced by an ordinary derivative aa. Thus, equation
(3.4.21) tells us how to compute the curvature tensor in terms of WUj.Lv' The com
ponents of the Ricci tensor may then be computed via the formula

(3.4.22)
U.V

Equation (3.4.20) or equation (3.4.21) fully expresses ingredient (3) in the calcu
lation of curvature. Thus, only ingredient (2)-the torsion-free condition on Va-re
mains to be expressed in this approach. There are two different procedures which
may be employed to do this. The first begins by noting that the torsion-free condition
allowed us to express the commutator of two vector fields in terms of the derivative
operator Va via equation (3.1.2). Conversely, if equation (3.1.2) holds for all vector
fields in a basis, it implies the torsion-free property of va. Thus, we may express
ingredient (2) by the commutation relations of the basis vector fields,

(eu)a[ej.L' evr = (eu)a{(ej.LlVb(evt - (evlVb(ej.Lt} = wj.LUV - WWj.L (3.4.23)

This yields the n2(n-l)/2 equations needed to solve for WUj.LV (see problem 8).
An alternative procedure is to note that from the definition of the connection

one-forms, it follows that

(3.4.24)

as can be verified by contracting equation (3.4.24) with arbitrary basis vectors
(ep)a(eA)b. However, the torsion-free condition implies that the antisymmetrized
derivative of a one-form is independent of derivative operator, and thus may be
replaced by an ordinary derivative aa,

(3.4.25)
j.L,V

Conversely, the validity of equation (3.4.25) for all basis vectors implies that va is
torsion free. Thus, equation (3.4.25) is an alternate expression of ingredient (2).

Equations (3.4.20) amd (3.4.25) can be expressed more elegantly in the notation
of differential forms'(see appendix B). We drop the dual vector index a on waj.LV and
(ej.L)a and use boldface letters to designate forms. For convenience, we also raise and
lower greek indices with '11j.LV and '11j.LV, e.g., we have

(3.4.26)
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times (see chapter 7)-the Newman-Penrose approach is likely to be the most useful.
Furthermore, in some cases where there is a great deal of symmetry, it may be
possible to adapt the coordinate system to the symmetries and make the coordinate
basis method the preferred approach. Finally in general situations-without sym
metries or geometrically preferred vectors to serve as natural basis vectors-all
methods are likely to be about equally laborious.

Finally, we note that in this section we have presented the coordinate and tetrad
methods in the context of calculating the Riemann tensor, given the metric. How
ever, the equations obtained, of course, are equally applicable in the much more
frequently encountered situation where (part of) the curvature tensor is given (e.g.,
via Einstein's equation, as discussed in the next chapter) and we wish to find the
metric. Furthermore, even in cases where we do not wish to calculate the curvature
or solve for the metric, the above equations often directly provide useful relations
between the metric and its curvature, particularly in cases where the coordinate
system or tetrad is well adapted to the properties of the spacetimes under consid
eration.

Problems

1. Let property (5) (the "torsion free" condition) be dropped from the definition of
derivative operator Va in section 3. 1

a) Show that there exists a tensor T C
ab (called the torsion tensor) such that for all

smooth functions, f, we have Va Vd - Vb'Vaf = -Tcab Vcf. (Hint: Repeat the deri
vation of eq. [3.1.8], letting Va be a torsion-free derivative operator.)

b) Show that for any smooth vector fields Xa, ya we have

T Cab xayb = XaVayc - yaVaXc - [X, y]<

c) Given a metric, gab, show that there exists a unique derivative operator 'Va with
torsion T C

ab such that Vcgab = O. Derive the analog of equation (3.1.29), expressing
this derivative operator in terms of an ordinary derivative aa and TCabo

2. Let M be a manifold with metric gab and associated derivative operator Va' A
solution of the equation 'Va Vaa = 0 is called a harmonic function. In the case where
M is a two-dimensional manifold, let a be harmonic and let Eab be an antisymmetric
tensor field satisfying Eab Eab = 2( -1)', where s is the number of minuses occurring
in the signature of the metric. Consider the equation Va f3 = Eab Vb a.

a) Show that the integrability conditions (see problem 5 of chapter 2 or appendix
B) for this equation are satisfied, and thus, locally, there exists a solution, f3. Show
that f3 also is harmonic, Va vaf3 = O. (f3 is called the harmonic function conjugate to
a.)

b) By choosing a and f3 as coordinates, show that the metric takes the form

ds 2 = ±fi2(a, (3)[da 2 + (-1)'df32]
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3. a) Show that R abcd = R cdab '

b) In n dimensions, the Riemann tensor has n 4 components. However, on account
of the symmetries (3.2.13), (3.2.14), and (3.2.15), not all of these components are
independent. Show that the number of independent components is n 2(n 2-l)/12.

4. a) Show that in two dimensions, the Riemann tensor takes the form
R abcd = Rga[cgdjb. (Hint: Use the result of problem 3(b) to show that ga[cgdjb spans the
vector space of tensors having the symmetries of the Riemann tensor.)

b) By similar arguments, show that in three dimensions the Weyl tensor vanishes
identically; i.e., for n = 3, equation (3.2.28) holds with Cabcd = O.

5. a) Show that any curve whose tangent satisfies equation (3.3.2) can be re
parameterized so that equation (3.3.1) is satisfied.

b) Let t be an affine parameter of a geodesic y. Show that all other affine
parameters of y take the form at + b, where a and b are constants.

6. The metric of Euclidean 1R3 in spherical coordinates is ds 2 = dr 2 +
r 2(d(P + sin2ed¢2) (see problem 8 of chapter 2).

a) Calculate the Christoffel components f U
ILv in this coordinate system.

b) Write down the components of the geodesic equation in this coordinate system
and verify that the solutions correspond to straight lines in Cartesian coordinates.

7. As shown in problem 2, an arbitrary Lorentz metric on a two-dimensional man
ifold locally always can be put in the form ds 2 = !}2(x, t)[ -dt2 + dx 2]. Calculate
the Riemann curvature tensor of this metric (a) by the coordinate basis methods of
section 3.4a and (b) by the tetrad methods of section 3.4b.

8. Using the antisymmetry of W aILv in f.L and v, equation (3.4.15), show that

WAILV = 3W[AILV] - 2W[ILv]A

Use this formula together with equation (3.4.23) to solve for WAILV in terms of
commutators (or antisymmetrized derivatives) of the orthonormal basis vectors.
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EINSTEIN'S EQUATION

In this chapter we shall give a mathematically precise formulation of the ideas
sketched in the introduction. We begin by giving an exposition of the elementary
topic of the geometry of space and the spatial tensorial character of physical laws in
prerelativity physics. The discussion of special relativity which follows will com
pletely parallel this discussion, with "spacetime" replacing "space." Our next (and
most important) task will be to formulate general relativity and provide a motivation
for Einstein's equation, which relates the geometry of spacetime to the distribution
of matter in the universe. Finally, we will examine general relativity in the limit
where gravity is weak. We will show that in appropriate circumstances general
relativity reproduces the predictions of the Newtonian theory of gravity. We also will
show that in general relativity, gravity has dynamical degrees of freedom which can
be excited by the motion of matter, Le., that general relativity predicts the existence
of gravitational radiation.

4.1 The Geometry of Space in Prerelativity Physics; General and Special
Covariance

In prerelativity physics it is assumed that space has the manifold structure of 1R3
•

It is further assumed that the association of points of space with elements (x I , X 2, X 3)

of 1R3 can be achieved in a natural manner by construction of a "rigid rectilinear grid"
of metersticks. The coordinates of space obtained in this manner are referred to as
Cartesian coordinates. Many different systems of rigid grids (Le., many Cartesian
coordinate systems) are possible-specifically they can be put in one-to-one corre
spondence with elements of the six-parameter group of rotations and translations of
1R3

. Thus, the Cartesian coordinates (X
I
,X2,X3) of a point in space do not, in

themselves, have any intrinsic meaning. However, the distance, D, between two
points, x and x, defined in terms of Cartesian coordinates by

D 2 = (Xl - XI)2 + (x 2 - X2)2 + (x 3 - X3)2 (4.1.1)

is independent of the choice of Cartesian coordinate system and thus can be viewed
as describing an intrinsic property of space.

55
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This fonnula for the distance between two points gives rise to a metric of space
hab (in the sense of section 2.3) in the following manner. According to equation
(4.1.1), the distance between two "nearby" points is

(5D? = (&!? + (5X 2)2 + (&3)2 (4.1.2)

This suggests that the metric of space is given by (in the notation of eq. [2.3.10])

ds 2 = (dx!)2 + (dx 2)2 + (dx 3? (4.1.3)

or, in the index notation, in the Cartesian coordinate basis, we have

(4.1.4)
J.L, v

with hJ.Lv = diag (1, 1, 1). This definition of hab is independent of choice of Cartesian
coordinate system; i.e., the same tensor field hab would result if we had chosen a
different Cartesian system.

Let us examine the geometry detennined by equation (4.1.4). Since the com
ponents of the metric in the Cartesian coordinate basis are constants, the ordinary
derivative operator of this coordinate system satisfies

(4.1.5)

Consequently, this ordinary derivative is the derivative operator associated with hab

and thus robe vanishes for this coordinate system (as also can be seen directly from
eq. [3.1.30]). Since ordinary derivatives commute on all tensors, by equation (3.2.3)
the curvature vanishes, i.e., the metric hab is flat. By equation (3.3.5), the geodesics
of space are precisely those curves which are "straight lines" when expressed in
Cartesian coordinates, i.e., the curves whose Cartesian coordinates are linearly
related to the affine parameter. Consequently, there is a unique geodesic connecting
any given pair of points, and the length, equation (3.3.7), of this geodesic is given
by equation (4.1.1). Thus, our metric, equation (4.1.4), reproduces the distance
fonnula which motivated its definition.

Thus, our assumptions about space in prerelativity physics have led to the state
ment that space is the manifold 1R3 which possesses a flat Riemannian metric.
Conversely, given that space is 1R3 with a flat Riemannian metric, we can derive all
our initial assumptions. We can use the geodesics of the flat metric to construct a
Cartesian coordinate system, using the fact that initially parallel geodesics remain
parallel because the curvature vanishes. The distance fonnula, equation (4.1.1), will
hold, and hence one may lay down metersticks over the Cartesian coordinate lines
to construct a "rigid rectilinear grid." Thus, everything we have said thus far in this
section is encapsulated in the statement that space is the manifold 1R3 with a flat
Riemannian metric defined on it.

Let us consider, now, quantities of physical interest in space. All experiments in
physics measure numbers, so all quantities of physical interest must eventually be
reducible to numbers. However, many quantities of interest-such as the magnetic
field or the stress tensor mentioned at the beginning of section 2.3-require the
additional specification of a basis of vectors in order to produce numbers. A very
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general class of quantities of interest are maps of vectors and dual vectors into
numbers. Since any such analytic map can be Taylor-expanded as a sum of multi
linear maps, we see that tensor fields-i.e., multilinear maps of vectors and dual
vectors into numbers--encompass an extremely wide class of quantities. Indeed, the
generality of the mathematical notion of tensor fields appears to be great enough so
that essentially alII quantities which one considers in physics can be viewed as tensor
fields. The laws of physics governing these quantities can be expressed as tensor
equations, i.e., equalities between tensor fields defined on space.

An important principle-which goes under the name of general covariance
applies to the form of the laws of physics in the prerelativity description of space as
well as in special relativity and general relativity. The principle of general covariance
in this context states that the metric of space is the only quantity pertaining to space
that can appear in the laws of physics. Specifically, there are no preferred vector
fields or preferred bases of vector fields pertaining only to the structure of space
which appear in any law of physics. This idea played an important role in motivating
the formulation of special relativity and general relativity, but the principle is rather
vague because the phrase "pertaining to space" does not have a precise meaning.

Historically, there has been a great deal of discussion concerning the tensor nature
of the laws of physics and the principle of general covariance, so it is worthwhile to
remark here upon other formulations of these ideas. In many treatments, it is
assumed that a coordinate system has been chosen and the equations of physics have
been written out in component form using the coordinate basis. (Note that, in our
viewpoint, this already assumes that the laws of physics are tensor equations.) Now,
if our formulation of general covariance were violated, say by the existence of a
preferred vector field va, it would be possible to adapt a coordinate system to this
vector field so that, say, (a / ax 1)0 equals va. If we wrote out the components of an
equation of physics in such an adapted coordinate system without explicitly incorpo
rating va into the equation but rather substituting everywhere the components vJ.L =
0,0, ... ,0), we would find, of course, that the form of the equation is not
preserved when we make a coordinate transformation which violates our condition
(a / ax I)a = va. Thus in these treatments it would be concluded that in this example
the equations are not preserved under general coordinate transformations. Further
more, it would be concluded that the equations are not tensor equations because the
components fail to transform according to equation (2.3.8) under coordinate trans
formations. However, in our viewpoint, the "nontensorial" nature of the equations
can be attributed to a failure to explicitly incorporate the extra geometrical structure
into the equation. When this is done, the equation will have a tensorial character, but
our formulation of the principle of general covariance will be violated by the appear
ance of additional quantities pertaining to space.

A good example of an implication of the principle of general covariance which
illustrates this difference in viewpoint is the following statement: A Christoffel
symbol rC

ab cannot appear (by itself, in undifferentiated form) in any law of physics.
From our viewpoint, [Cab is a tensor, but it is equivalent to specifying an ordinary

1. Spinor fields arise in physics and comprise a more general class of objects than tensor fields; see
chapter 13.
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derivative, aa' However, this ordinary derivative is an additional geometric quantity
pertaining to space which is not derivable from the metric (unless it coincides with
the derivative operator satisfying eq. [3.1.22], in which case [Cab = 0), so the
appearance of rC

ab violates our formulation of general covariance. From the other
viewpoint, r c

ab cannot appear because, as already remarked in section 3. I, its
coordinate components do not transform according to equation (2.3.8) under general
coordinate transformations.

The laws of prerelativity physics also obey the principle of special covariance.
The meaning of this principle can be explained as follows. The metric of space,
equation (4.1.4), has a nontrivial group of isometries (see appendix C), namely the
six parameter group of rotations and translations of 1R3 together with the discrete
parity symmetry. Consider a family, 0, of observers stationed in space who make
measurements on a physical field. Consider another family, 0', of observers ob
tained by "acting" on 0 with an isometry. The principle of special covariance says
that any physically possible set of measurements obtained by 0 also is a physically
possible set of measurements for 0'. It implies the existence of an action of the
isometry group on the states of the physical fields being measured. The importance
of special covariance lies mainly in the fact that in appropriate contexts, one can use
this group action to derive, or at least motivate, the possible laws governing the
physical fields. This will be illustrated in chapter 13, where-in the context of
special relativity rather than prerelativity physics-special covariance will be used
to motivate the dynamical laws satisfied by fields of mass m and spin s.

The principle of special covariance is closely related to the principle of general
covariance. Suppose an object of physical interest is described by a tensor field
p" ·b ...• If general covariance holds, then the equations governing P" ·b ... should
involve only T a

" ·b . .. , the metric hab , and the quantities determined by hab , such as
its derivative operator. Furthermore, all quantities measurable by 0 should be ex
pressible as scalars resulting from contracting T a

" ·b ... and its derivatives with the
basis vector fields (ea)a associated with O. Let cP be an isometry. Then if the above
assumptions hold, the action of cP on P" 'b"" defined in appendix C, will produce
a tensor field cP*P' ··b ... which will satisfy the equations for the physical field and
will yield the same measurable quantities for 0' as Ta

.··b . .. yields for O. Thus, for
physical quantities describable by tensor fields and satisfying tensor equations,
special covariance of the physical laws under isometries follows, in essence, from
general covariance. (However, note that the formulation of special covariance given
above does not require that the physical quantities be describable as tensor fields,
and, indeed, in chapter 13 we will use special covariance to motivate the introduction
of spinor fields.) On the other hand, the principle of general covariance may be
viewed as being, essentially, a formulation of the idea of special covariance which
is applicable in the absence of isometries.

Special covariance of the laws of physics for tensor fields implies that if we pick
a coordinate system and write out the coordinate component equations without
explicitly incorporating the metric into the equation but rather substituting every
where its coordinate components hJ.Lv [e.g., diag (1, 1, 1) in Cartesian coordinates],
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then the fonn of the equations will be preserved under the coordinate transfonnations
corresponding to the isometries, for the simple reason that the numerical values of
the components hIJ.v remain unchanged under these transfonnations. Thus, special
covariance can be viewed as expressing the invariance of the component fonn of
equations under a "special" group of coordinate transfonnations (namely, those
corresponding to isometries), while general covariance can be viewed as expressing
a (quite different type of) invariance of the equations under general coordinate
transfonnations. Historically these fonnulations of special and general covariance
played a large role in discussions of relativity theory, and, indeed, the names
"special" and "general" relativity derive from these fonnulations of special and
general covariance.

4.2 Special Relativity
We have already described in section 1.2 the major revolution in our notions of

space and time brought about by the special theory of relativity. Here we will
refonnulate these ideas in a manner closely analogous to the discussion of the
previous section.

In special relativity, it is assumed that spacetime has the manifold structure of 1R4 .

As already mentioned in section 1.2, it is assumed that there exist preferred families
of motion in spacetime, referred to as "inertial" or "nonaccelerating" motions.
Inertial observers, it is further assumed, can set up a rigid grid of metersticks,
synchronize clocks placed at the gridpoints, and label each event in spacetime by the
grid coordinates x I , x 2, x 3 and the clock reading t at an event. This map of spacetime
into 1R4 is called a global inertial coordinate system. Many different global inertial
coordinate systems are possible-specifically, the different systems can be put into
one-to-one correspondence with elements of the lO-parameter Poincare group. Thus,
the labels at t = xo, Xl, x 2

, x 3 of a given event do not have intrinsic meaning.
However, as already mentioned in section 1.3, the spacetime interval I between two
events x and xdefined (in units where c = 1) by

I = -(Xo - XO)2 + (Xl - XI)2 + (x 2 - X2)2 + (x 3 - x3? (4.2.1)

has the same value for all global inertial coordinate systems and thus can be viewed
as representing an intrinsic property of spacetime.

In parallel with our discussion of the previous section, equation (4.2.1) suggests
that we define the metric of spacetime 'TJab by

3

'TJab = 2: 'TJIJ.v(dxIJ.)a(dxVh
IJ..V=O

with 'TJIJ.V = diag (-1, 1, 1, 1), where {xIJ.} is any global inertial coordinate system.
Again, the tensor field 'TJab thereby obtained is independent of the choice of global
inertial coordinates. Again, the ordinary derivative operator, aa, of the global inertial
coordinates satisfies

(4.2.3)
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and thus is the derivative operator associated with the spacetime metric. Again, since
ordinary derivatives commute, the curvature of T/ab vanishes. The geodesics of T/ab

are those curves which are straight lines when expressed in global inertial coordi
nates. In particular, the timelike geodesics of T/ab are precisely the world lines of
inertial observers in spacetime.

Thus, the theory of special relativity asserts that spacetime is the manifold 1R4 with
a flat metric of Lorentz signature defined on it. Conversely, the entire content of
special relativity as we have presented it thus far is contained in this statement, since,
given 1R4 with a flat Lorentz metric, we can use the geodesics of this metric to
construct global inertial coordinates, etc.

Quantities of physical interest in special relativity again are represented by tensor
fields, but now quantities which in prerelativity physics were viewed as spatial
tensors are recognized in special relativity to comprise spacetime tensors. In the
context of special relativity, the principle of general covariance states that the
spacetime metric, T/ab' is the only quantity pertaining to spacetime structure which
can appear in any physical law. This principle is believed to apply to the laws of
physics in special relativity with one important modification. Experiments demon
strating parity violation and (indirectly) demonstrating the failure of time reversal
symmetry have shown that two further aspects of spacetime structure can appear in
physical laws: the time orientation and space orientation of spacetime. By the "time
orientation" we mean a continuous choice throughout spacetime of which half of the
light cone represents the future direction, and which half represents the past direction
(see Fig. 1.2, and see the beginning of chapter 8 for further discussion of this notion
in the context of curved spacetime). By the "space orientation" we mean a con
tinuous choice of "right handed" versus "left handed" orthonormal triads of spacelike
vectors at each point, or equivalently, the specification of a continuous, non
vanishing totally antisymmetric tensor field eabc = e[abc] on spacetime satisfying
taeabc = 0 for some timelike vector field2

tao Thus, these two additional aspects of
spacetime structure apparently do enter the laws of physics. Similarly, the laws of
physics in special relativity are believed to satisfy the principle of special covariance
with respect to the proper Poincare transformation, i.e., with respect to the trans
lations, rotations, and boosts of spacetime, but not with respect to time reflections,
parity transformations, or their composition. Although these latter "improper" trans
formations are isometries, they do not preserve all the relevant structure of spacetime
since they reverse the time and/or space orientation of spacetime.

Let us describe more explicitly the formulation of some of the laws of physics in
special relativity. We have already mentioned that curves are classified as timelike,
null, or spacelike according to whether the norm T/ab roTb of their tangent, is,
respectively, negative, zero, or positive. Special relativity asserts that the paths in
spacetime of material particles are always timelike curves. (This fact is, of course,
simply a reformulation of the familiar statement that "nothing can travel faster than

2. Note that if fa is chosen to be continuous, thus defining a time orientation, then Eabcd = -f[aebcdJ

yields a spacetime orientation in the sense of appendix B. Any two of (i) a time orientation, (ii) a space
orientation, and (iii) a spacetime orientation of Minkowski spacetime determines the third.
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the speed of light.") We may parameterize timelike curves by the proper time T

defined by

(4.2.4)

where t is an arbitrary parameterization of the curve (with increasing t corresponding
to "forward in time"), and ra is the tangent to the curve in this parameterization.
According to special relativity, T is precisely the time which would elapse on a clock
carried along the given curve. Different timelike curves connecting the same pair of
events may have different elapsed times (the "twin paradox"), just as different paths
between two points of space can have different lengths. As discussed in section 3.3,
the maximum elapsed time between two events is given by geodesic (i.e., inertial)
motion.

The tangent vector u a to a timelike curve parameterized by T is called the
4-velocity ofthe curve. It follows directly from the definition of Tthat the 4-velocity
has unit length,

(4.2.5)

As already mentioned above, a particle subject to no external forces will travel on
a geodesic; i.e., its 4-velocity will satisfy the equation of motion,

(4.2.6)

where aa is the derivative operator associated with T/ab, i.e., the ordinary derivative
operator of a global inertial coordinate system. If forces are present, the right-hand
side of equation (4.2.6) will be nonzero (see, e.g., eq. [4.2.26] below).

All material particles have an attribute known as "rest mass" m, which appears as
a parameter in the equations of motion when forces are present. The energy
momentum 4-vector, pa, of a particle of mass m is defined by

(4.2.7)

The energy of a particle as measured by an observer-present at the site of the
particle-whose 4-velocity is va is defined by

(4.2.8)

Thus, in special relativity, energy is recognized to be the "time component" of the
4-vector pa. For a particle at rest with respect to the observer (i.e., va = ua),
equation (4.2.8) reduces to the familiar formula E = me 2 (in our units with e = 1).
Since the spacetime metric, T/ab, is flat and thus parallel transport is path independent,
we may define the energy of a particle as measured by an observer who is not present
at the site of the particle to be the energy measured by the observer who is at the site
of the particle and has 4-velocity parallel to that of the distant observer.

Continuous matter distributions in special relativity are described by a symmetric
tensor Tab called the stress-energy-momentum tensor. For an observer with 4-velocity
va, the component Tabvav b is interpreted as the energy density, i.e., the mass-energy



62 Einstein's Equation

per unit volume, as measured by this observer. For normal matter, this quantity will
be nonnegative,

(4.2.9)

If x a is orthogonal to va, the component -Tabvaxb is interpreted as the momentum
density of the matter in the xa-direction. If ya also is orthogonal to va, then Tabxayb
represents the xa_ya component of the stress tensor of the material defined near the
beginning of section 2.3 above. Thus, the stress tensor of prerelativity physics is
combined with the energy and momentum densities to form the stress-energy-mo
mentum tensor of special relativity. Following standard practice, we often shall
abbreviate the term "stress-energy-momentum tensor" as "stress-energy tensor" or
even "stress tensor."

A perfect fluid is defined to be a continuous distribution of matter with stress
energy tensor Tab of the form

(4.2.10)

where u a is a unit timelike vector field representing the 4-velocity of the fluid.
According to the above interpretation of Tab, the functions p and P are, respectively
the mass-energy density and pressure of the fluid as measured in its rest frame. The
fluid is called "perfect" because of the absence of heat conduction terms and stress
terms corresponding to viscosity.

The equation of motion of a perfect fluid subject to no external forces is simply

(4.2.11)

Writing out equation (4.2.11) in terms of p, P, and u a
, and projecting the resulting

equation parallel and perpendicular to u b, we find:

uaaaP + (p + p)aaua = 0 (4.2.12)

(P + p)UaaaUb + (11ab + UaUb)aap = 0 (4.2.13)

In the nonrelativistic limit, P« p, uJ.L = (1, ;;), and v dP/dt« IVpl, these
equations become

ap - -at + V· (pv) = 0,

{- }av - - - -p at + (v . V) v = - VP

(4.2.14)

(4.2.15)

so we see that equation (4.2.11) reduces to the conservation of mass, equation
(4.2.14), and Euler's equation (4.2.15).

Equation (4.2.11) has an important physical interpretation. Consider a family of
inertial observers with parallel4-velocities va, so that abv a = O. According to the
above interpretation of Tab, the quantity

(4.2.16)
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represents the mass-energy current density 4-vector ofthe fluid as measured by these
observers. Equation (4.2.11) implies

aa.fa = 0 (4.2.17)

(4.2.18)

Using Gauss's law (see appendix B) equation (4.2.17) implies that over the three
dimensional boundary, S, of any four-dimensional spacetime volume V, we have

Is .fan adS = 0

where n a is the unit normal whose direction is defined in appendix B. Applying this
to the volume shown in Figure 4.1, we see that the energy change in the fluid in this
volume (i.e., the contribution to the integral, eq. [4.2.18], from the top and bottom
parts of S) equals the time integrated energy flux into the volume (i.e., the con
tribution from the "side" part of S). Thus, equation (4.2.18) implies conservation of
energy. Conversely, conservation of energy as measured by all inertial observers
requires equation (4.2.11). Thus, more generally, conservation of energy implies
that equation (4.2.11) must hold for all continuous matter distributions, not just for
perfect fluids.
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Fig. 4.1. A spacetime diagram showing the mass-energy current density r in a
volume V of spacetime.

To illustrate the description of fields in special relativity, we will give two exam
ples: the scalar field and the electromagnetic field. Although no classical scalar field
exists in nature, it is instructive for many purposes to consider a field cj:J satisfying
the Klein-Gordon equation,

aaaacj:J - m2cj:J = 0

The stress-energy tensor of this scalar field is3

Tab = aacj:Jabcj:J - ~71ab(accj:Jaccj:J + m2cj:J2)

(4.2.19)

(4.2.20)

3. General prescriptions for determining the stress-energy tensor of a field are discussed below. in
appendix E.
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Again, Tab satisfies the energy condition, equation (4.2.9), and is conserved, equation
(4.2.11), by virtue of the field equation (4.2.19).

In prerelativity physics, the electric field Eand magnetic field jj each are spatial
vectors. In special relativity these fields are combined into a single spacetime tensor
field Fab which is antisymmetric in its indices, Fab = -Fha' Thus Fab has six indepen
dent components. For an observer moving with 4-velocity va, the quantity

is interpreted as the electric field measured by that observer, while

Ba
= 1 ~ cdr;' Vb

- leab rcd

(4.2.21)

(4.2.22)

is interpreted as the magnetic field, where Eabcd is the totally antisymmetric tensor of
positive orientation with norm EabcdEabcd = -24 (see appendix B) so that in a right
handed orthonormal basis we have EOI23 = 1.

In terms of F'ab, Maxwell's equations take the simple and elegant form,

(4.2.23)

(4.2.24)

(4.2.26)

where ja is the current density 4-vector of electric charge. Note that the antisymmetry
of F'ab implies that

°= abaaFab = -47Tabjb (4.2.25)

Thus, Maxwell's equations imply abjb = 0, which, by the same argument as given
above for.la, states that electric charge is conserved. The equation of motion of a
particle of charge q moving in the electromagnetic field F'ab is

uaaau b = !IFbcuc
m

which reformulates the usual Lorentz force law in terms of Fab•

The stress-energy tensor of the electromagnetic field is

Tab = 4
1
7T {F'acFb c - ~ 71ab Fde F de } (4.2.27)

Again, Tab satisfies the energy condition, equation (4.2.9), and if r = 0, we have
aaTab = °by virtue of Maxwell's equations. Ifr *" 0, then the stress-energy Tab of
the electromagnetic field alone is not conserved, but the total stress-energy of the
field and the charged matter is still conserved.

By the converse of the Poincare lemma (see appendix B), equation (4.2.24)
implies that there exists a vector field A a (called the vector potential) such that

F'ab = aaAb - abAa

In terms of A a, Maxwell's equations become

aa(aaAb - abAa) = -471:ib

(4.2.28)

(4.2.29)
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We have the gauge freedom of adding the gradient aaX of a function X to Aa since,
by equation (4.2.28), this leaves Fab unchanged. By solving the equation

aaaaX = -abAb (4.2.30)

for X, we may make a gauge transformation to impose the Lorentz gauge condition,

aaAa = 0 (4.2.31)

in which case, using the commutativity of derivatives in flat spacetime, equation
(4.2.29) becomes

aaaaAb = -47Tjb (4.2.32)

We may seek solutions of Maxwell's equations of the form of a wave oscillating
with constant amplitude,

Aa = Ca exp (is) (4.2.33)

where Ca is a constant vector field (i.e., constant norm and everywhere parallel to
itself) and the function S is called the phase of the wave. To yield a solution with
ja = 0, the phase must satisfy (from eq. [4.2.32])

and (from eq. [4.2.31])

aaaaS = 0

aasaas = 0

(4.2.34)

(4.2.35)

(4.2.36)

(4.2.37)

Now, for any functionfon any manifold with a metric, the vector va fis normal (i.e.,
orthogonal) to the surfaces of constantf, since for any vector t a tangent to the surface
we have taVaf = O. Equation (4.2.35) states that the normal ka = aas to the surfaces
of constant S is a null vector, kaka = O. We call such a surface a null hypersurface.
Note that null hypersurfaces satisfy the property that their normal vector is tangent
to the hypersurface. Differentiation of equation (4.2.35) yields

o = ab(aaSaas)

= 2(aas)(abaa S)

= 2(aas)(aaab S)

= 2ka aakb

i. e., the integral curves of k a are null geodesics. Indeed, since the derivation of
equation (4.2.37) from equation (4.2.35) is valid in curved spacetime as well (with
Va replacing aa everywhere), it follows that all null hypersurfaces in a Lorentz
spacetime are generated by null geodesics. 4 The frequency of the wave (i.e., minus

4. The derivation of equation (4.2.37) is appropriate to the case in which one has a function S for
which all the hypersurfaces of constant S are null. For a single null hypersurface, the vanishing of
"abcdkcVd(keke) shows that ka is tangent to a (non-affinely parameterized) null geodesic.
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the rate of change of the phase of the wave) as measured by an observer with
4-velocity va is given by

(4.2.38)

The most important solutions ofthe form, equation (4.2.33), are the plane waves,

3

S = 2: kl'-xl'- (4.2.39)
1'-=0

where {xl'-} are global inertial coordinates and kl'- are constants (and thus ka is a
constant vector field). From the theory of Fourier transforms, it follows that all well
behaved solutions of Maxwell's equations which go to zero sufficiently rapidly at
large spacial distances can be expressed as superpositions of plane waves.

Our analysis, above, suggests that electromagnetic disturbances, Le., light sig
nals, propagate on null geodesics, equation (4.2.37). This supposition is indeed
correct: The retarded Green's function for Maxwell's equations has support confined
to the past light cone (see, e.g., Jackson 1962), so the electromagnetic radiation from
a source which reaches event p depends only on what the source does on the past light
cone of p. Thus, the terminology of "light cone," which we have been using all
along, is justified by Maxwell's equations; light does indeed propagate along the
light cone.

4.3 General Relativity
Maxwell's theory is a remarkably successful theory of electricity, magnetism, and

light which is beautifully incorporated into the framework of special relativity.
Therefore, one might expect that the next logical step would have been to develop
a new theory of the other classical force, gravitation, which would generalize
Newton's theory and make it compatible with special relativity in the same way that
Maxwell's theory generalized Coulomb's electrostatics. However, Einstein chose an
entirely different path and instead developed general relativity, a new theory of
spacetime structure and gravitation. As already mentioned in the introductory chap
ter, the equivalence principle and Mach's principle provided the primary motivation
for formulating a new theory.

To see the relevance of the equivalence principle-that all bodies fall the same
way in a gravitational field-to developing a new viewpoint on gravitation, consider
how one measures the electromagnetic field in special relativity. The first step is to
set up "background observers" who are not subject to electromagnetic forces (Le.,
they are electrically neutral, have no magnetic dipole moment, etc.) or any other
forces. These observers are called inertial and satisfy the geodesic equation of motion
(4.2.6). The next step is to release a charged test body. The world line of this body
will satisfy equation (4.2.26), and by observing the deviation from inertial motion
(for sufficiently many test bodies) we can determine Fab•

If we apply this procedure to gravitation, we are immediately faced with a serious
problem: By the equivalence principle, we have no way of "insulating" an observer
or body from the gravitational force, so we have no simple, direct physical procedure
for constructing inertial observers in the sense used for electromagnetism. Any
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observer will move in exactly the same way as a test body, so we have no natural
"background motion" to compare with the test body. Thus we have no simple, direct
way of measuring the gravitational force field. It is, of course, possible that compli
cated procedures for accomplishing these constructions and measurements may
exist. If special relativity were correct, one could construct inertial observers by
spacetime measurements, i.e., the (flat) spacetime metric could be measured using
clocks and metersticks, and its geodesics determined. Inertial observers would need
to be equipped with rocket engines, but aside from that the gravitational force field
could be determined in the same way as for electromagnetism. The equivalence
principle would then be viewed as a peculiar quirk of the gravitational force law, just
as it is viewed in standard treatments of Newtonian theory.

The basic framework of the theory of general relativity arises from considering the
opposite possibility: that we cannot in principle-even by complicated procedures
construct inertial observers in the sense of special relativity and measure the grav
itational force. This is accomplished by the following bold hypothesis: The spacetime
metric is not flat, as was assumed in special relativity. The world lines of freely
falling bodies in a gravitational field are simply the geodesics of the (curved)
spacetime metric. In this way, the "background observers" (geodesics of the space
time metric) automatically coincide with what was previously viewed as motion in
a gravitational force field. As a result we have no meaningful way of describing
gravity as a force field; rather, we are forced to view gravity as an aspect of spacetime
structure. Although absolute gravitational force has no meaning, the relative grav
itational force (i.e., tidal force) between two nearby points still has meaning and can
be measured by observing the relative acceleration oftwo freely falling bodies. This
relative acceleration is directly related to the curvature of spacetime by the geodesic
deviation equation (3.3.18).

How does this viewpoint of general relativity that there is no such thing as
gravitational force square with the well known "fact" that there is a gravitational
force field at the surface of the Earth of 980 cm s-2? Recall that in the standard
Newtonian viewpoint this gravitational force on an object placed on the Earth's
surface is balanced by the force the surface exerts, leaving the body in equilibrium,
i.e., "at rest." In the viewpoint of general relativity, the only force acting on the body
is the force of the surface of the Earth. On account of this force, the body accelerates
(i.e., deviates from geodesic motion) at the rate of 980 cm S-2. Nevertheless, it
remains in a stationary state, because in the curved spacetime geometry in the
vicinity of the Earth, the orbits of time translation symmetry differ from the geodes
ics of the metric. We could use the time translation symmetry of this example to
define a preferred set of background observers. We then could define the grav
itational force field of the Earth to be minus the acceleration a body must undergo
in order to remain stationary. Thus, in this case a well defined meaning can be
assigned to gravity as a force field. However, in the absence of time translation
symmetry--e.g., in a case where there are several massive bodies in relative
motion-there exists no natural set of curves whose comparison with geodesics
could be used to define gravitational force. (This remark also applies to an observer
in a nonstationary laboratory near the Earth who would not be aware of the time
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translation symmetry.) Thus, although we may meaningfully speak of the grav
itational force field of the Earth, this is a very special notion, applicable only to
situations with time translation symmetry. In general situations, there are no pre
ferred background observers, and only the tidal force-the relative acceleration of
nearby geodesics-is well defined.

Thus, in general relativity, we do not assert that spacetime is the manifold 1R4 with
a flat metric T/ab defined on it. This is a possibility corresponding to no tidal forces,
i.e., no gravitational field, but it is not the only possibility. The framework of general
relativity permits the Lorentz metric, gab, of spacetime to be curved. Indeed, it
asserts that spacetime must be curved in all situations where, physically, a grav
itational field is present. Since we are allowing curved geometries, it is also much
more natural to allow spacetime to have a manifold structure M other than 1R4

. Hence,
in general relativity we place no a priori restriction on the spacetime manifold. The
final crucial feature of general relativity is Einstein's equation which relates the
spacetime geometry to the matter distribution. We will discuss this equation below,
but first we discuss the nature of the laws of physics under the new framework of
spacetime structure given by general relativity: Spacetime is a manifold M on which
is defined a Lorentz metric gab.

The laws of physics in general relativity are governed by two basic principles:
(1) the principle of general covariance-already discussed in the previous two
sections-which states that the metric, gab, and quantities derivable from it are the
only spacetime quantities that can appear in the equations of physics; (2) the require
ment that equations must reduce to the equations satisfied in special relativity in the
case where gab is flat. As previously mentioned, the first principle is imprecise
because the term "spacetime quantity" is not well defined. As will be illustrated
below, these two principles alone do not uniquely determine the laws of physics in
general relativity. However, together with simplicity and aesthetics, they serve as
guides which, in many cases, lead directly to natural candidates for physical laws.

Since the basic framework of general relativity modifies that of special relativity
only in that it allows the manifold to differ from 1R4 and the metric to be nonflat, we
may continue to represent physical quantities by the same type of tensor fields as in
special relativity. Thus, in general relativity, particle motion continues to be repre
sented by a timelike (in the metric gab) curve; perfect fluids are still described in terms
of a 4-velocity ua

, a density p, and a pressure P; the electromagnetic field is
represented by an antisymmetric tensor F'ab. Only the equations satisfied by these
fields need to be amended. The above two principles suggest the following simple
rule: In the equations holding in special relativity, replace everywhere the metric T/ab
of special relativity by gab and correspondingly replace the derivative operator aa
associated with T/ab by the derivative operator Va associated with gab. This rule for,
in effect, coupling particles and fields to gravity is closely analogous to the "minimal
coupling" rule pa ~ Pa - eAa for coupling to electromagnetism. However, as we
shall illustrate below, this rule is not entirely free of ambiguity.

Thus, in general relativity, we again define the 4-velocity, ua
, of a particle to be

the unit tangent (as measured by gab) to its world line. A free particle satisfies the
geodesic equation of motion,

(4.3.1)
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where Va is the derivative operator associated with gab. If the acceleration5

ab = UaVau b of the particle is nonvanishing, we say that a force P = ma b acts on
the particle, where m is its (rest) mass. For example, if the particle has (rest) mass
m and charge q, and is placed in an electromagnetic field Fab , it satisfies the Lorentz
force equation,

(4.3.2)

where indices are raised and lowered by gab, i.e., F bc = gbdFdc. (Again, we empha
size that there is no natural flat metric defined on spacetime and, by the principle of
general covariance, only gab can enter the equations.) The 4-momentum of the
particle is defined by

(4.3.3)

The energy of the particle as determined by an observer who is present at the event
on the particle's world line at which the energy is measured is again

(4.3.4)

where va is the 4-velocity of the observer. However, there is one important differ
ence here: Because spacetime is curved, there is no well defined notion of vectors
at different points being parallel; parallel transport is curve dependent. Thus, there
is no natural "global family" of inertial observers, and a given observer cannot, in
general, define the energy of a distant particle.

In general relativity, continuous matter distributions and fields again are described
by a stress-energy tensor Tab. The stress tensor of a perfect fluid is given by

Tab = PUaUb + P(gab + UaUb)

and it satisfies the equations of motion

vaTab = 0

which yield

(4.3.5)

(4.3.6)

UavaP + (p + P)Vaua = 0 (4.3.7)

(P + p)UaVaUb + (gab + UaUb)vap = 0 (4.3.8)

However, the interpretation of equation (4.3.6) is altered now. A family of observers
is represented by a unit timelike vector field va. If one could find such a vector field
which is covariantly constant, i.e. , Va Vb = O----or for which merely ~aVb) =
o-then we would have Va(Tabv b) = O. Applying the curved spacetime version of
Gauss's law (see appendix B), we again would obtain strict conservation of energy
in the form (4.2.18) for the energy-momentum four-vector.fa = - Tab Vbmeasured by
the observers represented by Vb. However, in curved spacetime in general one no
longer can find a va satisfying vava = -1 and ~aVb) = O. (Indeed, the equation
~aVb) = 0 is Killing's equation and holds if and only if va generates a one-parameter

5. The (absolute) acceleration a b should be clearly distinguished from the relative acceleration of
geodesics discussed in section 3.3.
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group of isometries Lsee appendix en Thus the argument fails that equation (4.3.6)
implies strict energy conservation. Physically, this makes sense because the grav
itational tidal forces can do work on the fluid and may increase or decrease its locally
measured energy. 6 However, if one considers a spacetime region of dimension small
compared with radii of curvature, then, physically, the tidal forces can do little work
and the energy of the fluid should be approximately conserved. But over this small
spacetime region it is possible to find vector fields with Vbv a = 0, and thus equation
(4.3.6) does yield approximate conservation of energy as measured by these observ
ers. Thus, equation (4.3.6) may be interpreted as a local conservation of material
energy over small regions of spacetime. On account ofthis interpretation, we expect
equation (4.3.6) to hold for all matter and fields, not just for perfect fluids.

The most natural generalization of the equation satisfied by a Klein-Gordon scalar
field to curved spacetime is given by our "minimal substitution" rule T'/ab ~ gab,

aa ~ Va'

vavacj:J - m2 cj:J = 0

The stress tensor of the field is

(4.3.9)

(4.3.10)

and satisfies VaTab = O. We should point out, however, that there are many other
possible generalizations of equation (4.2.19) which are consistent with the two basic
principles stated above. For example, the equation

(4.3.11)

(4.3.12)

(4.3.13)

where ex is a constant, is such a generalization. Indeed, equation (4.3.11) with
ex = 1/6 arises naturally on account of its conformal invariance properties (see
appendix D).

Maxwell's equations in curved spacetime become

vaFab = -4'TT'jb

The electromagnetic stress tensor again is given by equation (4.2.27) with gab

replacing T'/ab,

'L - 1 {r;' r;' c 1 de}
ab - 4'TT' racrb - 4' gabFde F

Again, equation (4.3.13) allows us to introduce a vector potential Aa

(4.3.14)

(at least

6. One might hope to recover an energy conservation law by including the stress-energy of the
gravitational field as can be done in Newtonian theory. However, in general relativity there exists no
meaningful local expression for gravitational stress-energy and thus there is no meaningful local conser
vation law which leads to a statement of energy conservation. Nevertheless, as will be discussed in
chapter 11, a conserved total energy of an isolated system can be defined, even though there is no local
expression for energy density.
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locally). However, Maxwell's equations for Aa in the Lorentz gauge, contains an
explicit curvature term resulting from the commutation of derivatives in the deri
vation of equation (4.2.32); we find

vaVaAb - RdbAd = -47Tjb (4.3.15)

This illustrates an important deficiency of our minimal substitution rule. Had we
minimally substituted in Maxwell's equations in the form (4.2.32), we would have
been led to equation (4.3.15) without the Ricci tensor term. In this instance, we can
decide in favor of equation (4.3.15) over the alternative equation without the R db Ad
term because equation (4.3.15) implies current conservation, Vaja = 0 (problem 1),
while the alternative equation conflicts with it. However, this example shows that
"minimal substitution" by itself is not a unique prescription.

In situations where the spacetime scale of variation of the electromagnetic field is
much smaller than that of the curvature, one would expect to have solutions of
Maxwell's equations of the form of a wave oscillating with nearly constant ampli
tude, i.e., solutions of the form

(4.3.16)

where derivatives of Ca are "small." Substituting equation (4.3.16) into equation
(4.3.15) with jb = 0 and neglecting the "small" term Vb VbCa as well as the Ricci
tensor term yields the condition

(4.3.17)

Le., we find again that the surfaces of constant phase are null, and thus (by the same
argument as given above for flat spacetime) ka = VaS is tangent to null geodesics.
This suggests that, in this approximation (known as the geometrical optics approx
imation), light travels on null geodesics, a suggestion which can be confirmed by
studies of the Green's function.

We now have described how general relativity treats gravitation in terms of curved
spacetime geometry and we have illustrated the nature of the laws of physics in this
new framework of spacetime structure. The remaining ingredient of general relativ
ity is the equation satisfied by the spacetime metric. It is here that Mach's principle
comes into play. Rather than prescribe the spacetime geometry in advance, general
relativity asserts that the spacetime geometry is influenced by the matter distribution
in the universe, in accordance with some of Mach's ideas (see section 1.4). In this
way the spacetime metric now becomes not only a background arena on which the
laws of physics are staged but also a dynamical variable which responds to the matter
content of spacetime, as must be the case if the spacetime geometry is to describe
gravity.

What equation describes the relation between spacetime geometry and the matter
distribution? An important clue is provided by the comparison of the description of
tidal force in Newtonian gravity and general relativity. In the Newtonian theory, the
gravitational field may be represented by a potential, cP, and the tidal acceleration
oftwo nearby particles is given by - (; . V)VcP, where xis the separation vector of
the particles. On the other hand, in general relativity, from equation (3.3.18) the tidal
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acceleration of two nearby particles is given by -Rcm/vcxbvd, where va is the
4-velocity of the particles and x a is the deviation vector. This suggests that we make
the correspondence,

(4.3.18)

(4.3.21)

However, Poisson's equation tells us that

V2 cj:J = 47TP (4.3.19)

where p is the mass (i.e., energy) density of matter and we remind the reader that
we use units where G = c = 1 here and throughout the text. Furthermore, as we
have discussed above, in special and general relativity the energy properties of matter
are described by a stress-energy tensor Tab, and we have the correspondence

Tabvav b~ p (4.3.20)

where va is the 4-velocity of the observer.
The correspondences (4.3.18) and (4.3.20) together with equation (4.3.19) sug

gest that we have RcadaVcVd = 47TTcdVcVd, which suggests the field equation Rcd =
47TTcd. Indeed, this equation was originally postulated by Einstein. However, it has
a serious defect. As discussed above, the stress tensor satisfies VCTcd = O. On the
other hand, the contracted Bianchi identity, equation (3.2.31), tells us that
VC(RCd - ~ gcdR) = O. Hence equality of Rcd and 47TTcd would imply VdR = 0, Le.,
that R, and hence T = P a , is constant throughout the universe. This is a highly
unphysical restriction on the matter distribution, and it forces us to reject this
equation, as Einstein quickly realized (Einstein 1915b).

However, this difficulty also suggests its resolution. If instead we consider the
equation

1
Gab == Rab - 2" Rgab = 87TTab

then there is no longer a conflict between the Bianchi identity and local conservation
of energy; indeed, the Bianchi identity implies local energy conservation if equation
(4.3.21) holds. Furthermore, the correspondences which motivated the previous
equation are not destroyed. Taking the trace of equation (4.3.21), we find

and thus,

R = -87TT (4.3.22)

(4.3.23)

In situations where Newtonian theory should be applicable, the energy of matter as
measured by an observer who is roughly "at rest" with respect to the masses will be
much greater than the material stresses (in units where c = 1), so we have
T ~ -p = -Tabvavb. Thus, in this case, equation (4.3.23) still leads to Rabvav b~
47TTabv av b.

Equation (4.3.21) is the desired field equation of general relativity. It was written
down by Einstein in 1915 and is known as Einstein's equation. The entire content
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of general relativity may be summarized as follows: Spacetime is a manifold M on
which there is defined a Lorentz metric gab. The curvature of gab is related to the
matter distribution in spacetime by Einstein's equation (4.3 .21).

Most of the rest of this book is devoted to studying the solutions of Einstein's
equation and their physical properties. However, before concluding this section, we
make three brief remarks concerning the nature of this equation. The first remark
concerns its mathematical character. If we choose a coordinate system and express
the coordinate basis components RlJ.v in terms of gw' we see from section 3.4a that
RlJ.v depends on derivatives of glJ.v up to second order, and is highly nonlinear in gw
(although it is linear in the second derivatives of glJ.v). Thus, Einstein's equation is
equivalent to a coupled system of nonlinear second order partial differential equa
tions for the metric components glJ.v. For a metric of Lorentz signature, these equa
tions have a hyperbolic (i.e., wave equation) character (see chapter 10). That we
have the correct number of equations and unknowns to permit a good initial value
formulation will be shown in chapter 10. Some methods for solving Einstein's
equation will be discussed in chapter 7.

The second remark concerns how one should view Einstein's equation. In one
sense, Einstein's equation (4.3.21) is analogous to Maxwell's equation (4.2.32) with
the stress tensor Tab serving as the source of the gravitational field in much the same
way as the currentja serves as a source of the electromagnetic field. However, there
is an important difference. It makes sense to solve Maxwell's equation by specifying
ja first, and then finding Aa. One could try to solve Einstein's equation by specifying
Tab first and then finding gab. However, this does not make much sense because until
gab is known, we do not know how to physically interpret Tab; indeed, the formulas
for Tab for fluids and the fields considered above explicitly contain the metric. Thus,
in general relativity, one must solve simultaneously for the spacetime metric and the
matter distribution. This feature contributes to the difficulty of solving Einstein's
equation when sources are present.

The final remark concerns the equations of motion of matter. As we have
presented the theory, the equations of motion of particles, continuous matter, and
fields are postulated first, and then Einstein's equation relating the matter distribution
to the curvature of spacetime is given. However, Einstein's equation implies the
relation VaTab = 0, and this relation contains a great deal of information on the
behavior of matter. Indeed, for a perfect fluid, the relation VaTab = 0 is the entire
content of the equations of motion. Thus for a fluid we may economize our assump
tions by merely postulating the form of Tab; the equations of motion of the fluid are
already contained in Einstein's equation. Notice that for a perfect fluid with P = 0,
i.e., a fluid composed of grains of "dust" which exert no forces upon each other, the
fluid equation of motion (4.3.8) implied by VaTab = 0 tells us that the individual dust
particles move on geodesics. More generally, it can be shown (Fock 1939; Geroch
and Jang 1975) that the relation VaTab = 0 implies that any sufficiently "small" body
whose self-gravity is sufficiently "weak" must travel on a geodesic. Thus, Einstein's
equation alone actually implies the geodesic hypothesis that the world lines of test
bodies are geodesics of the spacetime metric. This demonstrates an important self
consistency of Einstein's equation with the basic framework of general relativity.
Note however, that bodies which are "large" enough to feel the tidal forces of the
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gravitational field will deviate from geodesic motion. The equations of motion of
such bodies also can be found from the condition VaTab = 0 (Papapetrou 1951; Dixon
1974).

4.4 Linearized Gravity: The Newtonian Limit and Gravitational
Radiation

The aim of this section is to treat the approximation in which gravity is "weak."
In the context of general relativity this means that the spacetime metric is nearly flat.
In practice, this is an excellent approximation in nature except for phenomena
dealing with gravitational collapse and black holes and phenomena dealing with the
large scale structure of the universe.

We will systematically develop the theory of small gravitational perturbations of
an arbitrary solution in chapter 7. For the present, we simply shall assume that the
deviation, 'Yab, of the actual spacetime metric

gab = TJab + 'Yab (4.4.1)

from a flat metric TJab is "small." (Since there is no natural positive definite metric
on spacetime, there is no natural norm by which "smallness" of tensors can be
measured. An adequate definition of "smallness" in this context is that the com
ponents 'Y/LV of 'Yab be much smaller than 1 in some global inertial coordinate system
of TJab.) We mean by "linearized gravity" that approximation to general relativity
which is obtained by substituting equation (4.4.1) for gab in Einstein's equation and
retaining only the terms linear in 'Yab.

We denote by aa the derivative operator associated with the flat metric TJoo. In order
not to have 'Yab hidden in a raised or lowered index, it is convenient to raise and lower
tensor indices with TJab and TJab rather than gab and gab. We will adopt this notational
convention for the remainder of this section with one exception: The tensor gab itself
will still denote the inverse metric, not TJac TJbdgcd. It should be noted that in the linear
approximation we have

(4.4.2)

since the composition of the right-hand sides of equations (4.4.1) and (4.4.2) differs
from the identity operator only by terms quadratic in 'Yab.

The linearized Einstein equation can be obtained in a straightforward manner as
follows. In a global inertial coordinate system, to linear order in 'Yab the Christoffel
symbol is

r C
ab = 4TJcd(aa'Ybd + ab'Yad - ad'Yab)

To linear order in 'Yab, the Ricci tensor (3.4.5) is

RIJ] = acrcab - aarccb

_ c 1 c 1
- a a(b'Ya)c - '2 a ac'Yab - '2aaab'Y

where 'Y = 'Ycc. Hence, the Einstein tensor to linear order is

(4.4.3)

(4.4.4)
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(4.4.6)

(4.4.5)
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= aea(b'Ya)e - -iaeae'Yab - -iaaab'Y - -i'11ab(aead'Yed - aeae'Y)

This expression can be simplified by defining

1
'Yab = 'Yab - "2'11ab'Y

In terms of 'Yab, the linearized Einstein equation is found to be

G(1) 1 ae - e - 1 e d-ab = -"2 ae'Yab + a a(b'Ya)c - "2'11aba a 'Yed = 87T'Tab

As discussed in detail in appendix C, there is a gauge freedom in general relativity
corresponding to the group of diffeomorphisms: If cP:M~ M is a diffeomorphism
of spacetime, the metrics gab and cP·gab represent the same spacetime geometry,
where cP· is the map on tensor fields induced by cP (see appendix C). In the linear
approximation, this implies that two perturbations 'Yab and 'Y~b represent the same
physical perturbation if (and only if) they differ by the action of an "infinitesimal
diffeomorphism" on the flat metric '11ab. As discussed in section 2.2, an "infinitesimal
diffeomorphism" is generated by a vector field, ga, and, as discussed in appendix C,
the change in a tensor field induced by such an infinitesimal diffeomorphism defines
the Lie derivative. This means that 'Yab and 'Yab + £~'11ab describe the same physical
perturbation. From appendix C, we see that we can express £~'11ab in terms of the flat
derivative operator aa as

£~'11ab = aagb + abga

This means that linearized gravity has a gauge freedom given by

'Yab ~ 'Yab + aagb + abga

(4.4.8)

(4.4.9)

which is closely analogous to the electromagnetic gauge freedom Aa~ Aa + aa x.
This gauge freedom of 'Yab also can be derived without employing the machinery of
appendix C from the tensor transformation law (2.3.8). According to equation
(2.3.8), the components of 'Yab and 'Yab + aagb + ab" differ, to first order, merely
by a coordinate transformation and, hence, represent the same physical perturbation.

We may use this gauge freedom to simplify the linearized Einstein equation. By
solving the equation

b l: b-a ab<:,a = -a 'Yab

for ga, we can make a gauge transformation, equation (4.4.9), to obtain

ab'Yab = 0

(4.4.10)

(4.4.11)

which is the analog of the Lorentz gauge condition. In this gauge, the linearized
Einstein equation simplifies to become
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(4.4.12)

and is closely analogous to Maxwell's equation (4.2.32).
In vacuum (Tab = 0) equations (4.4.11) and (4.4.12) are precisely the equations

written down by Fierz and Pauli (1939) to describe a massless spin-2 field propagat
ing in flat spacetime (see chapter 13). Thus, in the linear approximation, general
relativity reduces to the theory of a massless spin-2 field. The full theory of general
relativity thus may be viewed as that of a massless spin-2 field which undergoes a
nonlinear self-interaction. It should be noted, however, that the notion of the mass
and spin of a field require the presence of a flat background metric TJab which one has
in the linear approximation but not in the full theory, so the statement that, in general
relativity, gravity is treated as a massless spin-2 field is not one that can be given
precise meaning outside the context of the linear approximation.

4.4a The Newtonian Limit
The theory of general relativity may have great aesthetic appeal, but this does not

mean that its predictions are in accord with nature. We know that the Newtonian
theory of gravitation gives excellent predictions under a wide range of conditions.
Thus, the first crucial test of general relativity is that its predictions reduce to those
of Newtonian gravity under the circumstances when Newtonian theory is known to
be valid-specifically, when gravity is weak, the relative motion of the sources is
much slower than the speed of light c, and the material stresses are much smaller than
the mass-energy density (in units where c = 1).

When gravity is weak, the linear approximation to general relativity should be
valid. The assumptions about the sources then can be reformulated more precisely
as follows: There exists a global inertial coordinate system of TJab such that

(4.4.13)

where t a = (al aXO)a is the "time direction" of this coordinate system. (Eq. [4.4.13]
asserts that Tab has only a "time-time" component; the neglect of the "time-space"
components is essentially the statement that velocities [and thus, momentum densi
ties] are small while the neglect of the "space-space" components is the statement
that the stresses are small.) Since the sources are "slowly varying," we expect the
spacetime geometry to change slowly as well, and thus we seek solutions of equation
(4.4.12) where the time derivatives of Yab are negligible.

With these assumptions, the components of equation (4.4.12) in our global inertial
coordinate system become

v2 Y/L" = 0 (4.4.14)

for all /L, v except /L = v = 0, while

V2 yoo = -167Tp (4.4.15)

where V2 denotes the usual Laplace operator of space. The unique solution of
equation (4.4.14) which is well behaved at infinity is Y/L" = O. (The solutions
1/L" = constant are also permissible, but they can be eliminated by a further gauge
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transformation.) Thus, in the Newtonian limit our solution for the perturbed metric
'Yab is

1
'Yab = 'Yab - "2 'T/ab'Y = -(4tatb + 2'T/ab)c/J

where c/J == - ~ 'Yoo satisfies Poisson's equation,

V2 c/J = 47TP

(4.4.16)

(4.4.17)

(4.4.18)

(4.4.20)

(4.4.19)

The motion of test bodies in this curved spacetime geometry is governed by the
geodesic equation,

d
2X

I'- (dX
P

) (dX<T)-+"P - - =0
dr2 LJ P<T dr drp.<T

where X 1'-(r) is the world line of the particle in global inertial coordinates. For motion
much slower than the speed of light, we may approximate dx a / dr as (1, 0, 0, 0) in
the second term, and the proper time r may be approximated by the coordinate time
t. Thus, we find

d 2
X I'-

dt 2 = -[1'-00

From our solution, equation (4.4.16), we have, for 1.L = 1, 2, 3:

1 a'Yoo ac/J
[1'-00 = ----=-

2 axl'- aX I'-

where, again, time derivatives of c/J have been neglected. Thus, the motion of test
bodies is governed by the equation,

(4.4.21)

where a= d 2 -; / dt 2 is the acceleration of the body relative to global inertial coor
dinates of 'T/ab.

Equations (4.4.17) and (4.4.21) are, of course, the basic equations of Newtonian
gravity, and thus general relativity does indeed reduce to Newtonian gravity in the
appropriate limit. Note, however, that although the predictions of general relativity
agree with those of Newtonian gravity, the underlying viewpoint is radically differ
ent. In the Newtonian viewpoint, the Sun creates a gravitational field that exerts a
force upon the Earth, which, in tum, causes it to orbit the Sun rather than move in
a straight line. In the general relativistic viewpoint, the mass-energy of the Sun
produces a curvature of the spacetime geometry. The Earth is in free motion (no
forces act upon it) and it travels on a geodesic of the spacetime metric; but because
spacetime is curved, it orbits the Sun. From the Newtonian viewpoint, the Earth
undergoes acceleration; from the general relativistic viewpoint, it is the inertial
observers of the flat metric, 'T/ab, who must accelerate.

It is instructive to examine the predictions of linearized gravity when the lowest
order effects of the motion of the sources are taken into account. If we continue to
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neglect stresses, the stress energy tensor is approximated to linear order in velocity
by

(4.4.22)

where.h, = -Toota is the mass-energy current density 4-vector. The linearized Ein
stein equation again predicts that the space-space components of 'Yab satisfy the
source free wave equation, but the space-time and time-time components now satisfy

aaaa'Yo/L = 167TJ/L (4.4.23)

Thus, Aa == - i 'Yootb satisfies precisely Maxwell's equations in the Lorentz gauge
with source.la. If again we assume that the time derivatives of 'Yoo are negligible, then
the space-space components of 'Yab vanish, and we find that to linear order in the
velocity of the test body, the geodesic equation now yields (problem 3)

a= - E - 4{; x jj (4.4.24)

where E and jj are defined in terms of Aa by the same formulas as in electro
magnetism. This is identical to the Lorentz force equation of electromagnetism (with
q = m) except for an overall minus sign and a factor of 4 in the "magnetic force"
term. Thus, linearized gravity predicts that the motion of masses produces magnetic
gravitational effects very similar to those of electromagnetism.

One final, somewhat troublesome point deserves further comment. Above, we
showed that general relativity reduces to Newtonian gravity in an appropriate limit,
but, strictly speaking, we went beyond the linear approximation to show this. The
reason has to do with our use of the geodesic equation to get the motion of a test
body. As mentioned at the end of section 4.3, the "geodesic hypothesis" follows as
a consequence of the condition VaTab = 0 which, in tum, follows as a consequence
of Einstein's equation. However, in the linear approximation, Einstein's equation
(4.4.7) or (4.4.12) actually implies the condition aaToo = O. (This is reasonable since
in the linear approximation, Tab is already "small," so deviations of the derivative
operator from the flat derivative operator aa contribute only to higher order.) But the
condition aaToo = 0 implies that test bodies move on geodesics of the flat metric T/ab;
i.e., if one stays consistently within the linear approximation, one predicts that test
bodies are unaffected by gravity. Thus, in obtaining equation (4.4.21) we actually
have gone beyond the linear approximation. This, of course, does not invalidate our
discussion. However, it illustrates the difficulties which occur when one tries to
derive the equations of motion of bodies from Einstein's equation via a perturbation
expansion in the departure from flatness. In order to obtain a good approximation to
a solution to a given order, one must use some aspects of the higher order equations.

4.4b Gravitational Radiation
One of the most important changes which occurs when one goes from Coulomb's

theory of electrostatics to Maxwell's theory of electromagnetism is that the electro
magnetic field becomes a dynamical entity. Electromagnetic radiation can propagate
freely through spacetime. A similar change occurs when one goes from Newtonian
gravitation to general relativity: Gravitational radiation exists; i.e., ripples in the
curvature of spacetime can propagate through spacetime. In the linear approximation
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the propagation of gravitational radiation is governed by the source-free, linearized
Einstein equation (see eqs. [4.4.11] and [4.4.12] above),

aa 'Yab = 0

acac'Yab = 0

(4.4.25)

(4.4.26)

In obtaining these equations at the beginning of this section, the gauge choice
(4.4.25) was made. However, there remains the freedom to make further gauge
transformations 'Yah ~ 'Yah + aagb + abga provided that

(4.4.27)

as such transformations leave equation (4.4.25) unchanged. This is closely anal
ogous to the fact that in electromagnetism the Lorentz gauge condition does not
uniquely fix the vector potential Aa ; we have the restricted gauge freedom
Aa~ Aa+ aax with

(4.4.28)

When treating electromagnetic radiation it is convenient to use the remaining gauge
freedom to set the component Ao in some global inertial coordinate system equal to
zero in a source free region (ja = 0). This gauge condition, called the Coulomb or
radiation gauge, can be achieved as follows. On a constant time surface t = to of our
global inertial coordinate system we solve

~72 X = -V· A (4.4.29)

We define X throughout spacetime to be the solution of equation (4.4.28) whose
initial value on the t = to surface is given by equation (4.4.29), and whose initial
time derivative is ax/ at = -Ao. (That a unique solution of eq. [4.4.28] exists for
arbitrarily specified initial values of X and ax/at follows from the results of section
10.1 below.) Then the functionjdefined by

will satisfy

j = Ao+ axjat (4.4.30)

(4.4.31)

by equations (4.2.32) and (4.4.28). Furthermore, on the initial surface t = to we
have

(4.4.32)

(4.4.33)

Hence, if no sources are present in the region under consideration (or, more pre
cisely, if for each point p we have io = 0 on the light cone of p between it and the
t = to surface), the unique solution of equation (4.4.31) with initial data (4.4.32) and
(4.4.33) isj = 0, and the gauge transformation Aa~ Aa+ aax achieves the desired
condition Ao = 0 while maintaining the Lorentz gauge condition.
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In a very similar manner, in the case of linearized gravity we can use the restricted
gauge freedom, equation (4.4.27), to achieve the radiation gauge 'Y = 0, 'YolL = °for
1.L = 1, 2, 3 in a source-free region (Tah = 0). As an extra bonus, we also obtain
'Yoo = °if no sources are present throughout spacetime (i. e., not just in our region)
and good behavior at infinity is assumed. To achieve the radiation gauge, we solve
on the initial surface t = to the equations

(4.4.34a)

(4.4.34d)

(4.4.34c)

(4.4. 34b)

2(- a~o + V. 1) = -'Y

2[-V2go + V· (a1/at)] = -a'Y/at

ag ago
~ + - = -'Vo (II = I 2 3)at axIL I' IL r- "

v2 l: + ~(ago) = - a'YolL ( = 1 2 3)
~IL axIL at at 1.L "

to obtain the initial values of go, gj, g2, g3, and their first time derivatives. Then we
define ga to be the solution of equation (4.4.27) with these initial data. By the same
argument as used in the electromagnetic case, the gauge transformation generated by
ga will achieve 'Y = °and 'YolL = °(1.L = 1, 2, 3) in a source-free region while
preserving the gauge condition, equation (4.4.25).

Our bonus, 'Yoo = 0, comes about as follows. Since 'Y = 0, we have 'Yab = Yah.
Since 'YolL = °for 1.L = 1, 2, 3, the gauge condition, equation (4.4.25), yields

a;~ = ° (4.4.35)

The linearized Einstein equation (4.4.12) then yields

V2'Yoo = -167TToo (4.4.36)

But if Too = °throughout the spacetime, the only solution of equation (4.4.36) which
is well behaved at infinity is 'Yoo = constant. A further gauge transformation then
achieves 'Yoo = °without violating any of the previous conditions.

We employ this radiation gauge to seek solutions of the source-free linearized
Einstein equation. Plane waves,

'Yah = Hah eXP(i ~o kILX IL) (4.4.37)

where Hah is a constant tensor field, will satisfy equation (4.4.26) if and only if

(4.4.38)
IL IL,V

The radiation gauge conditions require (for v = 0, 1, 2, 3)

3

L klLHILv = °
IL=O

(4.4.39a)
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Hov = 0 (4.4. 39b)

(4.4. 39c)

(4.4.40)

Since equations (4.4.39a) and (4.4.39b) both imply ~ HOvk v = 0, only eight of
v

these nine equations are independent. Since there are 10 independent components,
H/Lv, this leaves two linearly independent solutions for Hah • These two solutions
describe the two independent polarization states of plane gravitational waves. An
arbitrary well behaved solution of the vacuum linearized Einstein equation, i.e., an
arbitrary packet of gravitational radiation, can be expressed as a superposition of
these plane wave solutions.

How could we detect the presence of gravitational radiation? The most straight
forward way is to study the relative acceleration of two masses, i.e., to measure the
gravitational tidal force. For two nearby freely falling bodies, this acceleration is
governed by the geodesic deviation equation (3.3.18). In our case, if the two bodies
are nearly "at rest" in a global inertial coordinate system of TJab, we have

d2X/L
-- = " R oo/LXVdt2 LJ v

v

where X a is the deviation vector. In the radiation gauge (assuming 'Yoo = 0), we
obtain from equation (3.4.4) a very simple expression for the relevant components
of the linearized Riemann tensor,

R - 1 a2'Y/LV ( d' . )
vOO/L - -2 --2- ra latlOn gauge .at (4.4.41)

(Incidentally, this formula shows that the plane wave solutions we obtained above
are physically meaningful-that is, that they cannot be eliminated by further gauge
transformations-since they produce nonzero curvature.) Thus, in principle, one
could detect gravitational radiation by accurateIy tracking (say, with laser beams) the
separation of two masses suspended freely from supports; such a detection scheme
may become practical in the near future. Alternatively, if the masses are not in free
motion but are connected by a solid piece of material, the gravitational tidal forces
will stress the material. A solid bar of matter would be set into oscillation by these
periodic stresses, and this oscillation could be detectable if the frequency of the
gravitational radiation is near the resonant frequency of the bar. This scheme for
detecting gravitational radiation was pioneered by Joseph Weber and is being pur
sued by a number of research groups. (The details of this and other schemes for
detecting gravitational waves are reviewed by Douglass and Braginsky 1979.) The
extreme sensitivity required for the detection of gravitational radiation should be
stressed. For physically reasonable astrophysical sources of gravitational waves, one
does not expect the radiation gauge components 'Y/Lv in the relevant frequency range
to have a magnitude greater than about 10- 17 (see, e.g., Thome 1978). According
to equations (4.4.40) and (4.4.41), this means that the fractional relative displace-



(4.4.42)
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ment AX/X of the two free masses should not exceed 10-17
, i.e., free masses

separated by 1 meter will be displaced by no more than about 1/100 of a nuclear
diameter by a gravitational wave! The stresses on a solid bar are correspondingly
small. Nevertheless, many researchers believe that an unambiguous detection of
gravitational radiation will be made in the near future.

How are gravitational waves produced? The most likely sources of (relatively)
strong bursts of gravitational radiation arise from collapse phenomena (see
chapter 12) where gravity is not weak and the linear approximation cannot be used.
In such cases, we must solve the full nonlinear Einstein equation, and because of the
difficulty of this task, our knowledge of these processes is rudimentary. It is in
structive, therefore, to study the radiation generation problem in the linear approxi
mation where the complete solution is readily obtained. Since each component of Yoo
satisfies the ordinary, inhomogeneous scalar wave equation (4.4.12), the solution is
given in terms of the source by the same retarded Green's function as used for a scalar
field and in electromagnetism, namely,

- - f TeAx') d'S(')
Y/Lv(x) - 4 Ix _ x' I x

A

where A denotes the past light cone of the point x and the volume element on the light
cone is dS = r 2dr dO. The gauge condition (4.4.11) on Yab will be satisfied by
virtue of the linearized conservation equation aaTab = 0, so equation (4.4.42) gives
the solution for the gravitational effects produced by sources in the linear approxi
mation. (The radiation gauge conditions, of course, are not imposed since sources
are present.)

It is interesting to evaluate our solution in the slow motion limit where the typical
source velocities are much smaller than the speed of light. (More precisely, we
consider the limit where the spatial extent of the source is much smaller than the
typical wavelengths of the emitted radiation.) In electromagnetism this limit is
known as the dipole approximation, since in that case the dominant radiation is
generated by the changing dipole moment of the source.

To analyze this limit in the gravitational case, we Fourier transform all quantities
in the time variable, t, of our global inertial coordinate system of 1100, leaving the
space variables untransformed. We define

~ -+_ 1 foo- -+ iwt
Y/Lv(w, x) - ~ ~ Y/Lv(t, x)e dt

v 27T -00

(4.4.43)

and we similarly Fourier transform T/Lv, From equation (4.4.42) it follows that
A -+

~ ( -+ -4f TeAW,X') (. 1-+ -+'1 3,Y/LV W, x) - Ix _x'i exp lW x - x )d x (4.4.44)

where the "extra" factor of exp(iw Ix - x' I) arises from the fact that the original
integral (4.4.42twas over the past light con~. We need only solve for the space-space
components of Y/Lv since the components YOI' are readily obtained in terms of them
from the gauge condition (4.4.11) which yields



(4.4.46)
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A

• ~ 3 a'Y~
-lW'YO.. = ~ ::.....L!J!:. (4.4.45)... -t.. ax~

~=I

Since we are interested in calculating the radiation, it suffices to obtain our solution
in the "far zone," R >> 1/w, where R denotes the distance from the source. For the
limit in which we are interested, the frequencies of interest are sufficiently small that
the factor exp(iw Ix - x'l) varies negligibly over the source, so we may replace
exp«iw Ix - x' 1)/1 x - x'l) by exp(iwR)/R and pull it out of ~e integral. We
evaluate the remaining integral of the space-space components of Tab as follows:

If"~d3X = #1 {I ~a (fa~x,.) - I~:~ X"}

iw I " "= - 2" (TO~x,. + T°,.x~)

= - i~tl {I ~~(fO~x"x~) - Ia~;X,.x~}

= - ~2 I fOOx"x~d3X

where in the second and fifth lines we used Gauss's law to get rid of the total
divergence and also used the conservation of Tab to express the divergence of spatial
components in terms of the time derivative oftime components. Thus, we obtain our
far-zone solution,

~ -+ 2w 2 e iwR
A

'Y,.~(w, x) = - '3If q,.~(w) (I-', 11= 1,2,3) (4.4.47)

where q,.~ is the Fourier transform of the quadrupole moment tensor,

q,.~ = 3 I TOOx"x~d3x (4.4.48)

(4.4.49)

The inverse Fourier transform of equation (4.4.47) yields

- -+ _ 2 d2qtJ:~ I - 1
'Y,.~(t, x) - 3R d 2 (I-', II - ,2,3)

t ret

where the derivative is evaluated at the retarded time t' = t - R. Thus, the dominant
gravitational radiation in the slow motion approximation arises from the time rate of
change of the quadrupole moment of the source. The absence of dipole radiation can
be understood, physically, as resulting from conservation of momentum, which does
not permit a time-varying mass dipole moment. On account of the absence of dipole
radiation, the emission of gravitational radiation in the slow motion limit is smaller
than the radiation in comparable situations in electromagnetism.
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The issue of energy in general relativity is a rather delicate one. In general
relativity there is no known meaningful notion of local energy density of the grav
itational field. The basic reason for this is closely related to the fact that the spacetime
metric, gab, describes both the background spacetime structure and the dynamical
aspects of the gravitational field, but no natural way is known to decompose it into
its "background" and "dynamical" parts. Since one would expect to attribute energy
to the dynamical aspect of gravity but not to the background spacetime structure, it
seems unlikely that a notion of local energy density could be obtained without a
corresponding decomposition of the spacetime metric. However, for an isolated
system, the total energy can be defined by examining the gravitational field at large
distances from the system. In addition, for an isolated system the flux of energy
carried away from the system by gravitational radiation also is well defined.

We shall postpone a full discussion of energy in general relativity until chapter 11.
However, for small deviations from flat spacetime, we would expect that-in anal
ogy with the scalar and electromagnetic field (see eqs. [4.2.20] and [4.2.27]
the total energy and energy flux of the gravitational field will be quadratic in the field
Yab. A formula for this energy and energy flux is suggested by the following consid
erations. The linearized vacuum Einstein equation

(4.4.50)

states that the Einstein tensor for the metric 'T'fab + Yab vanishes to first order in Yab'
However, to second order in Yab, the vacuum Einstein equation will, in general, fail
to be satisfied. Indeed, the terms in the Ricci tensor quadratic in Yab are (problem 4),

+ ~ad(ydeaeYab) - taey)aeYab

1
- (adyed - "2 aey)a(a Yb)e (4.4.51)

Thus, in order to maintain a solution of the vacuum Einstein equation to second
order, we must correct Yab by adding to it the term Y~~, where Y~ satisfies

G (l)[y(2)] + G(2)["I/ ] = 0ab ed ab led (4.4.52)

where (in the case RW = 0) we have G~~ = R~'fJ - i 'T'fabR(2). We may write equation
(4.4.52) in the form

where

G(l)[y(2)] = 817tab ed ab

1 (2) [ ]
tab = - 817 Gab Yed

(4.4.53)

(4.4.54)
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Thus, in second order, 'Yah causes the same correction to the spacetime metric as
would be produced by ordinary matter with stress energy tensor tab. Furthermore, tah
is symmetric and is conserved, aatah = 0, assuming, of course, that 'Yah satisfies the
vacuum linearized Einstein equation (4.4.50). This suggests that we should view tab
as the effective stress-energy tensor of the gravitational field, valid to second order
in deviation from flatness. However, this interpretation cannot be taken too literally.
First, the local construction of tah quadratically from 'Yah as well as its symmetry and
conservation properties will not be affected if we add to it a tensor of the form
acadUacbd, where Uacbd is locally constructed from 'Yah, is quadratic in 'Yah, and satisfies
the tensor symmetries Uacbd = U1ac1bd = Uac1bd1 = Ubdac • (Indeed, the terms quadratic
in 'Yah of the Landau-Lifshitz "pseudotensor" [Landau and Lifshitz 1962] differ from
our expression for tah by such a term.) Furthermore, tah is not even gauge invariant;
i.e., if we replace 'Yah by 'Yah + 2a(a€b)' then tah does not remain unchanged. This
reflects the above mentioned fact that there is no meaningful notion of the local
stress-energy of the gravitational field in general relativity. However, the total
energy associated with 'Yah,

E = f tood3x
~

(where the integral is taken over the spacelike hyperplane I depicted in Fig. 4.2) is
gauge invariant in the following sense: Suppose the perturbed spacetime metric

Fig. 4.2. A spacelike hyperplane, ~. The total energy contained in gravitational
radiation is obtained by integrating too over ~.

'TIah + 'Yah is asymptotically flat in the sense that the inertial components of 'Yab and
its derivatives go to zero as r -+ 00 as: 'YI£P = OO/r), ap'YI£P = OO/r2

), and
a-yap'YI£P = OO/r3). (Note that these conditions ensure the convergence of the
integral [4.4.55] which defines E.) Then for any gauge transformation, €a, which
preserves these asymptotic conditions, the value of E is unchanged,
E[ 'Yah] = E[ 'Yah + 2a(a€b)]. Rather lengthy calculations are needed to demonstrate
this gauge invariance of E directly, but a simple proof of restricted gauge invariance
is outlined in problem 7. Furthermore, it is not difficult to verify that E is unchanged
if a term acadUacbd with the above properties is added to tah, since the volume integral
of this term can be converted by Gauss's law to a surface integral which vanishes on
account of the asymptotic conditions.
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Similarly, although the local flux of energy - tao is not gauge invariant, if the
spacetime is initially time independent, goes through a time-dependent phase, and
becomes time independent again, then the total radiated energy

dE = - I taodsa (4.4.56)

s
is gauge independent, where the integral is taken over the three-dimensional timelike
surface S depicted in Figure 4.3. Here the limit as r -+ 00 for that surface is under
stood, and the above conditions of asymptotic flatness on 'Yah are imposed as r -+ 00

along the asymptotically null surfaces II and I 2 in the stationary regimes. [Note that
in the time-dependent regime these conditions would not be appropriate since accord
ing to our solution (4.4.42) we expect ap'Yp.v = OO/r). In chapter 11 we will make
precise the taking of limits as r -+ 00 along null surfaces by introducing the notion
of null infinity.]

Fig. 4.3. Asymptotically null hypersurfaces ~l and ~2' The gravitational radiation
"registers" on ~l but does not "register" on ~2. The energy, tiE, carried off to
infinity by gravitational radiation is given by an integral over the timelike
hypersurface S.

Using equation (4.4.54) and equation (4.4.56), we can calculate the energy carried
away by gravitational radiation for our solution (4.4.49) corresponding to the metric
perturbation produced by a slowly varying source. A lengthy calculation (where
many terms which integrate to zero are dropped) yields the final result,

dE = IP dt

where

P = 1- ± (d3Q:vl )2
45 p., v= I dt ret

and Qp.v is the trace-free quadrupole moment tensor

1
Qp.v = qp.v - 3' Sp.vq

(4.4.57)

(4.4.58)

(4.4.59)
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This formula shows that the energy which is carried away by gravitational radiation
in "ordinary laboratory processes" is extremely small. For example, according to
equation (4.4.58), the gravitational energy flux from a rod of mass M and length L
which spins about its center at frequency 0. (so that Tab oscillates with frequency 20.)
is

P. = 2G M2L4o.6
rod 45c 5

where we have put back the G's and c's in our formula to convert back to
"nongeometrized" units. Thus, a 1 kilogram rod, of length 1 meter, spinning at an
angular velocity of 1 radian per second radiates energy in the form of gravitational
waves at the remarkably small rate of about 10-47 erg S-I. Even if we scale the rod
up to astronomical dimensions, the gravitational energy flux remains small. It is only
in phenomena involving strong gravitational fields-such as occurs in gravitational
collapse-that one expects large amounts of energy to be radiated away.

Finally, we comment on the validity of our solutions for the gravitational radi
ation, equations (4.4.42) and (4.4.49), and energy flux, equation (4.4.58), from
self-gravitating sources. As should be clear from the above derivation, our solution,
equation (4.4.42), is valid for the gravitational radiation from sources such as
spinning rods or masses connected by springs, provided that gravity is sufficiently
weak that the linear approximation is valid. Equations (4.4.49) and (4.4.58) hold if,
in addition, the source velocities are small. However, our derivation is not valid, as
it stands, for the radiation from sources where self-gravitation is important--e.g., a
nearly Newtonian binary star system--even though gravity may be weak in the sense
that the inertial components 'Yp.v are much less than 1 and the source motion may be
slow. The reason is that, as already mentioned at the end of section 4.4a, to obtain
the Newtonian limit consistently one must go beyond the linear approximation. In
the linear approximation, two stars would not orbit each other but would move on
geodesics of the flat metric, Le., straight lines. Any assumption to the contrary
would be inconsistent with aaTab = 0, which follows from the linearized Einstein
equation. Even though 'Yp.v « 1, higher order terms in 'Yab are not negligible com
pared with stress terms in Tab. However, formulas for the radiation from a self
gravitating, nearly Newtonian system can be obtained by restoring all the higher
order terms in 'Yab into the Einstein field equation. Nearly Newtonian motion of the
matter source then is no longer inconsistent. The nonlinear terms in 'Yab can be
brought to the right-hand side of the equation and viewed as an effective gravitational
stress-energy tensor tab. (Here tab includes all the nonlinear terms in Gab, not just the
quadratic terms, as for tab defined above.) Our solution, equation (4.4.42), is then
valid provided we replace Tab by (Tab + tab), although it is no longer really a
"solution" since tab depends on 'Yab. In the slow motion approximation, we again get
equations (4.4.49) and (4.4.58), where too is now included in the definition of the
quadrupole moment. However, in nearly Newtonian situations, we expect to have
Too » too, so the gravitational contribution to the quadrupole moment should be
negligible. Thus, equations (4.4.49) and (4.4.58) should be valid without modifica
tion for a nearly Newtonian system. However, a derivation of these equations with
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the same level of clarity and rigor as in the non-self-gravitating case has not been
given.

The above predictions of energy loss by systems due to emission of gravitational
radiation have now been confirmed by observations. If two stars in orbit around each
other lose energy, their orbital radius will decrease and their orbital frequency will
correspondingly increase. However, since the energy loss by gravitational radiation
from such a system is extremely small (problem 9), any possibility for observing this
speedup caused by emission of gravitational radiation requires (i) an extremely close
binary orbit (to make the general relativistic effects as large as possible) and (ii) an
ability to measure changes in the period to extremely high accuracy. Remarkably,
a binary system satisfying both of these properties was discovered by Hulse and
Taylor (1975). This system consists of two compact bodies in an elliptical orbit with
a maximum separation of only -1011 cm (i.e., approximately one solar radius).
Most importantly, one of the bodies is a pulsar (see the end of section 6.2 above) and
emits radio pulses in a regular, clocklike fashion. Since the arrival time of the pulsar
signals can be measured to very high precision, the time delays or advances caused
by changes in the pulsar position and velocity are very well determined, and the
orbital parameters of the binary system can be determined to correspondingly high
accuracy. Furthermore, the accuracy continues to improve the longer the system is
observed. Recently, the accuracy of the determination of the orbital period has been
high enough to observe a speedup in the orbital frequency (Taylor and McCulloch
1980). The magnitude of this speedup is in excellent agreement with that associated
with the energy loss due to gravitational radiation predicted by equation (4.4.58).
Thus, unless some other cause is producing an orbital period change of exactly the
same magnitude as that predicted by general relativity, it appears that the effects of
energy loss by gravitational radiation have been observed in this system.

Problems
1. Show that Maxwell's equation (4.3.12) implies strict charge conservation,
Vaja = O.

2. a) Let abe ap-form on an n-dimensional oriented manifold with metric gab, i.e.,
aal"'a is a totally antisymmetric tensor field (see appendix B). We define the dual,
• p

a, of a by

• _ 1 ai" 'a
abl ' , 'bn- p - -. a PEa] , . 'apb] , , . bn - pp.

where Ea], .. an is the natural volume element on M, i.e., the totally antisymmetric
tensor field determined up to sign by equation (B.2.9). Show that
••a = (-1 )s+p(n-P)a, where s is the number of minuses occurring in the signature of

gab·
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b) Show that in differential forms notation (see appendix B), Maxwell's equations
(4.3.12) and (4.3.13) can be written as

dOp = 47TOj

dP = 0

Note that if we apply Stokes's theorem (see appendix B) to the first equation, we
obtain f~ OJ = (1/47T) Is of, where I is a three-dimensional hypersurface with two
dimensional boundary S. But - h OJ = - h rtadI is just the total electric charge
e in the volume I, where ta is the unit normal to I, and -Is of = Is EanadA is just
the integral of the normal component of Ea = Fabtb on S. Thus, Gauss's law of
electromagnetism continues to hold in curved spacetime.

c) Define for each 13 E [0, 27T] the tensor field F;,b = Fab cos 13 + °Fab sin 13. We
call Fab a duality rotation of Fab by "angle" 13. It follows immediately from part (b)
that if Fab satisfies the source-free Maxwell's equations (r = 0), then so does F;,b.
Show that the stress-energy, Tab, of the solution Fab is the same as that of Fab .

3. a) Derive equation (4.4.24).
b) Show that the "gravitational electric and magnetic fields" E and B inside a

spherical shell of mass M and radius R (with M « R) slowly rotating with angular
velocity ;;; are

..... 2M .....
B = --w

3R

c) An observer at rest at the center of the shell of part (b) parallelly propagates
along his (geodesic) world line a vector sa with saua = 0, where ua is the tangent
to.....his wo!1d liQ.e. ShowJhat t~ inertial c~mponents, S, precess according to
dS / dt = n x S, where n = 2B = 1(M / R)w. This effect, first analyzed by Thir
ring and Lense (1918) and discussed further by Brill and Cohen (1966), may be
interpreted as a "dragging of inertial frames" caused by the rotating shell. At the
center of the shell the local standard of "nonrotating," defined by parallel propagation
along a geodesic, is changed from what it would be without the shell, in a manner
in accord with Mach's principle.

4. Starting with equation (3.4.5) for Rab , derive the formula, equation (4.4.51), for
R~~ by substituting 'TIab + 'Yab for gab and keeping precisely the terms quadratic in 'Yab.

5. Let Tab be a symmetric, conserved tensor field (i.e., Tab = Too, aaTab = 0) in
Minkowski spacetime. Show that there exists a tensor field Uacbd with the symmetries
Uacbd = U[ac]bd = Uac[bd) = Ubdac such that Tab = acadUacbd. (Hint: For any vector
field va in Minkowski spacetime satisfying aava = 0 there exists a tensor field
sab = -soo such that va = abSab. [This follows from applying the converse of the
Poincare lemma (see the end of section B.I in appendix B) to the 3-form €abcdVd.]
Use this fact to show that Tab = aC~ab where ~ab = W[ca)b. Then use the fact that
aCWc[ab) = 0 to derive the desired result.)
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6. As discussed in the text, in general relativity no meaningful expression is known
for the local stress-energy of the gravitational field. However, a four-index tensor
Tabcd can be constructed out of the curvature in a manner closely analogous to the way
in which the stress tensor of the electromagnetic field is constructed out of Fah (eq.
[4.2.27]). We define the Bel-Robinson tensor in terms of the Weyl tensor by

/ 3 "k /= Caec/cbed - "2ga[bCjkJe/Cld

where Eabcd is defined in appendix B and equation (B.2.13) was used. It follows that
Tabcd = 1(abcdj' (This is established most easily from the spinor decomposition of the
Weyl tensor given in chapter 13.)

a) Show that P acd = O.
b) Using the Bianchi identity (3.2.16), show that in vacuum, Rah = 0, we have

VaTabcd = 0.

7. a) Show that the total energy E, equation (4.4.55), is time independent, Le., the
value of E is unchanged if the integral is performed over a time translate, ~', of~.

b) Let ~ be a gauge transformation which vanishes outside a bounded region of
space. Show that E[ 'Yah] = E[ 'Yah + 20(a€bj] by comparing them with
E[ 'Yah + 20«a€bj] where €~ is a new gauge transformation which agrees with €a in a
neighborhood of the hyperplane ~ but vanishes in a neighborhood of another hyper
plane~' .

8. Two point masses of mass M are attached to the ends of a spring of spring constant
K. The spring is set into oscillation. In the quadrupole approximation, equation
(4.4.58), what fraction of the energy of oscillation of the spring is radiated away
during one cycle of oscillation?

9. A binary star system consists of two stars of mass M and of negligible size in a
nearly Newtonian circular orbit of radius R around each other. Assuming the validity
of equation (4.4.58) for this system, calculate the rate of increase of the orbital
frequency due to emission of gravitational radiation.
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HOMOGENEOUS, ISOTROPIC COSMOLOGY

The theory of general relativity was formulated in the previous chapter. The essence
of the theory is contained in the statement given near the end of section 4.3:
Spacetime is a four-dimensional manifold on which is defined a metric, gab, of
Lorentz signature. This metric is related to the matter distribution in spacetime by
Einstein's equation, Gab = 87T1'ab'

One of the most vital questions raised by the theory is: Which solution of
Einstein's equation describes the spacetime we observe, i.e., which solution corre
sponds to our universe, or, at least, an idealized model of our universe? In order to
answer this question, we first must give sufficient input via observational data and
assumptions about the nature of our universe. Armed with this information, we may
then solve Einstein's equation to make predictions concerning the dynamical evo
lution of the universe.

In this chapter, we will investigate the structure of our universe as predicted by
general relativity under the assumption that the universe is homogeneous and iso
tropic. A precise, mathematical formulation of this assumption is given in section
5.1. The dynamical predictions of general relativity are derived in section 5.2. We
discuss two important features of the homogeneous, isotropic cosmological models
in section 5.3: the cosmological redshift and particle horizons. Finally, we give in
section 5.4 a brief account of the history of our universe.

5.1 Homogeneity and Isotropy
In the subject of cosmology, it is very difficult to prove theories by appealing only

to observational data. We have direct contact in our lifetime or even in the lifetime
of human civilization with only a negligibly small spacetime region of our universe.
While our telescopes can observe objects remarkably far away by ordinary human
scales, it should be recognized that in cosmic terms they report information about
only a portion of our past light cone. Thus, a good deal of our input in the subject
of cosmology arises from our philosophical prejudices. Observational data may
confirm these prejudices, but in general they cannot be expected to definitively prove
that they are correct. Nevertheless, the cosmological models considered in this
chapter have provided a remarkably successful account of the nature of the universe.

Since the time of Copernicus, it has generally been assumed that we do not occupy
a privileged position in our universe; that if we were located in a different region of
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our universe, the basic characteristics of our surroundings would appear the same.
Similarly, it is natural to assume that the universe is isotropic, that is, that there are
no preferred directions in space; that observations on sufficiently large scales should
yield results which do not depend on which direction we look. These philosophical
prejudices of homogeneity and isotropy have received strong confirmation from
modern observations. While observations of the distribution of galaxies in our
universe show clustering of galaxies on a wide range of distance scales and recent
observations have shown large regions devoid of galaxies (Kirshner et ai. 1981), on
the largest scales the galaxy distribution appears to be homogeneous and isotropic:
Counts of radio sources and the isotropy of the X-ray and y-ray background radiation
also support the hypothesis of homogeneity and isotropy of the universe on large
scales. Even stronger observational evidence for the homogeneity and isotropy of our
universe comes from the discovery of thermal radiation at about 3 K filling our
universe, which has been measured to be isotropic to a very high precision. As
discussed in section 5.4, this radiation is believed to have a cosmological origin, and
it would be very difficult to explain its existence and its isotropy if the hypothesis
of the homogeneity and isotropy of the universe were not valid to a very good
approximation on large distance scales.

Thus, for the remainder of this chapter, we shall proceed under the assumption that
the universe is homogeneous and isotropic. Our first task is to formulate precisely
the mathematical meaning of this assumption. Loosely speaking, homogeneity
means that at any given "instant of time" each point of "space" should "look like"
any other point. A precise formulation can be given as follows: A spacetime is said
to be (spatially) homogeneous if there exists a one-parameter family of spacelike
hypersurfaces It foliating the spacetime (see Fig. 5.1) such that for each t and for
any points p, q E It there exists an isometry of the spacetime metric, gab, which
takes pinto q. (See appendix C for the definition of an isometry.)

p---~
p;...;..P_- ~...::..q~

V-~~
Fig. 5.1. The hypersurfaces of spatial homogeneity in spacetime. By definition of
homogeneity, for each t and each p, q E 1, there exists an isometry of the space
time which takes pinto q.

With regard to isotropy, it first should be pointed out that, in general, at each
point, at most one observer can see the universe as isotropic. For example, if
ordinary matter fills the universe, any observer in motion relative to the matter must
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see an anisotropic velocity distribution of the matter. With this fact in mind, a precise
formulation of the notion of isotropy can be given as follows: A spacetime is said
to be (spatially) isotropic at each point if there exists a congruence oftimelike curves
(i.e., observers), with tangents denoted u a

, filling the spacetime (see Fig. 5.2) and
satisfying the following property. Given any point p and any two unit "spatial"
tangent vectors sf, sq E Vp (i.e, vectors at p orthogonal to ua

), there exists an
isometry of gab which leaves p and u a at p fixed but rotates sf into sq. Thus, in an
isotropic universe it is impossible to construct a geometrically preferred tangent
vector orthogonal to u a

•

Fig. 5.2. The world lines of isotropic observers in spacetime. By definition of
isotropy, for any two vectors s~, s~ at p which are orthogonal to ua, there exists an
isometry of the spacetime which leaves p fixed and rotates s~ into s~.

It is not difficult to see that in the case of a homogeneous and isotropic spacetime,
the surfaces ~t of homogeneity must be orthogonal to the tangents, u a

, to the world
lines of the isotropic observers. If not, then assuming that the isotropic observers and
the family of homogeneous surfaces ~t are unique, the failure of the tangent subspace
orthogonal to ua to coincide with the tangent space of~t would enable us to construct
a geometrically preferred spatial vector, in violation of isotropy. (If the isotropic
observers or family of homogeneous surfaces are not unique, as in special cases such
as flat spacetime, it is still possible to show the existence of a family of isotropic
observers orthogonal to a family of homogeneous surfaces.) Now, the spacetime
metric, gab, induces a Riemannian metric, hab(t), on each ~t by restricting the action
of gab at each p E ~t to vectors tangent to ~t. The induced spatial geometry of the
surfaces ~t is greatly restricted by the following requirements: (i) Because of ho
mogeneity, there must be isometries of hab which carry any p E ~t into any q E ~t.

(ii) Because of isotropy, it must be impossible to construct any geometrically pre
ferred vectors on ~t.

We shall now show that the second requirement implied by isotropy is particularly
restrictive. Consider the Riemann tensor (3)Rabc d constructed from hab on ~t. If we
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raise the third index with h ab , we may view (3)Rab cd at point p as a linear map, L, of
the vector space W of two-forms [i.e., antisymmetric tensors of rank (0,2)] at pinto
itself L:W ~ w: By equation (3.2.20), L is symmetric, i.e., it is a self-adjoint map
(with the natural, positive definite inner product on W determined by hab). Therefore,
W has an orthonormal basis of eigenvectors of L. If the eigenvalues of these eigen
vectors were distinct, then we would be able to give a geometrical prescription for
picking out a preferred two-form at p and, consequently, a preferred vector at p.
Hence, in order not to violate isotropy, all the eigenvalues of L must be equal. This
means that L is a multiple of the identity operator,

that is,

L = KI (5.1.1)

(5.1.2)

Thus, lowering the indices, we have

(3)Rabcd = K hc[ahbJd (5.1.3)

The requirement (i) of homogeneity implies that K must be a constant, i.e., it
cannot vary from point to point of ~t. Actually, it is an interesting fact that the
requirement (ii) of isotropy at each point also implies the constancy of K. To prove
this, we substitute equation (5.1.3) into the Bianchi identity (3.2.16) to obtain,

o = D[e(3)Rab]cd = (D[eK)hlclahbJd (5.104)

where Da denotes the derivative operator on ~t associated with hab. (We use the
notation Da rather than Va in order to avoid confusion with the derivative operator on
the four-dimensional spacetime associated with gab.) On a manifold of dimension
three or greater, the right side of equation (5.1.4) will vanish if and only if De K = 0,
i.e., K is constant. Thus, we can actually dispense with the assumption of homoge
neity in discussing the geometry of ~t.

A space where equation (5.1.3) is satisfied (with K = constant) is called a space
of constant curvature. It can be shown (Eisenhart 1949) that any two spaces of
constant curvature of the same dimension and metric signature which have equal
values of K must be (locally) isometric. Thus, our task of determining the possible
spatial geometries of ~t will be completed if we enumerate spaces of constant
curvature encompassing all values of K. This is easily done. All positive values of
K are attained by the 3-spheres, defined as the surfaces in four-dimensional flat
Euclidean space 1R4 whose Cartesian coordinates satisfy

x 2 + y2 + Z2 + w 2 = R 2 (5.1.5)

In spherical coordinates, the metric of the unit 3-sphere is

ds 2 = drfJ2 + sin 2rfJ(d(J2 + sin 2 (J dq,2) (5.1.6)

The value K = 0 is attained by ordinary three-dimensional flat space. In Cartesian
coordinates, this metric is

(5.1.7)



(5.1.9)

(5.1.11)
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Finally, all negative values of K are attained by the three-dimensional hyperboloids,
defined as the surfaces in a four-dimensional flat Lorentz signature space (i.e.,
Minkowski spacetime) whose global inertial coordinates satisfy

t 2 - x 2 - y2 - Z2 = R 2 (5.1.8)

In hyperbolic coordinates, the metric of the unit hyperboloid is

ds 2 = dl/i + sinh 2l/J(d02 + sin 20dq,2)

The new possibilities for the global spatial structure of our universe should be
stressed. In prerelativity physics, as well as in special relativity, it was assumed that
space had the flat structure given by the possibility K = 0 above. But even under the
very restrictive assumptions of homogeneity and isotropy, the framework of general
relativity admits two other distinct possibilities. The possibility of a 3-sphere spatial
geometry is particularly interesting, as it is a compact manifold (see appendix A) and
thus describes a universe which is finite but has no boundary. Such a universe is
called "closed," while the universes with noncompact spatial sections such as those
given by flat and hyperboloid geometries are called "open." (One could construct
closed universes with flat or hyperboloid geometries by making topological
identifications, but it does not appear to be natural to do so.) Thus, an intriguing
question raised by general relativity is whether our universe is closed or open. We
shall discuss the evidence on this issue at the end of section 5.4.

Since the isotropic observers are orthogonal to the homogeneous surfaces, we may
express the four-dimensional spacetime metric gab as

gab = -UaUb + hab(t) (5.1.10)

where for each t, hab(t) is the metric of either (a) a sphere, (b) flat Euclidean space,
or (c) a hyperboloid, on Lt. We can choose convenient coordinates on the four
dimensional spacetime as follows. We choose, respectively, either (a) spherical
coordinates, (b) Cartesian coordinates, or (c) hyperbolic coordinates on one of the
homogeneous hypersurfaces. We then "carry" these coordinates to each of the other
homogeneous hypersurfaces by means of our isotropic observers; i.e., we assign a
fixed spatial coordinate label to each observer. Finally, we label each hypersurface
by the proper time, T, of a clock carried by any of the isotropic observers. (By
homogeneity, all the isotropic observers must agree on the time difference between
any two hypersurfaces.) Thus, T and our spatial coordinates label each event in the
universe.

Expressed in these coordinates, the spacetime metric takes the form

{

dl/J2 + sin 2l/J(d02 + sin 20 dq,2)

ds 2 = -dT2 + a 2(T) dx 2 + dy 2 + dz 2

dl/J2 + sinh 2l/J(d02 + sin 20 dq,2)

where the three possibilities in the bracket correspond to the three possible spatial
geometries. [The metric for the spatially flat case could be made to look more similar
to the other cases by writing it in spherical coordinates as dl/J2 +
l/J2(d02 + sin 20 dq,2).] The general form of the metric, equation (5.1.11) is called
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a Robertson-Walker cosmological model. Thus, our assumptions of homogeneity
and isotropy alone have determined the spacetime metric up to the three discrete
possibilities of spatial geometry and the arbitrary positive function a(T). To deter
mine the spatial geometry and a(T), we tum to Einstein's equation.

5.2 Dynamics of a Homogeneous, Isotropic Universe
Our aim now is to substitute the spacetime metric, equation (5.1.11), into

Einstein's equation (4.3.21) to obtain predictions for the dynamical evolution of the
universe. The first step is to describe the matter content of the universe in terms of
its stress-energy, Tab, which enters the right-hand side of Einstein's equation. Most
of the mass-energy in the present universe is believed to be found in ordinary matter,
concentrated in galaxies, although, as discussed at the end of this chapter, there are
sufficient uncertainties and discrepancies in the determinations of mass that even this
statement is not completely certain. On the cosmic scales with which we are dealing,
each of the galaxies can be idealized as a "grain of dust." The random velocities of
the galaxies are small, so the "pressure" of this dust of galaxies is negligible. By
isotropy, the world lines of the galaxies must coincide with those of the isotropic
observers. (If they did not, the relative motion of the galaxies and observers could
be used to define a preferred spatial direction.) Thus, to a good approximation, the
stress-energy tensor of matter in the present universe takes the form

(5.2.1)

where p is the (average) mass density of matter. However, other forms of mass
energy are also present in the universe. As already briefly mentioned above, a
thermal distribution of radiation at a temperature of about 3 K fills the universe. This
radiation can also be described by a perfect fluid stress-energy tensor, but its pressure
is nonzero; indeed, for massless thermal radiation, we have P = p13. The con
tribution of this radiation to the stress-energy of the present universe is negligible,
but, as will be discussed further in this section and in section 5.4, this radiation is
predicted to make the dominant contribution to Tab in the early universe. Thus, in
treating Einstein's equation, we shall take Tab to be of the general perfect fluid form,

(5.2.2)

There is no loss of generality in restricting consideration to Tab of this form, as it is
actually the most general form Tab can take consistent with homogeneity and isotropy.

We now have the task of computing Gab from the metric, equation (5.1.11), and
equating it with 87TTab' equation (5.2.2). A priori, we will get 10 equations corre
sponding to the 10 independent components of a symmetric two-index tensor. How
ever, it is not difficult to see that on account of the spacetime symmetries, there will
be only two independent equations in this case. Namely, the vector GabUb (as well
as TabUb) cannot have a spatial component, or isotropy would be violated. Thus, the
"time-space" components of Einstein's equation are identically zero. Similarly, if we
project both indices of Gab into the homogeneous hypersurface and raise an index
with the spatial metric, the same type of argument which led to equation (5.1.1) tells
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us that the resulting tensor must be a multiple of the identity operator. Thus, the
off-diagonal "space-space" components of Einstein's equation must vanish, and the
diagonal "space-space" components yield the same equations. Hence, the indepen
dent components of Einstein's equation are simply

(5.2.3)

(5.2.4)

where G rr = GabuaU b and G •• = GabsaS
b

, where sa is any unit vector tangent to the
homogeneous hypersurfaces.

We now have only the mechanical task of computing Grr and G•• in terms of a(T).
We shall do this explicitly for the case of flat spatial geometry, i.e.,

ds 2 = -dT2 + a 2(T)(dx 2 + dy 2 + dz 2) (5.2.5)

using the coordinate basis method. By equation (3.1.30), the nonvanishing com
ponents of the Christoffel symbol are merely

r x = r x = r y = r y = r z = r z = a'/aXT TX y'T 'Ty ZT TZ

(5.2.6)

(5.2.7)

where it = da/dT. Hence, by equation (3.4.5) the independent Ricci tensor com
ponents are calculated to be

Rrr = -3ii/a

Since we have

R = -R + 3R = 6(~ + ti
2

)rr •• a a 2

we thus obtain

Grr = Rrr + !R = 3ti 2/a 2 = 87TP

ii ti 2

G = R -!R = -2- - - = 87TP•• •• 2 a a 2

Using the first equation, we may rewrite the second equation as

3ii/a = -47T(p + 3P)

(5.2.8)

(5.2.9)

(5.2.10)

(5.2.11)

(5.2.12)

(5.2.13)

Repeating the calculation for the cases of spherical and hyperboloid geometries
(problem 2), we obtain the general evolution equations for homogeneous, isotropic
cosmology:

3ti 2/a 2 = 87TP - 3k/a 2

3ii/a = -47T(p + 3P)

(5.2.14)

(5.2.15)
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where k = +1 for the 3-sphere, k = 0 for flat space, and k = -1 for the hyper
boloid. We will present the exact solutions of these equations for the cases of dust
(P = 0) and radiation (P = p/3) below in Table 5.1, but first we shall examine some
important qualitative properties of the solutions.

The first striking result is that the universe cannot be static, provided only that
p > 0 and P ~ O. This conclusion follows immediately from equation (5.2.15),
which tells us that ii < O. Thus, the universe must always either be expanding
(a > 0) or contracting (a < 0) (with the possible exception of an instant of time
when expansion changes over to contraction). Note the nature of this expansion or
contraction: The distance scale between all isotropic observers (in particular, be
tween galaxies) changes with time, but there is no preferred center of expansion or
contraction. Indeed, if the distance (measured in the homogeneous surface) between
two isotropic observers at time T is R, the rate of change of R is

dR Rda
v =- = -- = HR

dT a dT

where H(T) = a/a is called Hubble' s constant. (Note, however, that the value of H
changes with time.) Equation (5.2.16) is known as Hubble's law. Note that v can be
greater than the speed of light if R is large enough. This does not contradict the
fundamental tenet of special and general relativity that "nothing can travel faster than
the speed of light," since this tenet refers to the locally measured relative velocity
of two objects at the same spacetime event, not a globally defined velocity between
distant objects.

The expansion of the universe in accordance with equation (5.2.16) has been
confirmed by the observation of the redshifts of distant galaxies, as will be explained

Table 5.1
DUST AND RADIATION FILLED ROBERTSON·WALKER COSMOLOGIES

TYPE OF MAITER

SPATIAL GEOMETRY

"Dust"

p=o

Radiation

3-sphere, k = + I
I a = VC'[I - (l - r/VC')2]1/2a = 2:C(l - cos 1'/)

I
C

.
r = 2: (1'/ - sm 1'/)

Flat, k = 0 a = (9C / 4)1/3 r 2/3 a = (4C')1/4 r'/2

Hyperboloid, k = -I
I a = VC' [(l + r/VC')2 - 1)'/2a = 2:C(cosh 1'/ - I)

r = ~C(sinh 1'/ - 1'/)
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in more detail later in this chapter. The confirmation of this striking prediction of
general relativity is a dramatic success of the theory. Unfortunately, the historical
development of events clouded this success. Einstein was sufficiently unhappy with
the prediction of a dynamic universe that he proposed a modification of his equation,
the addition of a new term, as follows:

Gab + Agab = 87TTab (5.2.17)

where A is a new fundamental constant of nature, called the cosmological constant.
(It can be shown [Lovelock 1972] that a linear combination of Gab and gab is the most
general two-index symmetric tensor which is divergence free and can be constructed
locally from the metric and its derivatives up to second order, so eq. [5.2.17] gives
the most general modification which does not grossly alter the basic properties of
Einstein's equation. If A =1= 0, one does not obtain Newtonian theory in the slow
motion, weak field limit; but if A is small enough, the deviations from Newtonian
theory would not be noticed.) With this additional one-parameter degree of freedom,
static solutions exist, though they require exact adjustment of the parameters and are
unstable, much lik/;' d pencil standing on its point (see problem 3). Thus, Einstein was
able to modify ~i:le theory to yield static solutions. After Hubble's redshift obser
vations in 1929 demonstrated the expansion of the universe, the original motivation
for the introduction of A was lost. Nevertheless, A has been reintroduced on numer
ous '_..:casions when discrepancies have arisen between theory and observations, only
to be abandoned again when these discrepancies have been resolved. In the follow
ing, we shall assume that A = O.

Given that the universe is expanding, a > 0, we know from equation (5.2.15) that
ii < 0, so the universe must have been expanding at a faster and faster rate as one
goes backward in time. If the universe had always expanded at its present rate, then
at the time T = a/a = H- 1 ago, we would have had a = O. Since its expansion
actually was faster, the time at which a was zero was even closer to the present.
Thus, under the assumption of homogeneity and isotropy, general relativity makes
the striking prediction that at a time less than H- 1 ago, the universe was in a singular
state: The distance between all "points of space" was zero; the density of matter and
the curvature of spacetime was infinite. This singular state of the universe is referred
to as the big bang.

Note that the nature of this singularity is that resulting from a homogeneous
contraction of space down to "zero size." The big bang does not represent an
explosion of matter concentrated at a point of a preexisting, nonsingular spacetime,
as it is sometimes depicted and as its name may suggest. Since spacetime structure
itself is singular at the big bang, it does not make sense, either physically or
mathematically, to ask about the state of the universe "before" the big bang; there
is no natural way to extend the spacetime manifold and metric beyond the big bang
singularity. Thus, general relativity leads to the viewpoint that the universe began at
the big bang. For many years it was generally believed that the prediction of a
singular origin of the universe was due merely to the assumptions of exact homoge
neity and isotropy, that if these assumptions were relaxed one would get a non
singular "bounce" at small a rather than a singularity. However, the singularity



100 Homogeneous, Isotropic Cosmology

theorems of general relativity (see chapter 9) show that singularities are generic
features of cosmological solutions; they have ruled out the possibility of "bounce"
models close to the homogeneous, isotropic models. Of course, at the extreme
conditions very near the big bang singularity one expects that quantum effects will
become important, and the predictions of classical general relativity are expected to
break down (see chapter 14).

Before discussing the qualitative predictions of general relativity for the future
evolution of the universe, it is useful to obtain an equation for the evolution of the
mass density. By multiplying equation (5.2.14) by a 2

, differentiating it with respect
to T, and then eliminating ii via equation (5.2.15) (or, directly from eq. [4.3.7]), we
obtain

p + 3(p + P)ala = 0

Thus, for dust (P = 0) we find

pa 3 = constant

(5.2.18)

(5.2.19)

which expresses conservation of rest mass, while for radiation (P = p13) we find

pa4 = constant (5.2.20)

In this case the energy density decreases more rapidly as a increases than by the
volume factor a 3, since the radiation in each volume element does work on its
surroundings as the universe expands. (Alternatively, in terms of photons, the photon
number density decreases as a-3, but each photon loses energy as a-I because of
redshift [see section 5.3].) Comparison of equations (5.2.19) and (5.2.20) shows that
although the radiation content of the present universe may be negligible, its con
tribution to the total mass density far enough into the past (a ~ 0) should dominate
over that of ordinary matter.

The qualitative features of the future evolution of our universe can now be seen.
If k = 0 or -1, equation (5.2.14) shows that anever can become zero. Thus, if the
universe is presently expanding, it must continue to expand forever. Indeed, for any
matter with P ~ 0, p must decrease as a increases at least as rapidly as a-3

, the value
for dust. Thus pa 2 ~ 0 as a ~ 00. Hence, if k = 0, the "expansion velocity" a
asymptotically approaches zero as T ~ 00, while if k = -1 we have a~ 1 as
T~ 00.

However, if k = +1, the universe cannot expand forever. The first term on the
right-hand side of equation (5.2.14) decreases with a more rapidly than the second
term, and thus, since the left-hand side must be positive, there is a critical value, ac.
such that a ~ ac• Furthermore, a cannot asymptotically approach ac as T ~ 00

because the magnitude of ii is bounded from below on account of equation (5.2.15).
Thus, if k = +1, then at a finite time after the big bang origin of the universe, the
universe will achieve a maximum size ac and then will begin to recontract. The same
argument as given above for the occurrence of a big bang origin of the universe now
shows that a finite time after recontraction begins, a "big crunch" end of the universe
will occur. Thus, the dynamical equations of general relativity show that the spatially
closed 3-sphere universe will exist for only a finite span of time.
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Let us now turn our attention to solving equations (5.2.14) and (5.2.15) exactly
for the cases of dust and radiation. The most efficient procedure for doing this is to
eliminate p using equation (5.2.19) or, respectively, equation (5.2.20), and substi
tute into equation (5.2.14). We obtain, for dust,

li 2
- Cia + k = 0 (5.2.21)

where C = 87Tpa 3/3 is constant; and for radiation,

li 2
- C' /a 2 + k = 0 (5.2.22)

where C' = 87Tpa 4/3. Given equation (5.2.19) (or eq. [5.2.20]), equation (5.2.15)
is redundant, so the first order ordinary differential equation (5.2.21) (or, re
spectively, [5.2.22]) is all we need solve. The solutions for a(T) are readily obtained
by elementary methods. These solutions for the six cases of interest are tabulated in
Table 5.1. Graphs of a (T) versus T are displayed in Figures 5.3 and 5.4. The solution
for the dust-filled universe with 3-sphere geometry was first given by Friedmann
(1922) and is called the Friedmann cosmology, although in some references all the
solutions in Table 5.1 are referred to as Friedmann solutions.

O(T)

T

Fig. 5.3. The dynamics of dust-filled Robertson-Walker universes.

5.3 The Cosmological Redshift; Horizons

5.3a Redshift
We have mentioned above that the most direct observational evidence for the

expansion of the universe comes from the redshift of the spectral lines of distant
galaxies. In this section we shall obtain the redshift formula for a general Robertson
Walker cosmological model, equation (5.1.11). Suppose that at event PI at time TI
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Fig. 5.4. The dynamics of radiation-filled Robertson-Walker universes.

an isotropic observer emits a photon of frequency WI. Suppose this photon is ob
served by another isotropic observer at event Pz at time TZ as illustrated in Figure 5.5.
We wish to find the frequency, Wz, which this second observer will measure.

The solution of all redshift problems in special and general relativity is governed
by the following two facts: (1) In the geometric optics approximation, light travels
on null geodesics (see section 4.3); (2) The frequency of a light signal of wave vector
k a measured by an observer with 4-velocity u a is

(5.3.1)

(see eq. [4.2.38]). Thus, we always can find the observed frequency by calculating
the null geodesic determined by the initial value of k a at the emission point and then
calculating the right side of equation (5.3.1) at the observation point.

However, when symmetries are present, we often can shortcut this procedure by
using the following fact proven in section C.3 of appendix C. Let go be a Killing
vector field, i.e., a vector field which generates a one-parameter group of isometries,
as discussed in appendix C. Let ta be the tangent to a geodesic curve. Then taga is
constant along the geodesic. In this case, it is not difficult to calculate the redshift
directly without appealing to symmetry arguments (see problem 4), but we shall
calculate the redshift using these arguments because they give more insight into why
the simple final result, equation (5.3.6), is obtained.



(5.3.2)
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The first step is to notice that for all three choices of spatial geometry, we can find
a spacetime Killing vector field ga which points in the direction of the projection of
ka into II at PI and points in the direction of the projection of ka into Lz at Pz. For
example, in the case of flat spatial geometry, without loss of generality, we may
assume that the projection of ka into LI at PI is in the (a/ ax)a direction. Then
ka(a/8y)a = ka(a/ aZ)a = 0 initially, and, since (a/8y)a and (a/ az)a are Killing vec
tor fields, these inner products also vanish at Pz. Thus, the projection of ka into Lz
at Pz also points in the (a/ ax)a direction, and ga = (a/ ax)a is the required Killing
vector field. Similar arguments establish the existence of ga in the spherical and
hyperboloid cases. Furthermore, in all cases the length of ga at Pz varies from its
length at PI in proportion to the change in the length scale factor a of the universe
in going from LI to Lz, i.e.,

(gaga)l/zl p! = a(TI)
(gaga)l/zl p2 a (Tz)

To find the redshift, we note that since ka is null, at any point its projection onto
ua must have the same magnitude as its projection into L, so at ~

(5.3.3)

Thus, we have

(5.3.4)

Similarly, we have

(5.3.5)

Fig. 5.5. A spacetime diagram showing the emission of a light signal at event PI
and its reception at event A.
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But we have (kaga) IPI = (kae) IP2 by the above result on the inner product of
Killing vector fields and geodesic tangent vectors. Thus, we find

Wz = (gbgb)l/zlpl = a(TI)

WI (gbgb)l/zl p2 a (Tz)

where we have used equation (5.3.2). This result has the simple interpretation that
as the universe expands, the wavelength of each photon increases in proportion to
the amount of expansion.

The redshift factor, z, is given by

Az - Al WI
Z == =--

Al Wz
1 = a(Tz) - 1

a(TI)
(5.3.7)

For light emitted by nearby galaxies, we have Tz - TI = R, where R is the present
proper distance to the galaxy. Furthermore, for nearby galaxies we have

Thus, we find

a
z = -R = HR

a

(5.3.8)

(5.3.9)

which is the linear redshift-distance relationship discovered by Hubble. The redshifts
of distant galaxies will deviate from this linear law, depending on exactly how a (T)
varies with T.

5.3b Particle Horizons
The following question arises in the study of cosmological models in general

relativity: In principle, how much of our universe can be observed at a given event
P? More precisely, in the particular case of the Robertson-Walker cosmological
models we may ask which isotropic observers (i.e., galaxies) could have sent a signal
which reaches a given isotropic observer at (or before) event P. The boundary
between the world lines that can be seen at P and those that cannot is called the
particle horizon at P. Since the universe "shrinks to zero size" as one approaches the
big bang singularity, one might expect that all isotropic observers can communicate
with each other by sending signals to each other very early in the history of the
universe when they were very close to each other. However, we shall show now that
this is not the case for Robertson-Walker models which expand sufficiently rapidly
from an initial big bang singularity. Thus, we shall demonstrate the existence of
nontrivial particle horizons in a class of Robertson-Walker models which includes all
the solutions of Table 5.1.

This demonstration is most easily made in the case of flat spatial geometry,

ds z = -dTz + aZ(T)(dxZ + dyz + dz Z) (5.3.10)

and we will focus our attention on that case. By making the coordinate trans-
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formation T ~ t defined by

f dT
t = a(T)

we can reexpress the metric, equation (5.3.10), as

ds 2 = a 2(t)(-dt 2 + dx 2 + dy 2 + dz 2
)

(5.3.11)

(5.3.12)

Written in this form, it becomes manifest that this metric is merely a multiple of the
metric of the flat Minkowski spacetime metric. Such a metric is called conformally
flat. The relevance of this remark arises from the fact that a vector will be timelike,
null, or spacelike in the metric of equation (5.3.12) if and only if it has the same
property with respect to the flat metric

ds 2 = -dt2 + dx 2 + dy 2 + dz 2 (5.3.13)

Thus, it is possible to send a signal between two events (Le., join the two events by
a timelike or null curve) in the metric of equation (5.3.12) if and only if this can be
done in the flat metric, equation (5.3.13). With this in mind, it is not difficult to see
that an observer at an event P will be able to receive a signal from all other isotropic
observers if and only if the integral, equation (5.3.11), which defines t, diverges as
one approaches the big bang singularity, T ~ 0. Namely, if this integral diverges
which will be the case if a (T) ;;a aT for some constant a as T~ Q-then the
Robertson-Walker model will be conformally related to all of Minkowski spacetime
(Le., t wily:ange down to - (0) and thus there will be no particle horizon. On the
other harta, if the integral converges, the Robertson-Walker model will be con
formally related only to the portion of Minkowski spacetime above a t = constant
surface, and particle horizons will exist, as illustrated in Figure 5.6. As seen from
Table 5.1, for k = 0, even in the case of dust we have a(T) oc T2/3. Since a(T) will

• singularity
~

Fig. 5.6. The causal structure of the Robertson-Walker solutions near the big-bang
singularity. Particle horizons exist since an observer cannot "see" all other isotropic
observers in the universe.
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be larger if P > 0, for all spatially flat Robertson-Walker solutions of Einstein's
equation the integral, equation (5.3.11), will converge as T~ °and particle hori
zons do indeed occur.

For hyperboloid and spherical geometries, as T ~ °the behavior of a (T) goes over
to the flat case, since the term involving k in equation (5.2.14) becomes negliglible.
A similar analysis shows that particle horizons of the same nature as in the flat case
also exist in all of these solutions. In the case of the spherical geometry, the spatial
extent of the universe is finite, and one may ask if the particle horizons eventually
cease to exist or whether they are still present when the universe recollapses to the
"big crunch" singularity (problem 5). The answer is that for the dust filled spherical
universe of Table 5.1, the particle horizon ceases to exist at the moment of maximum
expansion, i.e., a light signal emitted at the big bang would travel exactly halfway
around the universe by the moment of maximum expansion, so by looking in all
directions at this time an observer could receive signals from all other isotropic
observers. However, for the radiation filled spherical universe, a light signal would
travel exactly halfway around the universe in the entire history of the universe, so
the particle horizons remain present until the "big crunch."

The existence of particle horizons in the Robertson-Walker cosmological models
leads to the following interesting issue. From the cosmic microwave background
(discussed briefly in the next section) we have good reason to believe that the present
universe is homogeneous and isotropic to a very high degree of precision. Now,
many ordinary systems, such as a gas confined by a box, often are found in extremely
homogeneous and isotropic states. However, the usual explanation of why such
systems are in such homogeneous and isotropic states is that they have had an
opportunity to self-interact and thermalize. Thus, for example, even if a gas in a box
were initially, say, in an inhomogeneous state, these inhomogeneities would quickly
"wash out" on a time scale of the order of the transit time across the box. However,
this type of explanation cannot possibly apply to a universe with particle horizons,
since different portions of the universe cannot even send signals to each other, far
less interact sufficiently to thermalize each other. Thus, in order to explain the
homogeneity and isotropy of the present universe, one must postulate that either (a)
the universe was "born" in an extremely homogeneous, isotropic state or (b) the very
early universe differed significantly from the Robertson-Walker models so that no
horizons were present; the inhomogeneities and anisotropy then "damped
out"-perhaps due to effects such as viscosity of matter or the back-reaction of
quantum particle creation-and the universe approached the Robertson-Walker
model. The first "explanation" may appear rather unnatural (see, however, Penrose
1979). The second explanation has been investigated extensively with regard to
damping of anisotropy, beginning with the work of Misner (1969), but has not yet
proven successful in presenting a plausible picture of evolution from a "chaotic"
initial state to a Robertson-Walker model. It also suffers from the potentially serious
difficulty that inhomogeneities (which have not been investigated extensively) on a
sufficiently large scale generally would be expected to grow rather than damp out in
a self-gravitating system. Recently, however, it has been suggested that the very
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early universe may have undergone an "inflationary phase" (discussed briefly in the
next section) resulting in an enormous enlargement of the particle horizon in the
Robertson-Walker models and offering a possible explanation of how an initially
"chaotic" universe could evolve to one which has large homogeneous and isotropic
regions. However, it should be kept in mind that we do not, at present, have a
quantum theory of gravity (see chapter 14) and such a theory may playa large role
in accounting for the initial state of our universe.

5.4 The Evolution of Our Universe
In this section we shall briefly outline the history of our universe from the big bang

to the present. The picture we shall present is the "standard" one, which assumes that
the universe is well described throughout its history by a Robertson-Walker solution
and which makes further assumptions concerning the matter content of the universe.
While this picture has received strong supporting evidence from the existence of the
cosmic microwave background and its explanation of the cosmic abundance of
helium, it should be kept in mind that none of its assumptions is unchallengeable.
Many of the calculations and much of the observational evidence which go into
constructing this history of the universe are reviewed by Peebles (1971) and Wein
berg (1972), and we refer the reader to these references for more quantitative details.

A good deal of the nature of the early universe can be understood from the fact
that the decrease of the scale factor a as one goes back toward the past has the same
local effect on the matter as if the matter were placed in a box whose walls contract
at the same rate. Thus, as would happen in a contracting box, the contribution of
radiation compared with ordinary matter (Le., baryons) increases in the past, as was
already noted in section 5.2. The energy density of the cosmic microwave back
ground in the present universe is estimated to be about 1,000 times smaller than the
mass density contribution of matter, although this number is uncertain by as much
as a factor of 10 because of the difficulties involved in determining the present
density of ordinary matter. Thus, assuming that this radiation continues to exist as
one goes back into the past (e.g., that it was not, say, emitted by galaxies), then
according to equations (5.2.19) and (5.2.20), when the scale factor a was more than
1,000 times smaller than its present value, this radiation should have been the
dominant contribution to the energy density of the universe. Thus, one would expect
the radiation filled model of the universe to be a good approximation for the dynam
ics of the universe before this stage, while the dust filled model should be a good
approximation afterwards.

Just as the temperature of a box of gas increases as one compresses it, one would
expect the matter and radiation in the universe to get hotter as a decreases, and to
become infinitely hot as one approaches the big bang, a ~ 0. 1 If the early universe

1. It would also be self-consistent to assume that no radiation was present in the very early universe
and that only cold matter, such as baryons, was present. However. a "cold big bang" model would have
the major tasks of accounting for the present existence of the cosmic microwave background and the
correct helium abundance of the universe, both of which are naturally explained by the standard "hot big
bang" model described here.
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was radiation dominated, as we expect it to be, then for all models (k = 0, ±1) the
dependence of a and p on T for small T goes over to the k = 0 solution,

a(T) = (4C')1/4 TI/2 (5.4.1)

3

where here, and throughout this section, we shall restore the G's and c's in our
equations. If the radiation is thermally distributed, the mass density p is given by the
following expression, derived from the quantum statistical mechanics of massless
particles:

n 'TT'2

P = ~ aigi 30h3c 5 (kT)4 (5.4.3)

where n is the number of species of radiation, gi is the spin degeneracy factor, and
ai takes the value 1 for bosons and 7/8 for fermions. Massive particles whose mass
is much less than kT effectively act like zero mass particles and should be included
in equation (5.4.3) as a "species of radiation." Equations (5.4.1), (5.4.2), and
(5.4.3) imply that T oc pl/4 oc a-I, as expected from the redshift relation, equation
(5.3.6).

An important issue is whether the interactions of matter and radiation in the early
universe proceed on a rapid enough time scale for thermalization to occur locally
(i.e., within the particle horizon). If they do not, then the self-consistency of
assuming that the matter is thermally distributed is questionable, and the predicted
evolution of the matter and radiation may depend on the details of the assumed initial
distribution. If they do, then we have the relatively simple task of evolving a thermal
distribution of matter until such time as equilibrium is no longer maintained. The
expansion time scale, fE, of the universe, i.e., the time over which a significant
change in the scale factor a occurs, is

fE - a/a = 2T (5.4.4)

by equation (5.4.1). On the other hand, the time scale for interactions is

1 a
3

3/2/fJ - - oc - oc T a(T)
nac a

where the number of interacting particles is assumed to be conserved, so that their
number density, n, scales as a-3

, and the possible energy dependence of the inter
action cross section a is explicitly indicated by writing a as a function of tem
perature. Comparison of equations (5.4.4) and (5.4.5) shows that unless a falls off
rapidly at high energies, at sufficiently early times we will have fJ « fE, so thermal
ization can be achieved. (Actually, it is possible that at very high energies the
interactions of particle physics become "asymptotically free," and a does fall off
sufficiently rapidly to make fJ > fE as T~ O. However, even if this occurs, for
energies smaller than about lOIS GeV we should recover fJ > fE, and thermalization
still should be achieved at a very early time.) On the other hand, as the universe
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evolves, we eventually find tJ > tE, and the matter distribution will drop out of
thermal equilibrium.

Thus, the above considerations lead to the following basic picture of the evolution
of our universe. The universe began as a hot (T~ 00), dense (p~ 00) "soup" of
matter and radiation in thermal equilibrium. However, as the universe evolved,
thermal equilibrium was not maintained, as tJ became greater than tEo The energy
content of the early universe was dominated by radiation. However, by the time a
reached about 1/1000 of its present value, the ordinary matter contribution domi
nated the energy content of the universe, and the dynamics of the universe became
that of a dust filled Robertson-Walker model. We shall now proceed to fill in some
of the important details of this evolutionary history.

During the first 10-43 seconds of the evolutionary history of the universe predicted
by classical general relativity, the magnitude of the curvature of spacetime was
greater than the scale given by the Planck length (GIl/C 3)1/2 = 10-33 cm. On dimen
sional grounds, we expect that the quantum effects of the gravitational field will be
very important in this era (see chapter 14), and thus the predictions of classical
general relativity cannot be taken seriously. After this time, we may expect classical
general relativity to be valid, but at the extreme conditions found in the very early
universe (at T = 10-43 s, we have p - 1092 g cm-3 !) it hardly needs to be empha
sized that all statements about the behavior of matter during this epoch are specu
lative.

There are two interesting and important effects that may have occurred in the very
early universe, only several orders of magnitude later than the Planck time. The first
concerns the dynamics of the very early universe. Some quantum field theory models
which attempt to unify the strong and electro-weak interactions predict that at very
high temperatures, the thermal equilibrium state of the quantum field will undergo
a phase transition. In these models, if "supercooling" occurs there may be an
important "vacuum" contribution, of the form -Agab (where A is a large, positive
constant) to the stress-energy tensor, Tab, of the field. Thus, the very early universe
may have gone through a phase where the dynamics was the same as would occur
in an empty universe with a large, positive cosmological constant. Hence, if these
models are correct, then, as first suggested by Guth (1981), there may be an
"inflationary" regime in the very early universe where the universe is approximately
a de Sitter solution [see problem 3(b)] and expands very rapidly. If this occurs, then
as mentioned at the end of section 5.3, the particle horizons in the present universe
could be much larger than would be calculated by extrapolating the solutions of
Table 5.1 all the way back to the "big bang." For further discussion of inflationary
cosmological models, we refer the reader to Gibbons, Hawking, and Siklos (1983).

The second effect concerns the production of baryons. There is strong reason to
believe (Steigman 1976) that the matter content of the universe consists of baryons
as opposed to antibaryons; that one does not have matter-antimatter symmetry. It is
possible that our universe was simply born with an excess of baryons over anti
baryons, and, indeed this must be so if baryon number is strictly conserved. How
ever, it is also possible that the universe began in a matter-antimatter symmetric state
and that the baryon excess was manufactured in the very early universe. In order for
this to happen, it is necessary that the high energy particle interactions occurring in
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the very early universe satisfy the following properties: (1) Clearly, they must fail
to conserve baryon number. (2) They must fail to preserve charge conjugation, C,
and the composition of charge conjugation with parity, CP. (If either of these
symmetries are preserved, equal numbers of baryons and antibaryons will be pro
duced.) (3) They must result in departures from thermal equilibrium. (This is because
particles and antiparticles have equal masses, so in thermal equilibrium they will
occur in equal numbers.) Nonequilibrium phenomena could be produced naturally by
the existence of a massive particle whose decay lifetime is greater than the expansion
time, tE, at the time when the temperature of the universe drops below the mass of
the particle (so that production of the particle is essentially shut off). Remarkably,
the "grand unified" theories of the strong, electromagnetic, and weak interactions
currently predict all three of these properties and thus may provide an explanation
of the matter-antimatter asymmetry in our universe.

We pick up our account of the history of the early universe at time T = 1 second,
when the density is p = 5 X 105 g cm-3, and the temperature is T = 1010 K. Al
though these conditions are extreme by ordinary standards, we are now in a low
enough energy and density regime to be able to make solid predictions. At this time
the matter in the universe consists almost entirely of neutrinos, photons, electrons,
positrons, neutrons, and protons in thermal equilibrium; the temperature is low
enough that the equilibrium abundance of the more massive elementary particles is
negligible. By about this stage, the interactions of the neutrinos have become
sufficiently weak that they decouple from the rest of the matter. For the remainder
of the history of universe, they merely passively get redshifted to lower energy.
Since a redshifted thermal spectrum (w ~ w/a) is simply a thermal spectrum at a
lower temperature (T~ T/ a), the present universe should be filled with a blackbody
distribution of neutrinos at temperature T = 2 K. However, the detection of these
neutrinos would be a task very far beyond presently available sensitivities.

As the universe continues to cool, the rates of reactions which convert protons to
neutrons and vice versa quickly drop to much lower than the expansion rate of the
universe. Consequently, the neutron to proton ratio "freezes out" at T - 1.5 seconds
at roughly the value 1/6. (The protons are more abundant than the neutrons because
they are over 1 MeV lighter and thus are more prevalent in thermal equilibrium
before the "freezeout" occurs.) Of course, the term "freezeout" should not be taken
too literally, since the "turnoff" of the interactions does not occur instantaneously
and, furthermore, the neutron-proton ratio continues to decrease slowly with time
due to the decay of the neutrons.

At T = 4 seconds, we have p = 3 X 104 g cm-3
, and T = 5 X 109 K =

0.5 MeV, which is approximately the mass of electrons and positrons. At this stage
the equilibrium population of electrons and positrons decreases rapidly; the pro
duction rate drops below the annihilation rate, and shortly after this time all the
positrons will have annihilated, leaving a relatively small population of residual
electrons. Essentially all the energy of the electron-positron pairs is transferred to the
photons, heating them to a temperature - 1.4 times higher than the temperature of
the neutrinos.
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When the temperature drops to about 109 K at T = 3 minutes, nucleosynthesis
begins rather abruptly, producing 4He nuclei. Actually, in thermal equilibrium the
abundance of 4He at these baryon densities would be appreciable at even higher
temperatures (-3.5 X 109 K), but very little nucleosynthesis occurs before T = 3
minutes because deuterium eH) plays a key role in the nuclear reactions which build
up helium, but the equilibrium abundance of 2H is very low until the temperature
drops to 109 K. Almost no nucleosynthesis of elements beyond 4He occurs because
of the large Coulomb barriers and the lack of stable nuclei with atomic weights 5 and
8. Within a time span of a few minutes, essentially all of the neutrons present at the
"freezeout" time which did not decay are converted to 4He, resulting in an abundance
of 4He of about 25% by mass, with much smaller abundances of 2H, 3He, and 7Li
also produced, but negligible amounts of other elements. The percentage of 4He is
not very sensitive to the assumed value of baryon density, since it is governed mainly
by the neutron-proton ratio at "freezeout," but the abundances of the other elements,
particularly 2H, are very sensitive to the baryon density. A relatively low baryon
density can produce a 2H abundance of over 5 x 10-4 by mass, whereas a high
baryon density-specifically, a density high enough to "close the universe," as
discussed below-increases the efficiency of the chain of reactions producing 4He,
and results in a 2H abundance many orders of magnitude lower.

It is difficult to observe the cosmic abundance of helium, but the abundance of
25% seems to be in agreement with observations. The presence of this amount of
helium in the universe cannot readily be accounted for by other processes-in
particular, nucleosynthesis in stars is estimated to produce an abundance of helium
of only a few percent-and thus the prediction of helium production via "big bang
nucleosynthesis" must be viewed as a major success of the theory.

After the period of nucleosynthesis, the universe, of course, continued its expan
sion and cooling. The next cosmic occurrence of major importance took place when
the temperature had dropped to about 4000 K. This occurred at T - 4 X 105 years
if the universe was still radiation dominated, but it would have occurred somewhat
earlier if the universe had already become matter dominated. At this temperature and
below it, the free electrons and protons combined to form neutral hydrogen. Indeed,
by the time the temperature had dropped to 2000 K, the fraction of ionized hydrogen
was only -10-4. As a result of this occurrence-called recombination, although, of
course, the electrons and protons had never combined earlier-the interaction be
tween the matter and radiation dropped precipitously, since the scattering cross
section of photons off free charged particles is much greater than off neutral Hand
He. Indeed, the photons effectively decoupled completely from the matter after
recombination, and merely cooled with the expansion of the universe during the
remainder of its evolution. Thus, the present universe should be filled with this low
temperature blackbody radiation originating from the big bang, whose photons last
interacted with matter at the recombination time.

Exactly such a radiation background at temperature T = 2.7 K (corresponding to
wavelengths mainly in the microwave regime) was discovered by Penzias and Wil
son (1965). The existence of this radiation would be difficult to account for in any
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other way, and thus it provides a major confirmation of the above picture of the
evolution of our universe. Furthermore, the radiation has been measured to be
isotropic to a high degree of precision. (A "dipole type" anisotropy of -0.1 % has
been detected [Smoot et al. 1977], but this presumably is due to motion of the Earth
with respect to the "preferred rest frame" of the Robertson-Walker cosmology.) This
provides very strong evidence that the universe was very nearly homogeneous and
isotropic at least down to the recombination time.

The decoupling of matter and radiation in this era also had a major effect on the
growth of gravitational perturbations, leading to the formation of galaxies. Just
before recombination, the pressure provided by the radiation inhibited the growth of
gravitational perturbations involving masses smaller than about 1017 M0 , which is
much larger than typical galactic masses (-1011 M0)' However, after recombina
tion, the radiation pressure had no effect on the matter, and gravitational instabilities
could occur on all mass scales ;::: 105 M0. Thus, irregularities in the distribution of
matter began to grow after recombination, resulting in the formation of galaxies, star
clusters, and stars. However, the details of this process are not very well understood
at present (see Peebles 1980 for further discussion).

At some time between T - 103 years and T - 107 years, ordinary matter became
the dominant form of energy in the universe. (The exact time at which this occurred
is uncertain because there is substantial uncertainty in the matter density of the
present universe.) The dynamics of the universe was transformed from a "radiation
filled" to a "dust filled" solution. Finally, at T - 10-20 billion years the universe
reached its present state.

Thus, general relativity, together with the assumption of homogeneity and iso
tropy and assumptions about the matter content of the universe, has produced a
remarkably successful picture of the history of our universe. Among its most notable
achievements are its explanations of the cosmic abundance of helium and the exis
tence of the cosmic microwave radiation.

It is interesting that if one accepts this picture, some nontrivial constraints are
placed on (1) the masses of stable, weakly interacting, elementary particles and (2)
the number of species of massless particles which are in thermal equilibrium in the
early universe. To explain the first constraint, suppose that the electron or muon
neutrino has a mass, m, or that some massive stable particle exists which participates
only in the weak interactions. Then the behavior of this particle in the early universe
would be the same as that of the massless neutrino. However, in the present universe,
instead of contributing energy -10-4 eV per particle (corresponding to T - 2 K),
it would contribute energy m per particle. If the particles are very massive, their
population will be "frozen in" at a very low value when they drop out of thermal
equilibrium in the early universe and they will not contribute much to the present
energy density of the universe. But if their mass lies within the range
10 GeV ;::: m ;::: 100 eV, these particles would become by far the dominant con
tributors of mass-energy in the universe, and they would produce dynamical effects
on the expansion rate of the universe which are incompatible with observations.
Thus, our cosmological theory and observations place some stringent limits on the
possible masses of stable, weakly interacting particles.
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The existence of other species of massless particles (e.g., neutrinos) in thermal
equilibrium in the early universe would not significantly affect the present mass
density of the universe, since their energy would get redshifted away as the universe
expands. However, they would have an important dynamical effect upon the early
universe. This is because, according to equation (5.4.3), they would affect the
relation between p and T, making T smaller for a given p. Since for small T the
relation between p and T always is given by equation (5.4.2) for a radiation domi
nated universe, we see that T(T) will be decreased, Le., a given temperature will
occur at an earlier epoch, when the expansion rate is higher. The most important
consequence of this effective speedup of the expansion rate of the universe is that the
neutron to proton ratio will "freeze out" at a higher temperature, yielding a higher
percentage of neutrons. Consequently, more helium will be manufactured during the
era of nucleosynthesis. 2 Assuming that the baryon density in the early universe
corresponds at least to the present mass density observed in small groups of galaxies
(see below), it is found that an unacceptably high abundance of helium will be
manufactured if there are more than four species of neutrinos. Since the electron and
muon neutrinos are known to exist and the existence of a neutrino associated with
the recently discovered T-Iepton seems likely, this cosmological limit appears to
leave little room for the existence of other species of massless particles in thermal
equilibrium in the early universe.

What about the future evolution of our universe? The most important issue with
regard to future evolution is whether our universe is "open" or "closed," i.e., does
it correspond to the cases k = 0, - I, or the case k = +1? As discussed in section
5.2, if the universe is open it will expand forever, while if it is closed it will
eventually recontract. We may express the basic equations (5.2.14) and (5.2.15)
governing the dynamics of the present universe in terms of Hubble's constant,
H = a/a, and the deceleration parameter, q, defined by

q = -Ii a/(a)2 (5.4.6)

Since P = 0 in the present universe, we have

Defining 0 by

H 2 = 87TGp/3 - kc 2/ a 2

47TGp
q = 3H 2

o = 87TGp/3H 2

(5.4.7)

(5.4.8)

(5.4.9)

we see that q = 0/2, and the universe is closed (k = 1) if and only if 0 > 1, Le.,
p > Pc == 3H2/87TG.

There are, at present, four basic, independent pieces of observational evidence,
which, in conjunction with the above equations, yield indications of whether the
universe is open or closed: (i) the redshift-apparent magnitude relation for distant

2. However, if the expansion rate is tremendously speeded up, there will not even be enough time
for the nucleosynthetic reactions and the helium synthesis will decrease.
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objects, (ii) the mass density of the present universe, (iii) the age of the universe, and
(iv) the cosmic abundance of deuterium. We shall briefly discuss each of these in
tum.

As derived at the end of section 5.3a, for sufficiently nearby objects we have a
linear relation between redshift, z, and present proper distance, R, equation (5.3.9).
Also, for sufficiently nearby objects, the apparent luminosity of an object is propor
tional to its intrinsic luminosity divided by R 2

• (For very distant objects, one must
correct this simple relationship because of the expansion of the universe and the
curvature of space.) Thus, if we consider objects of a fixed intrinsic luminosity, for
sufficiently nearby objects, one will obtain a linear relation between In Z and In
[apparent luminosity] = apparent magnitude. We will not discuss here the difficult
tasks of (a) how to find "standard candles," i.e., objects of fixed intrinsic luminosity,
and (b) how to calibrate their intrinsic luminosity (or, equivalently, their distance)
by a chain of arguments whereby nearby standard candles are used to calibrate more
distant standard candles (see e.g., Weinberg 1972). The relation between In z and
apparent magnitude is, indeed, found to be linear, corresponding to a value of H
given by

H - 50 km S-I Mpc-I (5.4.10)

where 1 megaparsec (Mpc) = 3 X 1019 km. Because of uncertainties in the absolute
distance determinations, this value of H quite possibly could be in error by as much
as a factor of 2 and, indeed, some recent determinations have given the value
H - 100 km S-I Mpc-I. For sufficiently distant objects the relation between appar
ent magnitude and In z will depart from linearity in a way that depends on the
dynamical evolution of a (T) and, to a lesser extent, on the spatial geometry. In
principle, by examining these departures from linearity, we can determine q, which,
in tum, will tell us if the universe is open (q ~ 1/2) or closed (q > 1/2). However,
in practice, these departures begin to occur only for objects at such large distances
(z ~ 0.2, corresponding to R ~ 103 Mpc) that the light reaching us was emitted at
a significantly earlier epoch. Thus, there is reason to doubt whether our most distant
standard candles-the brightest galaxies in clusters of galaxies-are really
"standard" on account of evolutionary effects; these galaxies may well have been
significantly brighter (or dimmer) in the past. Until these evolutionary effects are
better understood, it will not be possible to draw definitive conclusions as to whether
the universe is open or closed by this approach.

The parameter n can be determined directly by measuring the mass density, p, of
the present universe and Hubble's constant H. As mentioned above, the uncertainty
in calibration of distances leads to considerable uncertainty in H. Fortunately, how
ever, the distance scale calibration also enters into the determination of p in such a
way that the ratio n ex: p/H2 is unaffected by these uncertainties, and thus n may
be determined much more precisely than either p or H. In the present universe,
ordinary matter appears to make the dominant contribution to p; the energy density
of the cosmic microwave background is -10-3 times the estimated matter density
quoted at the end of this paragraph. It appears that essentially all the matter in the
universe is concentrated in galaxies, since most possibilities for intergalactic matter



5.4 The Evolution of Our Universe 115

are excluded on observational or theoretical grounds. The masses of spiral galaxies
sufficiently nearby (:$15 Mpc) can be estimated from their rotational velocities. The
mass of a cluster of galaxies can be estimated from the random velocities of the
individual galaxies, assuming that the cluster is gravitationally bound. When these
masses are compared, some interesting discrepancies arise: The masses of galaxies
in binary systems and small clusters as determined by the second method appears to
be higher (by a factor of about 3) than the masses of galaxies determined by the first
method. Furthermore, the masses of galaxies in large clusters appears to be larger
(by a factor of at least 2 and possibly much larger) than the masses obtained for small
clusters. A possible explanation of the first discrepancy is that galaxies possess a
massive halo of underluminous material; this extra mass would not affect the galactic
rotation curve and would cause the first method (which estimates only the mass of
the luminous inner portion of the galaxy) to underestimate the total mass. The cause
of the second discrepancy is less clear, but it might be explained by the presence of
intercluster material or simply by the fact that galaxies in large clusters might tend
to be significantly more massive than galaxies in small clusters. Ifwe take the typical
mass of galaxies to be that determined by the second method for small clusters, we
obtain n - 0.04, corresponding to P - 2 X 10-31 g cm-3 if the value of H given
in equation (5.4.10) is used. This provides evidence in favor of an open universe,
but many possibilities for hidden mass remain, so this evidence is not conclusive.

Since our universe is presently matter dominated and should have been so for
almost all of its history, from our solution of Table 5.1 we find that if k = 0 the age
of the universe is related to Hubble's constant by

2
Te = 3H - 1.3 x 1010 years (5.4.11)

using the value of H given in equation (5.4.10). If k = -1, T will be larger than Te ,

while if k = +1, it will be smaller. Thus, comparison of the actual age of the
universe with the critical age, Teo will tell us whether the universe is open or closed.
Recall, however, that there is considerable uncertainty in the value of H, and thus
in the value of Te . The age of the universe can be estimated from the age of the oldest
objects we can find: globular star clusters (whose age can be estimated from the
theory of stellar evolution) and elements manufactured by the first stars (whose age
can be determined by radioactive dating if the element is radioactive). Study of these
objects yields an age of the universe in the range of 10 to 20 billion years. The rough
equality of this age with Te provides further strong confirmation of the "big bang"
origin of the universe. However, the uncertainties in both are too great to allow us
to conclude that the universe is open or that it is closed.

A final clue as to whether the universe is open or closed is provided by the cosmic
abundance of deuterium. As mentioned above, if the density of baryons in the early
universe was sufficient to give a baryon density in the present universe greater than
the critical density Pc = 3H2/87TG, then very little deuterium should remain after the
era of nucleosynthesis. However, measurements of the cosmic abundance of deu
terium have yielded mass fractions of -2 x 10-5

, corresponding to a present value
of n of -0.1. This provides evidence that the universe is open, but significant
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loopholes remain, such as the possibility that deuterium was manufactured by some
other process, or that most of the present mass density of the universe is in non
baryonic matter (e.g., a neutrino species with mass -100 eV).

In summary, many important issues in cosmology remain to be resolved. But it
is already clear that general relativity has provided us with a remarkably successful
picture of the spacetime structure of our universe.

Problems
1. Show that the Robertson-Walker metric, equation (5.1.11), can be expressed in
the form

[
~2 ]ds 2 = -dT2 + a2(T) + r2(d02 + sin 20 dcjJ2)

1 - kr 2

What portion of the 3-sphere (k = +1) is covered by these coordinates?

2. Derive Einstein's equations, (5.2.14) and (5.2.15), for the 3-sphere (k = + 1)
and hyperboloid (k = -1) cases.

3. a) Consider the modified Einstein's equation (5.2.17) with cosmological con
stant A. Write out the analogs of equations (5.2.14) and (5.2.15) with the A-terms.
Show that static solutions of these equations are possible if and only if k = +1
(3-sphere) and A > O. (These solutions are called Einstein static universes.) For a
dust filled Einstein universe (P = 0), relate the "radius of the universe" a to the
density p. Examine small perturbations from this "equilibrium" value of a, and show
that the Einstein static universe is unstable.

b) Consider the modified Einstein equation with A > 0 and Tab = O. Obtain the
spatially homogeneous, isotropic solution in the case k = O. (The resulting space
time actually is spacetime homogeneous and isotropic and is known as the de Sitter
spacetime. The solutions with k = ± 1 correspond to different choices of spacelike
hypersurfaces in this spacetime. See Hawking and Ellis 1973 for further details.)

4. Derive the cosmological redshift formula (5.3.6) by the following argument:
a) Show that VaUb = (il/a)hab , where hab is defined by equation (5.1.10) and

il = da/dT.
b) Show that along any null geodesic we have dw/dA = -kakbVaUb =

-(illa)w 2
, where A is an affine parameter along the geodesic.

c) Show that the result of (b) yields equation (5.3.6).

5. Consider a radial (dO/dA = dcjJ/dA = 0) null geodesic propagating in a
Robertson-Walker cosmology, equation (5.1.11).

a) Show that for all three spatial geometries the change in the coordinate IjJ of the
ray between times Tl and T2 is illjJ = J:7 dT/a(T). [Here, in the flat case (k = 0), IjJ
is defined to be the ordinary radial coordinate, IjJ = (x 2 + y2 + Z2)1/2.]



Problems II?

b) Show that in the dust filled spherical model, a light ray emitted at the big bang
travels precisely all the way around the universe by the time of the "big crunch."

c) Show that in the radiation filled spherical model, a light ray emitted at the big
bang travels precisely halfway around the universe by the time of the "big crunch."
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THE SCHWARZSCHILD SOLUTION

As described in the previous chapter, the theory of general relativity has made a
number of strikingly successful predictions concerning the spacetime structure of our
universe. However, cosmological observations presently are not good enough to
provide stringent quantitative tests of general relativity. Such quantitative tests are
provided by the gravitational fields occurring in our solar system, where precise
measurements can be made. Thus, it is of great interest to determine the solution of
Einstein's equation corresponding to the exterior gravitational field of a static,
spherically symmetric body (such as are our Sun and many other bodies, to an
excellent approximation). This problem was solved by Karl Schwarzschild (l916a),
only a few months after Einstein published his vacuum field equations. The
Schwarzschild solution without question remains one of the most important known
exact solutions of Einstein's equation.

As was previously discussed in section 4.4a, in the slow motion, weak field limit,
the predicitons of general relativity reduce to those of Newtonian theory. However,
the Schwarzschild solution, which describes the exact exterior field of a spherical
body, predicts tiny departures from Newtonian theory for the motion of planets in
our solar system, and, in addition, predicts the "bending of light," the gravitational
redshift of light, and "time delay" effects. These four predictions have been accu
rately confirmed by precise measurements. Indeed, except for the binary pulsar
measurements (see the end of chapter 4), the predictions of the Schwarzschild
solution in the weak field regime of our solar system are the only predictions of
general relativity to have been tested in a quantitatively precise manner.

But the Schwarzschild solution has provided us with a great deal more than the
ability to predict tiny effects occurring in our solar system. As will be discussed
further in section 6.2, sufficiently massive bodies are unable to support themselves
against complete gravitational collapse. After the collapse of a spherical body has
occurred, the entire spacetime geometry will be described by the Schwarzschild
solution, and thus the Schwarzschild solution tells us a great deal about the strong
field behavior of general relativity. As will be seen in section 6.4, the vacuum
Schwarzschild solution describing the end-product of gravitational collapse contains
a spacetime singularity which is hidden within a black hole.

We shall derive the Schwarzschild solution in section 6.1, using the tetrad method
of section 3.4b. In section 6.2 we consider the interior matter sources ofthe exterior
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vacuum Schwarzschild solution and thereby derive the relativistic equations of stellar
structure. The timelike and null geodesics of the Schwarzschild metric are studied
in section 6.3 and are used there to make predictions for the four tests of general
relativity: the gravitational redshift, the precession of Mercury's orbit, the bending
of light, and the "time delay" of light. Finally, in section 6.4 we examine the strong
field regime of the vacuum Schwarzschild solution.

6.1 Derivation of the Schwarzschild Solution
We seek all solutions of Einstein's equation which describe the exterior grav

itational field of a static, spherically symmetric body. Thus, we wish to find all
four-dimensional Lorentz signature metrics whose Ricci tensor vanishes and which
are static and possess spherical symmetry. Our first task is to define more precisely
the meaning of the terms "static" and "spherically symmetric" and to choose a
convenient coordinate system for analyzing this class of spacetimes. It will be
assumed in the discussion below that the reader has read (or will refer to)
appendix C.

A spacetime is said to be statiofUlry if there exists a one-parameter group of
isometries, cPt, whose orbits are timelike curves. This groups of isometries expresses
the "time translation symmetry" of the spacetime. Equivalently, a stationary space
time is one which possesses a timelike Killing vector field, ~a. A spacetime is said
to be static if it is stationary and if, in addition, there exists a (spacelike) hypersurface
I which is orthogonal to the orbits of the isometry. By Frobenius's theorem (see
appendix B) this is equivalent to the requirement that the timelike Killing vector field
e satisfy

(6.1.1)

The meaning of this extra condition of hypersurface orthogonality perhaps can be
seen best by introducing convenient coordinates for static spacetimes as follows. If
~a ;/= 0 everywhere on I, then in a neighborhood of I, every point will lie on a
unique orbit of e which passes through I. Assuming e ;/= 0, we choose arbitrary
coordinates {x IL} on I and label each point p in this neighborhood of I by the
parameter, t, of the orbit which starts from I and ends at p, and the coordinates, Xl,

x 2, x 3
, of the orbit at I. Since this coordinate system employs the Killing parameter,

t, as one of the coordinates, the metric components in this coordinate basis will be
independent of t. Furthermore, since the surface It-defined as the set of points
whose "time coordinate" has the value t-is the image of I under the isometry cPt,
it follows that each It is also orthogonal to e. Thus, in these coordinates, the metric
components take the form

(6.1.2)

where V 2 = -~ae, and the absence of dt dx IL cross terms expresses the orthogo
nality of e with I. A stationary but nonstatic metric unavoidably must have dt dx IL

cross terms in any coordinate system which uses the Killing parameter as one of the
coordinates.
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From the explicit fonn of a static metric, equation (6.1.2), it can be seen that the
diffeomorphism defined by t~ -t (i.e., the map which takes each point on each It
to the point with the same spatial coordinates on I- t), is an isometry. Thus, in
addition to the "time translation" symmetry, t~ t + constant, possessed by all
stationary spacetimes, the static spacetimes also possess a "time reflection" sym
metry. Physically, fields which are time translation invariant can fail to be time
reflection invariant when rotational motion is involved, since the time reflection will
change the direction of rotation and thus will not restore one to the original
configuration. Thus, for example, a rotating fluid ball may have a time-independent
matter and velocity distribution, but does not possess a time reflection symmetry. In
the case considered here, the failure of equation (6.1.1) to hold implies that neigh
boring orbits of ~a "twist" around each other. This helps explain why equation
(6.1.1) is the necessary and sufficient condition for the existence of a time reflection
symmetry.

A spacetime is said to be spherically symmetric if its isometry group contains a
subgroup isomorphic to the group SO(3), and the orbits of this subgroup (i.e., the
collection of points resulting from the action of the subgroup on a given point) are
two-dimensional spheres. The SO(3) isometries may then be interpreted physically
as rotations, and thus a spherically symmetric spacetime is one whose metric remains
invariant under rotations. The spacetime metric induces a metric on each orbit
2-sphere, which, because of the rotational symmetry, must be a multiple of the
metric of a unit 2-sphere, and thus can be completely characterized by the total area,
A, of the 2-sphere. In spherically symmetric spacetimes it is convenient to introduce
the function r, defined by

r = (AI47T)1/2 (6.1.3)

Thus, in spherical coordinates (0, c/J), the metric on each orbit 2-sphere takes the
fonn

(6.1.4)

In flat, three-dimensional Euclidean space, r would also be the value of the radius
of the sphere, i.e., the distance from the surface of the sphere to its center. However,
in a curved space, a sphere need not have a center (e.g., the manifold structure could
be, say, [R x S2, rather than [R3); and even if it does, r need not bear any relation
to the distance to the center. Nevertheless, we shall refer to r as the "radial
coordinate" of the sphere.

If a spacetime is both static and spherically symmetric, and if the static Killing
field ~a is unique (as we shall assume), then ~a must be orthogonal to the orbit
2-spheres. Namely, if ~a is unique, it must be invariant under all the rotational
isometries. However, this requires its projection onto any orbit sphere to vanish,
since a nonvanishing vector field on a sphere cannot be invariant under all rotations.
Thus the orbit spheres lie wholly within the hypersurfaces, It, orthogonal to ~a.

Convenient coordinates on the spacetime may be chosen as follows: We select a
sphere on I = I o and choose spherical coordinates (0, c/J) on it. We "carry" these
spherical coordinates to the other spheres of I by means of geodesics orthogonal to



(6.1.6a)

(6.1.6b)

(6.1.6c)

(6.1.6d)

6.1 Derivation of the Schwarzschild Solution 121

the two-sphere (similar to the manner in which we used the isotropic observers to
"carry" coordinate labels to other hypersurfaces in section 5. 1). Provided that
Var;/= 0, we choose (r, (), cjJ) as coordinates in It and, finally, we choose (t, r, (), cjJ)
as coordinates for the spacetime according to the prescription described above
equation (6.1.2). In these coordinates, the metric of an arbitrary static, spherically
symmetric spacetime\ takes the simple form

ds 2 = -j(r)dt2 + h(r)dr2 + r 2(d()2 + sin2() dcjJ2) (6.1.5)

It should be kept in mind, however, that, in addition to the well understood break
down of the spherical coordinates at the north and south poles of the spheres, this
coordinate system breaks down at points where ~a = 0 or Var = 0 (or, more gener
ally, where ~a and va r become collinear). As we shall see in section 6.4, this occurs
in the strong field region of the Schwarzschild solution.

Most of the work required to obtain the static, spherically symmetric vacuum
solutions of Einstein's equation has now been completed, as we have reduced the
general problem of determining 10 unknown functions (the metric components, gp.v)
of four variables (the four coordinates) to determining two functions (fand h) of one
variable (r). The remaining tasks are to compute the Ricci tensor, Rab , of the metric,
equation (6.1.5), and solve the equation Rab = 0 forj and h. We shall calculate Rab
using the second tetrad approach of section 3.4b.

A convenient orthonormal basis for the metric of equation (6.1.5) is

(eO)a = P/2(dt)a

(e\)a = h \/2(dr)a

(e2)a = r(d())a

(e3)a = r sin ()(dcjJ)a

Using the ordinary derivative, aa, of our coordinate system, we find

qa(eO)b] = ~j-\/21'(dr)[a(dth] (6.1.7)

qaCe\h] = 0 (6.1.8)

qaCe2h] = (dr)[a(d()h] (6.1.9)

qa(e3h] = sin ()(dr)[a(dcjJ)b] + r cos ()(d())[a(dcjJh] (6.1.10)

where l' = djldr. Thus, according to equation (3.4.25) (or equivalently, eq.
[3.4.27]), we must solve the following equations for the connection one-forms

1. It is worth pointing out that every stationary, spherically symmetric spacetime must be static. This
is because, as in the static case, the stationary Killing field ga must be orthogonal to the orbit spheres
and, in addition, gaVar = 0 since r is a geometrical quantity. Hence, ga must be orthogonal to the
hypersurface, I, generated by the integral curves of var starting from an orbit sphere. (If Var = 0, this
argument breaks down, but the conclusion of hypersurface orthogonality of ga remains valid.)
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4j-l/21'(dr)[a (dth] = h 1/2(dr)[aWb}01 + r(dO)[aWb}02

+ r sin 0(dC/J)[aWb}03

o = p/2(dt)[aWb}01 + r(dO)[aWb]12 + r sin 0(dC/J)[aWb]13

(dr)[a(dO)b] = -P/2(dt)[aWb]20 + h 1/2(dr)[aWb]2l + r sin 0(dC/J)[aWb]23

sin o(dr)[a (dcjJh] + r cos o(dO)[a (dcjJh] = _jl/2(dt)[aWb]30

+ h 1/2(dr)[aWb]3l + r(dO)[aWb]32

A plausible guess at solving equation (6.1.11) is

Wb02 = Wb03 = 0

(6.1.11)

(6.1.12)

, (6.1.13)

(6.1.14)

(6.1.15)

1 l'
WbOI = '2 (fh)I/2 (dth + (Xl(drh (6.1.16)

where the function (Xl is undetennined by equation (6.1.11). Substitution of this trial
solution in equation (6.1.12) then requires (Xl = O. From equation (6.1.12), we
might also guess Wb\2 = Wbl3 = 0, but this leads to inconsistency later, so we merely
conclude that

Substituting our trial solution in equation (6.1.13), we find

(X2 = _h- l/2

h 1/2
Wb23 = - -'-0 (X3(dr)b + (Xs(dcjJh

rsm

(6.1.17)

(6.1.18)

(6.1.19)

(6.1.20)

Finally, substitution into equation (6.1.14) yields

(X3 = 0 (6.1.21)

(X4 = -h- l / 2 sin 0 (6.1.22)

(xs = -cos 0 (6.1.23)

Since we have found no inconsistency, this means that our trial solution (generated
by the initial guess Wb02 = Wb03 = 0) is, in fact, the solution. Thus, we have found

l'

(6.1.24)

(6.1.25)

(6.1.26)

(6.1.27)
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Wb23 = -cos ()(d(j»b (6.1.28)

From equation (3.4.20) (or, equivalently, eq. [3.4.28]) we obtain the Riemann
tensor with remarkably little total computation compared with other approaches (see
problem 2),

d _
Rabol = -RablO = d;[(jh) 1/21'](dr)[a(dt)b]

Rab02 = -Rab20 = j-I/2h- 11'(d()[a(dt)b]

Rab03 = -Rab30 = j-I/2h- I1' sin ()(d(j»[a(dt)b]

Rabl2 = -Rab21 = h-3/2h ,(dr)[a (d()b]

Rab13 = -Rab31 = sin () h-3/2h ,(dr)[a (d(j»b]

Rab23 = -Rab32 = 2(1 - h- I) sin ()(d()[a(d(j»b]

(6.1.29)

(6.1.30)

(6.1.31)

(6.1.32)

(6.1.33)

(6.1.34)

The Ricci tensor is easily computed from the Riemann tensor via equation
(3.4.22). Equating it to zero, we obtain the vacuum Einstein equation for a static,
spherically symmetric spacetime,

o = Roo = ROlO
I + R020

2 + R030
3

= !(jh)-1/2~[(jh)-1/1'] + (rjh)-y'
2 dr

o = R l1 = - !(jh)-1/2 ~ [(jh)-1/21'] + (rh 2)-lh'
2 dr

0= R22 = -!(rjh)-Y' + !(rh 2)-lh' + r-2(1 - h- I)
2 2

(6.1.35)

(6.1.36)

(6.1.37)

where Rp.v == Rab(ep.t(ev)b. We also find that R33 = R22 and that the off-diagonal
components of Rp.v vanish identically, as could be predicted from symmetry argu
ments similar to those used in section 5.2.

Adding equations (6.1.35) and (6.1.36), we obtain

which implies
1'/j+h'/h=O (6.1.38)

(6.1.39)

where K is a constant. By re-scaling the time coordinate, t~ K I
/
2t, we may set

K = 1. Equation (6.1.37) now yields

-1' + 1 - j = 0 (6.1.40)
r

i.e.,
d
-(rf) = 1
dr

(6.1.41)
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which implies

f = 1 + C /r (6.1.42)

(6.1.43)

(6.1.45)

where C is a constant. Equation (6.1.42) together with equation (6.1.39) (with
K = 1) solves equations (6.1.35)-(6.1.37), and thus we have found the general
solution, first discovered by Schwarzschild, of the vacuum Einstein equation for
static, spherically symmetric spacetimes,

ds 2 = - (1 + ~)dt2 + (1 + ~rldr2 + r2dil2

where dil2 is shorthand for (d(J2 + sin2(Jdcf>2).
Perhaps the first point to notice about the Schwarzschild solution is that it is

asymptotically flat,2 i.e., as r~ 00, the metric components approach those of Min
kowski spacetime in spherical coordinates. This allows us to interpret the Schwarzs
child metric as the exterior gravitational field of an isolated body. We may interpret
the constant C by comparing the behavior of a test body in the weak field regime
(r ~ 00) with the behavior of a test body in the Newtonian theory of gravity.
Examination of the geodesics of the Schwarzschild metric (see section 6.3)-or,
equivalently, direct comparison of the Schwarzschild metric with the Newtonian
metric discussed in section 4.4a (which, however, is not expressed in a convenient
gauge to facilitate the comparison)-shows that for large r, the behavior of a test
body in the Schwarzschild solution with parameter C agrees with the behavior of a
test body in a Newtonian gravitational field of mass M = -C/2 (i.e., restoring the
G's and e' s, GM /e 2 = -C/2). Thus, we interpret -C/2 as the total mass3 of the
Schwarzschild field, and we may write the Schwarzschild metric in its final form,

ds 2 = - (1 - ~)dt2 + (1 - ~rldr2 + r2dil2 (6.1.44)

A striking feature of the Schwarzschild solution is that the metric components
become singular in the strong field regime at both r = 2M and r = O. This singular
behavior of the components could be due to either (i) a breakdown of the coordinates
used to obtain the general form of the metric, equation (6.1.5), because ga = 0 or
Var = 0 (or ga and var become collinear) or (ii) a true singularity of the spacetime
structure. We shall see in section 6.4 that the "singularity" at r = 2M is caused
merely by a breakdown of the coordinates, while the singularity at r = 0 is a true,
physical singularity. However, we note here that the "singularity" at r = 2M occurs
at a numerical value of the radial coordinate given by

rs = 2G~ = 3(~) km
e M0

2. A precise, general notion of asymptotic flatness will be given in chapter II.
3. A general definition of total mass for asymptotically flat solutions (based on this idea of examining

the distant gravitational field) will be given in chapter II.
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where M0 = 2 x 1033 g is the mass of the Sun. Thus, for an "ordinary body," such
as the Sun or the Earth, the Schwarzschild radius, rs, is well inside the radius of the
body where, of course, the vacuum Schwarzschild solution is no longer valid.
Indeed, the coordinate and physical singularities respectively at r = rs and r = 0 are
relevant only for bodies which have undergone complete gravitational collapse.

Finally, we mention that the vacuum Einstein equation also can be solved for a
general spherically symmetric spacetime, without the assumption of staticity. As was
first shown by Birkhoff (1923), the Schwarzschild solution remains the only solution
of this more general system of equations (see, e.g., Hawking and Ellis 1973 for a
proof). Thus, all spherically symmetric spacetimes with Rab = 0 are static. This
result, known as Birkhoff's theorem, is closely analogous to the fact that the Cou
lomb solution is the only spherically symmetric solution of Maxwell's equations in
vacuum. It can be interpreted as saying that in gravity, as in electromagnetism, there
exists no monopole (i.e., spherically symmetric) radiation.

6.2 Interior Solutions
We tum our attention, now, to the static, spherically symmetric solutions of

Einstein's equation with a perfect fluid stress-energy tensor,

(6.2.1)

In order to be compatible with the static symmetry of the spacetime the fluid
4-velocity, ua, must point in the same direction as the static Killing vector field, ga,
Le. ,

ua = -(eot = -P/2(dt)a (6.2.2)

where f is the function appearing in the general metric form equation (6.1.5). The
solutions we seek describe the possible interior fluid sources of the exterior
Schwarzschild metric, and thus our investigation will yield the equations of structure
for static, fluid objects, such as stars.

Einstein's equation with a fluid present is obtained simply by adding the appropri
ate stress-energy terms to equations (6.1.35)-(6.1.37). We shall take the three
independent equations in the form

1
817'Too = 817'P = Goo = Roo + 2(RoO + R1

1 + Rl + R3
3

)

= (rh 2)-W + r-2(l - h- I)

1
817'1\1 = 817'P = G lI = RlI - 2(RoO+ R1

1 + Rl + R3
3

)

= (rfh)-Ij' - r-2(l - h- I)

817'122 = 817'P = G22 = .!(fh)-1/2~[(fh)-1/2j']
2 dr

+ .!(rfh)-Ij' - .!(rh2)-W
2 2

(6.2.3)

(6.2.4)

(6.2.5)
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Equation (6.2.3) involves only h. (This could have been predicted from the
general analysis of the structure of Einstein's equation given in chapter 10, which
shows that the equation Goo = 817'Too is an "initial value constraint" which, in the
static case, involves only the geometry of the spacelike hypersurface I orthogonal
to ga and thus cannot involve f.) It can be rewritten in the form

1 d [ -I ]- - r(l - h ) = 817'p
r 2 dr

from which it follows immediately that the solution for h is

where

(6.2.6)

(6.2.7)

(6.2.8)m(r) = 417' f: p(r')r'2dr' + a

where a is a constant. Smoothness of the metric on I at r = 0 requires that as r ~ 0
the area of spheres approach 417' times the square of their proper radius, i.e., that
h(r) ~ 1 as r ~ O. Thus, in order to avoid a "conical singularity" in the metric at
r = 0, we must set a = O. Since I must be spacelike for a static configuration, we
see that a necessary condition for staticity is h ~ 0, i.e.,

r ~ 2m(r) (6.2.9)

If p = 0 for r > R, our solution for h, equation (6.2.7), joins on to the vacuum
Schwarzschild solution with total mass

M = m(R) = 417' f p(r)r2dr (6.2.10)

Equation (6.2.10) is formally identical to the expression for total mass in Newtonian
gravity. Note, however, that this formal analogy is misleading because the proper
volume element on I (see appendix B) is~ d 3x = h1/2r 2 sin () drd()d¢ so that
the total proper mass is

M p = 417' f p(r)r2[ 1 - 2~(r)] -1/2dr (6.2.11)

The difference between M and Mp can be interpreted as the gravitational binding
energy, ED, of the configuration,

ED = Mp - M

which is always positive since Mp > M.
If we write

equation (6.2.4) becomes

(6.2.12)

(6.2.13)



d¢ mer) + 47Tr 3p
dr - r[r - 2m(r)]
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(6.2.14)

In the Newtonian limit, we have r 3p « mer) and mer) « r, so equation (6.2.14)
reduces to

d¢ mer)
dr =7 (6.2.15)

which is simply the spherically symmetric version of Poisson's equation for the
Newtonian gravitational potential. Thus, in the static spherically symmetric case we
may view ¢ = ! In f as the general relativistic analog of the Newtonian potential.
For nonstationary configurations, however, there is no known analog in general
relativity of the Newtonian potential.

If we substitute our results, equations (6.2.7) and (6.2.14), into our final equation
(6.2.5), it is apparent that we will obtain an equation fordP /dr. However, the rather
messy algebra required for doing this can be circumvented by noting that

(e/L)b87TVaTab = (e/Lh Va (87TTab - Gab)

= Va[(e/LhC87Tpb - Gab)] - Wab/L(87TTab - Gab) (6.2.16)

where Wab/L = Va (e/Lh· Setting JL = 1, we find the first term on the right-hand side
of equation (6.2.16) vanishes if equation (6.2.4) is satisfied. Thus, since W221 =1= 0,
we see that (given eqs. [6.2.3] and [6.2.4]) the vanishing of (87TT22 - G 22) is
equivalent to

(elhVaPb = 0 (6.2.17)

and hence we may replace equation (6.2.5) by equation (6.2.17). We have already
calculated this component of VaTab for a perfect fluid in equation (4.3.8), and thus,
without further work, we obtain [using (elh = h 1/2(drh = h-1/2(a/ arh],

h-1/2dP = _(P + p)(elhuaVau b = _h- 1/2(P + p)d¢ (6.2.18)
~ ~

where equations (6.2.2) and (6.2.13) were used for the last equality. Using equation
(6.2.14), we may eliminate d¢/dr to obtain our final result,

dP mer) + 47Tr 3p
dr -(P + p) r[r - 2m(r)] (6.2.19)

Equation (6.2.19) is known as the Tolman-Oppenheimer-Volkoffequation of hydro
static equilibrium. In the Newtonian limit (P « p, mer) « r) it reduces to the
Newtonian hydrostatic equilibrium equation. 4

dP pm(r)
dr = --;z (6.2.20)

4. It is interesting to note that although general relativity has little effect on the equilibrium
configurations of stars with P « p and mer) « r, it still can have a significant influence on the
stability of stars with equation of state P = CpA with Anear the critical value of 4/3; see Chandrasekhar
(1964).
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In summary, we have found that the spacetime geometry inside a static, spherical
fluid star is

where

m(r) = 417' J: p(r')r,2dr'

(6.2.21)

(6.2.22)

(6.2.24)

(6.2.23)

and ¢ is determined from equation (6.2.14). The necessary and sufficient condition
for equilibrium is that equation (6.2.19) be satisfied.

Thus, for fluid matter with a given equation of state, P = P(p), equilibrium
configurations can be determined as follows: We arbitrarily prescribe a central
density Pc, and hence a central pressure Pc = P(Pc). Then we integrate equations
(6.2.19) and (6.2.22) outward until we reach the surface of the star, P = P = 0, at
which point we join the solution onto the vacuum Schwarzschild solution, equation
(6.1.44). Finally, we solve for ¢ by integrating equation (6.2.14), subject to the
boundary condition ¢ ~ 0 as r ~ 00 (or, equivalently, by requiring ¢ to match onto
the Schwarzschild value at the surface of the star). This procedure differs from that
used in Newtonian theory only in that equation (6.2.19) has replaced equation
(6.2.20), and equation (6.2.14) has replaced equation (6.2.15).

The most important difference between equilibrium configurations in general
relativity and Newtonian gravity can be seen from the fact that (assuming P ~ 0) for
a given density profile p(r) ~ 0, the right-hand side of the relativistic hydrostatic
equilibrium equation (6.2.19) is always larger in magnitude than the right-hand side
of the Newtonian equation (6.2.20). This means that for a given p(r), the central
pressure, Pc, required for equilibrium is always higher in general relativity than in
Newtonian theory; i. e., it is harder to maintain equilibrium in general relativity. This
is dramatically illustrated by consideration of uniform density configurations, corre
sponding to an incompressible fluid of density Po,

{

Po (r ~ R)
p(r) = 0 (r > R)

and hence (in both general relativity and Newtonian theory)

4
m(r) = 317'r 3po (r ~ R)

The Newtonian equation of hydrostatic equilibrium (6.2.20) is easily integrated to
yield (for r ~ R),

(6.2.25)

where the boundary condition P(R) = 0 has been imposed. Thus, the central pres
sure of a Newtonian uniform density star is



(6.2.27)
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Pc = ~1TP5R2 = (~r3M2/3p~/3 (6.2.26)

which is finite for all values of Po and R, i.e., equilibrium can be achieved with
sufficiently large pressures for all Po and R. On the other hand, the general relativistic
equation of hydrostatic equilibrium (6.2. 19) also can be integrated exactly, as was
first done by Schwarzschild (1916b), yielding

[
(1 - 2M/R)1/2 - (1 - 2Mr2/R 3)1/2 J

per) = Po (1 - 2Mr2/R 3)1/2 - 3(1 - 2M/R)I/2

Thus, the central pressure required for equilibrium of a uniform density star in
general relativity is

[
I - (1 - 2M/R)I/2 ]

Pc = Po 3(1 _ 2M/R)I/2 _ I (6.2.28)

For R » M, equation (6.2.28) reduces to the Newtonian value, equation (6.2.26).
However, now Pc becomes infinite when

Le., when

3(1 - 2M/R)I/2 = 1

9
R =-M

4

(6.2.29)

(6.2.30)

(6.2.31)

Thus, in general relativity, uniform density stars with M > 4R/9 simply cannot
exist. Another way of stating this result is that the maximum possible mass of a star
of uniform density Po is

_ 4 -1/2

Mmax - 9(31T)1/2Po

The existence of upper mass limits in general relativity is not an artifact of having
restricted consideration to stars of uniform density. In fact, if we assume5 only that
the density, per), is nonnegative and is a monotone decreasing function of r,
dp/dr ;a 0, then we can derive the following two types of upper mass limits for
static, spherical stars in general relativity: (i) For stars of fixed radius R, the max
imum possible mass is given by the uniform density value, Mmax = 4R/9. (ii) For
a fixed equation of state below a density Po (which is physically realistic at low
densities), an upper mass limit exists independent of the equation of state at higher
densities than Po. (The value of this upper mass limit depends, of course, on the value
of Po and the equation of state assumed to hold below Po.) We now shall derive the

5. In fact, the assumption that p ~ 0 follows from the monotone decrease assumption, dp/dr :;;; 0,
since the interior solution must eventually match onto the exterior Schwarzschild solution with p = O.
Conversely, the assumption that dp/dr :;;; 0 follows from p ~ 0 if we assume, in addition, that the fluid
has an equation of state, P = pep), with P ~ 0 and dP/dp ~ 0, since equation (6.2.19) implies
dP/dr :;;; O.
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upper mass limit (i), and then indicate how the upper mass limit (ii) is obtained.
The existence of an upper mass limit at fixed star radius R already follows from

the condition h ~ 0, which, as seen from equation (6.2.9), implies that a necessary
condition for staticity is

M ~R/2 (6.2.32)

(6.2.33)

(6.2.37)

(6.2.36)

We can sharpen this limit to M ~ 4R/9 using the conditionf ~ 0 which states that
the Killing field ga is timelike everywhere. To do so-assuming only that p ~ 0 and
dp/dr ~ 0 but without any assumptions whatsoever about P-we must examine the
two independent equations which do not involve P from the basic set
(6.2.3)-(6.2.5). We already have solved equation (6.2.3) for h, so the remaining
equation is obtained by taking the difference of equations (6.2.4) and (6.2.5),

o = Gl1 - G22 = ~(rfh)-I!, - r-2(l - h- I) + ~(rh2)-lhl

-.!. (fh)-1/2~ [(fh)-1/2!,]
2 dr

Substituting our solution for h, equation (6.2.7), in the second and third terms, and
performing a few algebraic manipulations, we find

~ [r-Ih-1/2 d~:2] = (fh)1/2 ~ [mx)] (6.2.34)

Since dp/dr ~ 0, the average density, which is proportional to m(r)/r 3
, also must

decrease monotonically with r, so we have

~ [r- Ih-1/2 dfl
/
2 ] ~ 0 (6235)

~ ~ . .

Integrating this inequality inward from the surface, R, of the star to radius r, we
obtain

1 djl /2 1 dfl /2
rh 1/2(r) T (r) ~ Rh 1/2(R) T (R)

(l - 2M/R)1/2 d ( 2M)
1/2

1= - 1 - - = M/R 3

R dr r r=R

where we have used the fact that our interior solution must join on smoothly6 to the
Schwarzschild solution, equation (6.1.44), and hence we have calculated the deriv
ative of fl /2 at r = R using the exterior Schwarzschild metric. Multiplying equation
(6.2.36) by rh 1/2 and integrating inward again from R to 0, we obtain

jl /2(0) ~ (l - 2M/R)1/2 - ~ f [1 - 2~(r) rl/2rdr

6. As long as p and P are continuous at r = R, equations (6.2.3)-(6.2.5) imply that h and! are at
least C 1 there.
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where again we have used p/2(R) = (l - 2M/R)I/2 and we have also used the
explicit solution, equation (6.2.7), for h. Now, the condition dp/dr ~ 0 implies that
m(r) cannot be smaller than the value it would have for a uniform density star
(dp/dr = 0 ),

m(r) ~ Mr 3/R 3 (6.2.38)

Hence, the second term on the right-hand side of equation (6.2.37) will be smallest
in magnitude when equality holds in equation (6.2.38). Thus, we obtain

P/2(0) ~ (l - 2M/R)I/2 - ; f (1 -~;) -1/2rdr

3 1
= - (l - 2M/R)I/2 - -

2 2
(6.2.39)

(6.2.40)

Thus, the conditionf1
/

2(0) ~ 0 implies that a necessary condition for staticity is

(l - 2M/R)I/2 ~ ~

i.e. ,

M ~ 4R/9 (6.2.41)

(6.2.42)

(6.2.43)

which is the desired result. Again, we emphasize that absolutely no assumptions
concerning the pressure, P, of the star entered into the derivation of equation
(6.2.41).

Given the existence of an upper mass limit at fixed radius, the existence of an
upper mass limit for a given equation of state below density Po (assuming this
equation of state is physically reasonable and that dp/dr ~ 0) should not be sur
prising. If the equation of state does not become very "stiff" (i.e., large P) at low
densities (which is what we mean by "physically reasonable"), an upper mass limit
will exist for stars whose density is everywhere less than Po. Since dp/dr ~ 0, stars
whose density fails to be less than Po must consist of a "core" of mass mo and radius
ro where p ~ Po, surrounded by an "envelope" where p < Po. Given the equation
of state for p < Po, the total mass, M, is determined by the parameters mo and ro.
The function M(mo, ro) will be continuous in mo and ro. However, since the core
density is at least Po everywhere, we have the lower mass limit for the core,

4 3
mo ~"3 7TTo Po

On the other hand, from the above upper total mass limit, equation (6.2.41), we
would expect an upper limit on the core mass mo for a given core radius ro. Indeed,
the same derivation as led to equation (6.2.41)-except that we use the core radius,
ro, rather than the surface of the star as the boundary, and we use equation (6.2.14)
rather than matching to the Schwarzschild solution to evaluate dP/2/ dr at ro-yields
the more stringent limit,

<: 2 [1 6 2p + (1 + 6-r02Po)I/2]mo = 9 ro - 7T'ro 0 "
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where Po = P (Po) is the pressure at the core-envelope boundary. But equations
(6.2.42) and (6.2.43) restrict mo and ro to a compact region of the mo-ro plane. Thus,
M(mo, ro) is a continuous function defined on a compact set. Therefore, M is
bounded!

It should be pointed out that upper mass limits for a given equation of state at all
densities occur in Newtonian theory also. The important difference which occurs in
general relativity is that one obtains a limit which is independent of the equation of
state at sufficiently high densities. Since there is unavoidable uncertainty in our
knowledge of the physically correct equation of state at very high densities, this
independence is essential to a derivation of a firm upper mass limit.

For cold matter, the dominant contribution to the pressure at densities much less
than nuclear density (-1014 g cm-3

) arises from electron degeneracy pressure. At
"low" densities (n « me

3c 3/li3 - 1031 cm-3
, where n is the number density of

electrons and me is the mass of the electron) this source provides a pressure at T = 0
of

Ii2(31T2)2/3
P = n 5/ 3

5me

whereas at high densities (n » me 3c 3/li3) we have

lic(31T 2)1/3
P = n 4/ 3

4

(6.2.44)

(6.2.45)

At densities approaching nuclear density, cold matter will be mainly in the form of
free neutrons, and a similar degeneracy pressure due to neutrons becomes important.
The precise form obtained for the equation of state depends, of course, on assump
tions concerning the form of matter at the density under consideration and the
microscopic forces acting between the fundamental constituents. While these factors
are well understood at low densities, significant uncertainties arise at nuclear density
and above.

The mass, M, and radius, R, of equilibrium configurations of cold matter for
central densities between -105 g cm-3 and -1017 g cm-3 are shown in Figure 6.1.
Near and above nuclear density, Figure 6.1 is only a sketch of the qualitative features
found for physically reasonable equations of state, since the precise values of M and
R in this region depend upon many assumptions. (For a tabulation of exact values
in the nuclear density regime for a wide variety of equations of state, see Arnett and
Bowers 1977.) Even well below nuclear density the predicted equilibrium
configurations depend somewhat upon assumptions involving the composition of the
star. Cold bodies on the segment AB of the curve comprise stable equilibrium
configurations supported by electron degeneracy pressure. These bodies are known
as white dwarfs. As first shown by Chandrasekhar (see Chandrasekhar 1939), the
maximum mass of a white dwarf is given by7

7. We can see why an upper mass limit of this magnitude should exist by comparing the central
pressure needed to hold up a uniform density Newtonian star, equation (6.2.26), with the high density
limit of the electron degeneracy pressure, equation (6.2.45). Taking P = i-'NmNn, where mN denotes the
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Fig. 6.1. The equilibrium configurations of cold matter. Given an equation of state,
P = P(p), an equilibrium configuration is uniquely determined by the value of the
central density pc. The masses and radii of these configurations are shown here for
values of pc ranging from -105 g cm-3 at point A to -1017 g cm-3 beyond point D.
In the white dwarf regime, the values of M and R depend somewhat upon the
assumed composition of the star. In the neutron star regime, the values of M and R
depend greatly upon assumptions about the state of matter as well as assumptions
about the interactions between the fundamental constituents of matter. In this latter
regime, the figure is only a rough sketch of the qualitative features found for most
equations of state.

Me = 1.4(:J2M0
where J.LN is the number of nucleons per electron and M0 denotes the mass of the Sun
(-2 x 1033 g). In Newtonian theory with a fixed value of J.LN' the mass mono
tonically increases with central density, approaching the limiting mass (6.2.46) for
a configuration with Pc - 00 at radius R - O. In general relativity with a fixed value
of J.LN' there is a "turnover" in the curve (i.e., the mass begins to decrease with Pc)
at a finite value of Pc (Chandrasekhar and Tooper 1964), although the value of Me
is not significantly changed. However, the turnover at point B shown in Figure 6.1

mass of a nucleon, equating the two pressures, and restoring the O's and c's, we obtain the order of
magnitude estimate
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is due to the increase in J.LN at high density caused by the conversion of protons and
electrons to neutrons. General arguments (see Sorkin 1981) show that an instability
sets in at the "turnover" point B of the curve, making the configurations on the
segment BC unstable. However, configurations on the segment CD are stable. Such
bodies, called neutron stars, are composed mainly of neutrons and are supported
largely by neutron degeneracy pressure. Since the density of matter in a neutron star
is comparable to that of atomic nuclei, a neutron star is much like a huge, highly
neutron-enriched nucleus (with atomic weight ~ 1057

) except that it is bound to
gether by gravitation rather than by nuclear forces. On accout of uncertainties in the
equation of state, the value of the maximum possible mass, M (D), of a neutron star
is considerably more uncertain than the white dwarf limit (6.2.46). However, most
physically reasonable equations of state yield M (D) below 2 M 0 . Beyond point D on
the curve, the configurations again become unstable.

Ifone applies the above upper mass limit argument to the equation of state for cold
matter, choosing Po of the order of nuclear densities (so that there are few uncer
tainties in the equation of state below Po), a firm upper mass limit of ~5 M0 is
obtained (see Hartle 1978). If the general features of the equation of state are trusted
somewhat beyond nuclear density, the above limit of ~2 M 0 appears to be a realistic
upper limit to the maximum possible mass of a spherical body composed of cold
matter. We should emphasize, however, that our analysis applies only to the spher
ical case, and thus, for example, these upper mass limits need not hold for rapidly
rotating bodies.

The existence of an upper mass limit for cold matter has extremely important
consequences for the ultimate fate of stars. Ordinary stars are supported against
collapse under their own weight by ideal gas pressure resulting from high tem
perature. This pressure is much higher than the pressure that could be produced by
cold matter at comparable densities, and the above mentioned upper mass limits for
cold stars do not apply. However, a hot star radiates energy from its surface, and
unless this energy is replenished, hydrostatic equilibrium cannot be maintained. If
stars had no source of energy, they would contract-very slowly at first, but even
tually on dynamic time scales when instabilities set in-until such high densities
were reached that the "cold matter" pressure would dominate the thermal con
tribution to the pressure. At that point, if the mass of the star were sufficiently small
that stable equilibrium could be achieved with this cold matter pressure, the star
would simply cool down, remaining in static equilibrium forever. On the other hand,
if the mass of the star were greater than the cold matter upper mass limit, equilibrium
never could be achieved, and the star would have to undergo complete gravitational
collapse.

In fact, stars, of course, do have an internal source of energy: nuclear reactions.
Consequently, they are able to stave off-typically for billions of years, though for
much less time for very massive stars-their ultimate fate of either support by cold
matter pressure or complete collapse. However, this does not alter the fundamental
conclusion that stars with mass greater than the cold matter upper mass limit must
eventually undergo complete gravitational collapse, unless, of course, they shed
enough mass during the course of stellar evolution to fall below this limit.
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When a star forms by condensation of a gas cloud, it contracts and heats up until
the central temperature and density are sufficiently high that nuclear reactions con
verting hydrogen to helium occur there. The collapse of the star is then halted, and
a long lasting equilibrium is maintained until finally a large core of helium is built
up. If the star is sufficiently massive, contraction of this core then will take place
until helium reactions begin to occur, resulting in the formation of heavier elements.
This process may then repeat itself until a large core of the most stable nuclei, nickel
and iron, is synthesized.

The crucial issue governing how far along this evolutionary sequence a star
proceeds is whether the electron degeneracy pressure at any stage becomes sufficient
to support the star. If the mass of the star is greater than Me, equation (6.2.46),
electron degeneracy pressure cannot support the star, and the large nickel and iron
core will be built up (unless instabilities caused by explosive nuclear burning occur
prior to this stage and literally blow the star apart). However, if the mass of the star
is less than Me, the contraction will be permanently halted at a prior stage. No further
nuclear reactions will occur, and the star will simply cool down forever in a stable,
white dwarf configuration.

IfM is greater than Me, then after a core of nickel and iron of mass - Me is built
up, this core simply will not be able to support itself: Electron degeneracy pressure
is not sufficient, and no further energy generating nuclear reactions can occur.
Hence, the core will undergo gravitational collapse. By the time the density of the
collapsing core has reached nuclear densities, neutron degeneracy pressure and
nuclear forces provide a significant cold matter pressure. If the total mass of the
collapsing part of the star is below the upper mass limit for cold matter (-2 M 0 ),

the collapse may be halted, resulting in a neutron star. Confirmation ofthe existence
of neutron stars has been provided by the discovery of pulsars-the astronomically
observed objects which emit exactly reproduced signals with periods of fractions of
a second. The only viable theoretical explanation of pulsars is that they are neutron
stars which possess a "hot spot" rotating at the signal period which becomes oriented
toward us during each revolution.

When the collapse of the core is halted or slowed down at nuclear densities, a
shock wave will be produced and will propagate outward into the envelope of the
star. It appears likely that this shock wave is responsible, in many cases, for blowing
off the outer envelope of the star with an enormous release of energy, thus producing
a supernova. The details of exactly how this occurs, are, however, not well under
stood at present. Nevertheless, the discovery of pulsars at the sites of the Crab and
Vela supernova remnants has provided strong observational confirmation of the
picture that supernovae are produced in conjunction with the collapse of the core of
a star at the endpoint of stellar evolution.

Thus, in summary, if the mass of a star is sufficiently small, it can attain final
equilibrium as a white dwarf or a neutron star. However, if the mass of the collapsing
portion of a star is greater than the cold matter upper mass limit, equilibrium can
never be achieved, and complete gravitational collapse will occur. As discussed at
the end of section 6.4, the endpoint of such a collapse in the spherical case will be
a Schwarzschild black hole.
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6.3 Geodesics of Schwarzschild: Gravitational Redshift, Perihelion
Precession, Bending of Light, and Time Delay of Radar Signals

In this section, we will analyze the behavior of test bodies and light rays in the
exterior region (r > 2M) of the Schwarzschild solution by solving for the timelike
and null geodesics of the Schwarzschild geometry. Our analysis of the geodesics in
the strong field regime (r near 2M) is physically relevant, of course, only for highly
condensed stars or totally collapsed objects, but our results in the weak field regime
(r » M) apply to the exterior field of "ordinary bodies" such as the Sun.

It would involve a fair amount of labor to solve directly the geodesic equation in
the form (3.3.5). Fortunately, almost all of this labor can be avoided by taking
advantage of the symmetries of the Schwarzschild solution using proposition C.3.1
of appendix C: The inner product, ua~a, of a Killing field ~a with a geodesic tangent
ua is constant along the geodesic. As we shall see below, these constants of the
motion enable us to reduce the problem of finding the geodesics to the problem of
one-dimensional motion of a particle in an effective potential.

Proposition C.3.1 immediately allows us to derive a formula for the change
between emitted and observed frequency of light signals sent between two static
observers, i.e., for the gravitational redshift. (A similar derivation of the cos
mological redshift in an expanding homogeneous and isotropic universe was given
above in section 5.3a.) Consider two static observers (i.e., observers whose
4-velocity is tangent to the static Killing field e) 0 1 and ~ whose 4-velocities are
u1 and u~. Suppose 0 1 emits a light signal at event PI which is received by O2 at event
P2, as illustrated in Figure 6.2. As discussed in section 4.3., in the geometrical optics

_ orbits of
(~I ~t)0

Fig. 6.2. A spacetime diagram showing a light signal sent from static observer 0 1

to static observer O2 •
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(6.3.3)

(6.3.4)
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approximation this light signal travels on a null geodesic, whose tangent we denote
by k a

• The frequency of emission is

WI = -(kau1) IPi

while the frequency measured by the observer receiving the signal is

W2 = -(kau~) IP2 (6.3.2)

However, since ut and u~ both are unit vectors which point in the direction of the
timelike Killing field e, we have

ut = [~a/(-e~b)I/2]lpi

u~ = [~a/(_~b~b)I/2]lp2

By proposition C.3.1 we have (ka~a) IPi = (ka~a) IP2' so we obtain

WI _ (_~b ~b)I/21 P2 _ (1 - 2M/r2)1/2

W2 - (_~b~b)I/2IPi - (1 - 2M/rl)I/2

where the explicit form of e~b = gtt = -(1 - 2M/r) for Schwarzschild spacetime
has been used and rl and r2 are, respectively, the radial coordinates of 0 1 and ~.

Note, however, that the above derivation is valid in an arbitrary stationary spacetime.
Equation (6.3.5) shows that for r2 > rl (Le., for the emitter closer to the center

of gravitational attraction than the receiver), we have W2 < WI. Le., the frequency
of the light will be decreased ("shifted toward the red"). Physically, this makes sense
because according to quantum theory the energy of a photon is proportional to its
frequency, E = hw, and we would expect the photon energy to be degraded as it
"climbs out of the gravitational potential well." Indeed, in the limit where M is much
less than rl and r2, as is the case outside the surface of ordinary bodies, equation
(6.3.5) becomes

aw GM GM
-=--+-
w e2rl e2r2

(6.3.6)

where we have restored the G's and e's in this equation. This can be interpreted as
saying that the change in the locally measured energy of a photon, haw, equals the
change in its Newtonian gravitational potential energy

(hw/e 2)(-GM/rl + GM/r2)

The gravitational redshift has been measured and found to be in agreement with
the prediction of general relativity to within the 1% experimental uncertainty by a
laboratory experiment devised by Pound and Rebka (1960) which uses the M6ss
bauer effect to measure the tiny frequency shift of photons on the surface of the Earth
which fall down a tower. The gravitational redshift of spectral lines from the Sun and
some white dwarf stars has also been observed, but the accuracy of these mea
surements for testing equation (6.3.5) is not as high due to convective motions
(which broaden the spectral lines) in the case of the Sun and a number of other
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uncertainties in the case of the white dwarfs. More recently, the gravitational redshift
has been confirmed to about 0.01 % accuracy by the tracking of hydrogen masers
launched by rocket (Vessot and Levine 1979; Vessot et al. 1980). Confirmation of
the existence of a similar "gravitational time dilation" effect also has been achieved
by comparison of atomic clocks flown in airplanes with clocks on the ground (Hafele
and Keating 1972; Alley 1979).

It is worth pointing out that, as proven in section 6.2, the maximum value of M/R
at the surface of a static spherical body (with dp/dr :;§i 0 everywhere inside the body)
is 4/9. Thus, by equation (6.3.5), the maximum redshift of light emitted from the
surface of a static star is

WI I = w(r = 9M/4) = 3
W2 max w(r = 00)

i.e., in terms of the redshift factor z defined in chapter 5, we have

Zmax = WI I - 1 = 2
W2 max

'\

(6.3.7)

(6.3.8)

(6.3.9)

This rules out the possibility that observed redshifts of greater than 2 (as are com
monly found for quasars) could arise solely from the gravitational redshift of light
emitted from the surface of a static, spherical body.

In order to learn more about the behavior of light rays and test bodies in the
exterior gravitational field of a spherical body, we need to solve for the timelike and
null geodesics. First, we note that because of the parity reflection symmetry,
(J - 7T - (J, of the Schwarzschild metric, if the initial position and tangent vector
of a geodesic lie in the "equatorial plane" (J = 7T/2, then the entire geodesic must
lie in this "plane." Since every geodesic can be brought to an initially (and hence
everywhere) equatorial geodesic by a rotational isometry, this means that without
loss of generality we may restrict attention to study of the equatorial geodesics, and
we shall do so.

The coordinate basis components of the tangent u a to a curve parameterized by T
are (see eq. [2.2.12])

dx IL

u lL = - == ilL
dT

For timelike geodesics, we choose T to be the proper time; and for null geodesics,
we choose T to be an affine parameter. Thus for these cases we have (recalling that
(J = 7T/2)

-K = gabuaub = -(1 - 2M/r)t2 + (1 - 2M/r)-lf2 + r2ep2 (6.3.10)

where

(timelike geodesics)
(null geodesics)

(6.3.11)
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In the derivation of the gravitational redshift, we already used the fact that the
quantity

E = -gab~aub = (l - 2M/r)t (6.3.12)

is a constant of the motion, where ~a = (a/ at)a denotes the static Killing field. In
the case of timelike geodesics, at large distances from the center of attraction
(r » M) where the metric becomes flat and the norm of e becomes -1, E reduces
to the special relativistic formula for the total energy per unit rest mass of a particle
as measured by a static observer. In general, we may interpret E for timelike
geodesics as representing the total energy (including gravitational potential energy)
per unit rest mass of a particle following the geodesic in question, relative to a static
observer at infinity, since it is the energy that would be required of such an observer
in order to put a unit rest mass particle in the given orbit. Similarly, in the null case,
fiE represents the total energy of a photon.

The rotational Killing field ljJa = (a/ acf>t also yields a constant of the motion, L,
via proposition C.3.1,

L = gabljJaub = r 2ci> (6.3.13)

We may interpret L as the angular momentum per unit rest mass of a particle in the
timelike case, and we may interpret fiL as the angular momentum of a photon in the
null case. In the Newtonian limit, equation (6.3.13) simply expresses Kepler's
second law: equal areas are swept out in equal times. In general relativity, the spatial
geometry is not Euclidean and we cannot interpret equation (6.3.13) in terms of
"areas swept out," but it is interesting that the simple form of equation (6.3.13) (with
the appropriate interpretations of rand ci> = dcf>/dT) remains exactly valid in the
strong field regime.

Substituting equations (6.3.12) and (6.3.13) in equation (6.3.10) and rearranging
terms, we obtain our final equation for geodesics with remarkably little labor,

1'2 1 ( 2M) (L2
) 1 2-r + - 1 - - - + K =-E

2 2 r r 2 2

This equation shows that the radial motion of a geodesic is the same as that of a unit
mass particle of energy E 2/2 in ordinary one-dimensional, nonrelativistic mechanics
moving in the effective potential,

1 M L2 ML2

V = -K - K- + - ---
2 r 2r 2 r 3

Once the radial motion is determined using this effective potential, the angular
motion and time coordinate change are easily found from equations (6.3.13) and
(6.3.12). The crucial new feature provided by general relativity is that in equation
(6.3.15) in addition to the "Newtonian term," -KM/r, and the "centrifugal barrier
term," L2/2r 2

, we have the new term, -ML2/r 3
, which dominates over the centri

fugal barrier term at small r.
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We consider, first, the timelike geodesics, K = 1. The extrema of the effective
potential V are given by

avo = - = r-4[Mr 2
- L2r + 3ML2

] (6.3.16)ar
Equation (6.3.16) has the roots

L2 ± (L4 - l2L2M 2)1/2
R+ = ---'------'--

- 2M

Thus, ifL2 < 12M2
, there are no extrema of V, as illustrated in Figure 6.3. A particle

heading toward the center of attraction (t ;§; 0) with L 2 < 12M 2 will fall directly to
the r = 2M surface and, indeed, will continue its fall into the spacetime singularity
at r = 0 (see section 6.4).

For L 2 > 12M2
, it is easy to check that the extremumR+ is a minimum of V, while

R_ is a maximum, as illustrated in Figure 6.4. Thus, stable circular orbits (t = 0)
exist at the radius r = R+, and unstable circular orbits exist at r = R_. For L » M,
the formula for R + becomes

(6.3.18)

v

Ol-----~~----+-----+---

-2

-3

4M 6M

Fig. 6.3. The effective potential, V, for timelike geodesics in the case L 2 = 6M 2
•

which is just the Newtonian formula for the radius of a circular orbit of a particle of
angular momentum per mass L orbiting a spherical body of mass M. This justifies
the interpretation of the constant C in our derivation of the Schwarzschild solution,
equation (6.1.43), as -2M. Note that according to equation (6.3.17), R+ is restricted
to the range

(6.3.19)

Thus, in general relativity, no stable circular orbits exist at radii smaller than 6M.
Furthermore, the unstable circular orbits are restricted to the range

3M < R_ < 6M (6.3.20)



6.3 Geodesics of Schwarzschild 141

Thus, no circular orbits at all exist at radii less than 3M.

v

0.6

0.55

R
5M 15M 25M 35M r

Fig. 6.4. The effective potential, V, for timelike geodesics in the case L 2 = 24M 2
•

(Note that the scale of V is greatly expanded as compared with Fig. 6.3.)

The energy of an ordinary particle in one-dimensional motion which sits at the
minimum or maximum of a potential V is, of course, just the value of V at that point.
Thus, from our mathematical analogy, equation (6.3.14), we see that the true energy
per unit rest mass, E, of a partic;:le in a circular orbit of radius R is given by

so that

1.E2(R) = V(R) = 1. (R - 2Mi
2 2R(R - 3M)

R - 2M

(6.3.21)
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The binding energy, EB , per unit rest mass of the last stable circular orbit at
R = 6M is

EB = 1 - E = 1 - (8/9)1/2 = 0.06. (6.3.23)

(6.3.27)

Now, a particle orbiting in the Schwarzschild geometry will emit gravitational
radiation, as discussed for weak fields in section 4.4b. Because of radiation reaction,
it will deviate slightly from geodesic motion. A particle initially in a circular orbit
with R » M (and thus with E = 1) should slowly spiral in to smaller radii as it
loses energy by gravitational radiation, remaining in a nearly circular orbit until it
reaches the orbital radius R = 6M. At that point, the orbit becomes unstable and the
particle should rapidly fall to r = O. According to equation (6.3.23), about 6% of
the original mass-energy of the particle will be radiated away during the time in
which the particle spirals to R = 6M. (For the Kerr metric with a = M, the corre
sponding fraction of energy radiated is 42%; see chapter 12.) This illustrates that
although the emission gravitational radiation was found to be very weak in the
examples of section 4.4b, large amounts of energy can be converted to gravitational
radiation in astrophysically plausible processes.

If a particle is displaced slightly from the "equilibrium" radius R+ of a stable
circular orbit, the particle will oscillate in radius about R+. For sufficiently small
displacements, it will execute simple harmonic motion with frequency W r given by

d
2
V I M(R+ - 6M)

Wr 2 = keff = dr2 R+ R~(R+ _ 3M) (6.3.24)

where equation (6.3.16) was used to eliminate L 2, and we should emphasize that the
"time" implicit in W r is the proper time T measured by the particle as opposed to the
coordinate time t of the Schwarzschild geometry. On the other hand, for a circular
orbit, the angular frequency, wI/> = 4>, is given by equation (6.3.13),

L2 M
wI/> 2 = Rt = R~(R+ _ 3M) (6.3.25)

where, again, equation (6.3.16) was used to eliminate U: In the limit of Newtonian
orbits, R+ » M, we have W r = wI/>' If W r = wI/>, then the particle would return to
a given value of r exactly one orbital period later; i.e., the orbit will close. Indeed,
in the Newtonian theory of gravity, all bound orbits-not just the nearly circular
orbits-are closed ellipses. The failure of W r to equal wI/> in general relativity means
that the orbits do not close; rather there is a precession of the angle at which the
maximum and minimum values of r are achieved. For nearly circular orbits, this
precession rate is given by

wp = wI/> - W r = -[(1 - 6M/R+)1/2 - l]wl/> (6.3.26)

In the limit R+ » M, we have, to lowest nonvanishing order,

3M3/2 3(GM)3/2
W p = R5j2 = c2R5j2

where we have restored the G's and c's in the final formula. We have considered only
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nearly circular orbits here, but a more general analysis (see, e.g., Weinberg 1972)
shows that to lowest nonvanishing order the precession of an arbitrary elliptical orbit
is given by

3(GM)3!2
W = ----=-----'----'-::---=-~

P c2(l - e2)a5!2

where a is the semimajor axis of the ellipse and e is its eccentricity.
For the orbit of the planet Mercury, general relativity predicts a precession rate of

43 seconds of arc per century. Precisely this residual precession rate had been
observed (after taking into account known effects such as perturbations of the planet
Venus) prior to the formulation of general relativity and had been an unexplained
mystery. The explanation of the precession of Mercury's orbit by general relativity
was one of the most dramatic early successes of the theory. Although the general
relativistic precession of Mercury's orbit is extremely small, the similar precession
observed in the orbit of the binary pulsar mentioned at the end of chapter 4 is about
4° per year. This result has been used to estimate the masses of the two bodies in this
system.

We tum, now, to consideration of the null geodesics. Setting K = 0 in equation
(6.3.14), we find the effective potential for null geodesics to be simply

L 2

V = 2r3 (r - 2M) (6.3.29)

Thus, the shape of V is independent of L and, as illustrated in Figure 6.5, the only
extremum of V is a maximum occurring at r = 3M. Thus, in general relativity,
unstable circular orbits of photons exist at radius 3M, so that, physically, gravity has
a very significant effect on the propagation of light rays in the strong field regime.

v

a
3M 5M 10M 15M

Fig. 6.5. The effective potential, V, for null geodesics.

The minimum energy, E, required to surmount the top of the potential barrier is
given by (see eq. [6.3.21] above)

~E2 = V(R = 3M) = L 2M/[2(3M)3] (6.3.30)
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i.e. ,

(6.3.31)

Now, for a light ray propagating in flat spacetime, it follows directly from the
definitions of Land E that LIE is the impact parameter of the light ray, i.e., the
distance of closest approach to the origin r = O. Since the Schwarzschild geometry
is asymptotically flat, for a light ray initially in the asymptotically flat region
(r » M), LIE will represent the apparent impact parameter,

b == LIE (6.3.32)

(6.3.35)

of the light ray even though it no longer represents the "distance of closest approach."
Thus, the Schwarzschild geometry will· capture any photon sent toward it with an
apparent impact parameter smaller than the critical value, be' given by

be = 33/2M (6.3.33)

Hence, the capture cross section, a, for photons in the Schwarzschild geometry is

a = 'TT'be2 = 27'TT'M 2 6.3.34)

To analyze the "light bending" effects of the Schwarzschild geometry on the light
rays which are not captured, it is convenient to derive an equation for the spatial orbit
of the light ray by solving equation (6.3.14) for t and then dividing 4>, equation
(6.3.13), by t. We obtain

d<p L [L 2 ]-1 /2- = - E 2 - -(r - 2M)
dr r 2 r 3

We wish to find the change, a<p = <P+oo - <P-oo, in the angular coordinate <p of a light
ray in the Schwarzschild geometry traversing a path as illustrated in Figure 6.6. In

~--
Ro

-----\---------
8</>
I

Fig. 6.6. Diagram illustrating the "bending of light" effect.

order not to be captured, the impact parameter, b, must be greater than the critical
value, equation (6.3.33). In that case, the orbit of the light ray will have a "turning
point" at the largest radius, Ro, for which V(Ro) = E 2/2, Le., at the largest root of

R5 - b2(Ro - 2M) = 0 (6.3.36)
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which is

Ro = ~ COs[~ COS-1( - 33:M)] (6.3.37)

By symmetry, the contributions to a<jJ made by the parts of the path prior to the
turning point and after the turning point will be equal. Hence, by equation (6.3.35),
the total change in the angular coordinate, a<jJ, is given by

L
"" dr

a<jJ = 2 Ro [r 4b-2 - r(r - 2M)]l/2

It is convenient to make the change of variables, u = llr, in terms of which
equation (6.3.38) becomes

e/Ro du
a<jJ = 2 Jo (b-2 _ u2 + 2MU 3)1/2 (6.3.39)

In the case of flat spacetime, M = 0, we have Ro = b, and equation (6.3.39) yields
simply

(6.3.40)

as obviously must be the case since the trajectory is a straight line. When M =1= 0,
according to equation (6.3.39) a<jJ will not equal 7T; i.e., there will be a nonzero
deflection of the light ray, which we may interpret physically as being due to the
gravitational attraction of the Schwarzschild geometry. We wish to calculate the
contribution to the "light bending" valid to first order in M. Actually, it is rather
tricky to calculate this contribution by varyingM keeping b fixed in equation (6.3.39)
because of the M dependence of the integration limit 1IRo and the singular behavior
of the integrand at this limit. However, we can circumvent these difficulties by
working with M and Ro as the independent variables. In other words, as we vary M,
we compare a<jJ for light rays which have the same Schwarzschild radial coordinate,
Ro, at the point of closest approach rather than, say, light rays with the same apparent
impact parameter, b. (It is not difficult to see that to first order in M, it makes no
difference whether we keep b or Ro fixed, but to higher orders in M it does matter
whether we compare light rays with the same value of b or the same value of Ro.)
Eliminating b via equation (6.3.36), we obtain

fl~o du
a<jJ = 2 Jo (R02 _ 2MRo3 _ u2 + 2MU 3)1/2 (6.3.41)

Differentiating with respect to M at fixed Ro and evaluating the result at M = 0, we
obtain
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Thus, to first order in M, the deflection of light is given by

5<jJ = a<jJ - 7T = M a(a<jJ) I 4M
aM M=O b

4GM
= bc 2

where we have reinserted the G's and c's in the last step.
For a light ray which grazes the surface of the Sun, equation (6.3.43) predicts a

deflection of 1.75 seconds of arc. This "bending" of starlight passing near the Sun
has been observed during solar eclipses beginning with the 1919 expedition led by
Eddington (Dyson, Eddington, and Davidson 1920), thus confinning this important
prediction of general relativity, but because of numerous difficulties the accuracy of
these measurements has only been about 10%. However, the bending of radio waves
emitted from a quasar as it approaches eclipse by the Sun has been measured to about
1% accuracy (Fomalont and Sramek 1976) and has been found to agree with equation
(6.3.43).

A further measurable effect concerning the behavior of null geodesics in the
Schwarzschild geometry is the "time delay" of radar signals emitted from Earth. To
analyze this effect, we divide f (as given by eq. [6.3.12]) by t (as detennined from
eq. [6.3.14]), thereby obtaining

dt _ ( 2M)-1[ ( 2M)b
2
]-1!2-- 1-- 1 1---

dr r r r 2 (6.3.44)

Integration of this equation over the trajectory of a null geodesic yields the total
change, at, in Schwarzschild time coordinate along the trajectory. Consider, now,
the following situation. A radar signal is emitted from Earth, located at Schwarzs
child radial coordinate RE. The signal passes near the Sun, with radius of closest
approach Ro, and then is reflected off a planet, located at Rp • The signal then retraces
its trajectory and returns to Earth, as illustrated in Figure 6.7. (The motion of Earth
and the planet during the intervening time is neglected.) How much time, aT, elapses
on the clock of an observer on Earth between emission and reception of the signal?

We wish to calculate aT to first order in M. By integrating equation (6.3.44) and
then differentiating with respect to M (holding Ro fixed) we obtain (problem 5), in
close analogy to the derivation of the light bending effect,

at = ~[(R~ - R'ij)1!2 + (R~ - R'ij)1!2] + 2~~ {2ln[RE + (R;o- R'ij)1!2]

+ 2 In[Rp + (R~ - R6)1!2] + (RE - Ro)I!2 + (Rp - Ro)I!2} . (6.3.45)
Ro RE + Ro Rp + Ro

It should be noted that we have fonnulated the question-purely for mathematical
convenience-so that as we vary M, we compare null geodesics with the same Ro,
rather than, say, null geodesics with the same b or the same total change, a<jJ, in
angle in passing between REand Rp • Unlike the light bending case, here the first order
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tenus in M depend sensitively on what parameters of the null geodesics are held fixed
as M is varied.

The proper time, aT, that elapses on Earth is related to the change in coordinate
time, at, by

(6.3.46)

(6.3.47)

Thus, to first order in M, the reflected radar signal will be measured to arrive back
on Earth at a time after emission given by

2GMaT = - ~R [(RJ - RJ)I/2 + (R~ + RJ)I/2] + at
C E

where at is given by equation (6.3.45).

Planet
Rp

R.
Earth

Fig. 6.7. Diagram illustrating the "time delay of light" effect.

Actually, equation (6.3.47) by itself is not very useful for a direct test of the
general relativistic time delay effect, since the parameters RE , Rp , and Ro appearing
in the equation are not known to the necessary precision. Therefore, the procedure
used to test the time delay prediction is to write down a formula for how aT is
expected to vary with time (due to the motion of the Earth and planets), treating all
parameters (in particular, the orbital parameters ofthe planets) as unknowns. A "best
fit" to the observed data then is used to determine all the parameters. When this is
done, the agreement between the theoretical formula and observation is excellent. On
the other hand, a slight modification of the general relativistic contribution-in
particular, the change that would be produced in the formula by altering grr to
(1 - 2-yM/r)-1 where -y differs from unity by only O.2%-produces a formula
which cannot be satisfactorily fit by the observed data. (These highest precision data
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actually have come from the tracking of spacecraft which emit signals rather than
reflection of radar off of planets [Reasenberg et at. 1979].) Thus, this prediction of
general relativity has been confirmed to high precision.

In summary, the analysis of timelike and null geodesics in the Schwarzschild
geometry leads to a number of important predictions which have been tested by solar
system observations: the gravitational redshift, the precession of planetary orbits, the
bending of light, and the time delay of radar signals. These predictions provide
stringent quantitative tests of general relativity, and it is gratifying that general
relativity thus far has passed these tests very successfully.

6.4 The Kruskal Extension
We tum our attention now to the analysis of the singularities at r = 2M and r = 0

in the coordinate basis components of the metric of the Schwarzschild solution. As
discussed in section 6.2, for any static equilibrium configuration the region r ~ 2M
will be within the matter-filled interior, so analysis of the singularities at r = 2M and
r = 0 for the vacuum Schwarzschild solution is irrelevant to the study of the grav
itational field of a static star, as was first pointed out by Schwarzschild. However,
as mentioned at the end of section 6.2, sufficiently massive bodies will undergo
complete gravitational collapse, and the region r ~ 2M of the vacuum Schwarzs
child solution is very relevant to the description of the endpoint of this collapse.

Whenever the metric components in a coordinate basis are badly behaved for
certain values of the coordinates, there are two possible causes: (1) The spacetime
geometry is, in fact, singular; or (2) the spacetime geometry is nonsingular, but the
coordinates fail to properly cover a region of spacetime. In general, it is not an easy
task to determine in a given situation which ofthese two possibilities holds. (Indeed,
it is nontrivial even to formulate a precise general definition of the notion of
"singularity in the spacetime geometry." We will postpone a full discussion of this
issue until chapter 9.) Normally, possibility (1) would be demonstrated by calcu
lating a curvature scalar, such as RabedRabed, and showing that it blows up "at the
singularity of the metric components" and furthermore, that this singularity lies at a
finite affine parameter along some geodesic (so that the "singularity" is not "at
infinity," in which case it is not really a singularity). However, as discussed in
chapter 9, one may have spacetime singularities where no curvature scalars blow up.
Normally, possibility (2) would be demonstrated by explicitly displaying an exten
sion of the "nonsingular region" of the original metric, Le., a (nonsingular) space
time (M, gab) which includes the original spacetime (M, gab) as a proper subset.
Normally, this would be accomplished by finding a coordinate transformation which
eliminates the singularities of the original metric components.

In the case ofthe Schwarzschild metric, we already pointed out that the Schwarzs
child coordinates will be badly behaved where the timelike Killing field e becomes
collinear with Var. We shall see below that this occurs at r = 2M, and that the
"singularity" at r = 2M is merely a coordinate singularity. On the other hand, the
singularity at r = 0 is a true singularity in the spacetime geometry, as can be
demonstrated by calculating via equations (6.1.29)-(6.1.34) the curvature invariant
R

abed
R abed.
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We begin, however, by considering two simple examples which help illuminate
the nature of the problem. As a first example, consider the two-dimensional metric

ds 2 = _1. dt 2 + dx 2
t 4

defined over the coordinate range - 00 < x < 00, 0 < t < 00. This metric appears to
have a singularity at t = O. However, the true nature of the spacetime geometry can
be seen by making the coordinate transformation t -+ t' = lit. In the new coordi
nates, the metric is seen to be simply the flat metric,

ds 2 = _(dt')2 + dx 2 (6.4.2)

and the original spacetime is seen to be the portion t' > 0 of Minkowski spacetime.
Thus, the apparent singularity at t = 0 of the original metric, equation (6.4.1), really
represents t' -+ 00 in Minkowski spacetime and is not a singularity at all but merely
corresponds to the covering of an infinite region of spacetime with a finite range of
a coordinate. The spacetime geometry is geodesically complete as t -+ 0 (t' -+ 00),

i.e., all the geodesics approaching t = 0 extend to arbitrarily large values of their
affine parameter. On the other hand, the spacetime of equation (6.4.1) is not geodes
ically complete as t -+ 00 (t' -+ 0). However, we can extend the original spacetime
"beyond t = 00" by adding on the, portion t' ;;§; 0 of Minkowski spacetime. This
example provides an excellent illustration of how one can be misled by interpreting
coordinate labels such as t as physically meaningful quantities. It also illustrates how
an appropriate coordinate transformation can help one analyze what is really going
on in the spacetime.

Our second example will be seen to be closely analogous to the Schwarzschild
solution, and for this reason we will analyze it in detail. We consider the Rindler
spacetime,

(6.4.3)

with coordinate ranges -00 < t < 00, 0 < x < 00. This metric appears to have a
singularity atx = O. (The determinant of gp.v vanishes atx = 0, so the inverse metric
components g p.v are singular at x = 0.) Geodesics terminate with finite length at
x = 0, but calculation of curvature scalars shows no bad behavior8 as x -+ 0,
suggesting that the singularity may be simply a coordinate singularity. This metric
is not simple enough for trial and error guesses at coordinate transformations to have
much chance of success, so we need a more systematic approach. In general, the best
procedure is to introduce new coordinates which are linked closely to the spacetime
geometry. This can be achieved, for example, by introducing a family of geodesics
which "head toward the singularity" and using the affine parameter along the geodes
ics as one of the coordinates. In general, there is no foolproof method for elimination
of coordinate singularities; for example, for coordinates based on a family of geode-

8. In fact, the curvature of the Rindler metric vanishes, showing immediately that the Rindler
spacetime must be simply a portion of two-dimensional Minkowski spacetime. However, in order to
pursue the analogy with the Schwarzschild metric, we prefer not to make use of this fact in our analysis.
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sics, new coordinate singularities will be produced whenever the geodesics cross.
However, in two-dimensional spacetimes, there does exist an essentially foolproof
method for analyzing coordinate singularities. This is because in two dimensions, the
null geodesics divide up (at least locally) into two classes-"ingoing" and
"outgoing"-and within each class two distinct null geodesics cannot cross, since
their tangents would have to coincide at their intersection point, thus implying that
the geodesics coincide everywhere. This suggests that we introduce null coordinates,
i.e., coordinates such that the first is constant along each "outgoing" geodesic and
the second is constant along each "ingoing" geodesic. In this way, our coordinate
grid will be based on the geometrical (and well behaved) "grid" of null geodesics.
The only coordinate singularities which can result from using null coordinates in
two-dimensional spacetimes arise from bad parameterization of the geodesics, and
this can be investigated and corrected by comparing the coordinate parameterization
with an affine parameterization.

The null geodesics of Rindler spacetime are easily found from the null condition,

o = gabkae = -x2 i 2 + x2 (6.4.4)

where k a is the geodesic tangent and the dot denotes derivative with respect to affine
parameter. Equation (6.4.4) implies that

(dt/ dX)2 = I / x 2 (6.4.5)

so that along each geodesic, we have

t = ±In x + constant (6.4.6)

(6.4.9)

(6.4.7)

(6.4.8)v=t+lnx

In the coordinates (u, v), the metric components are simply

ds 2 = _e V
-

U du dv

where the plus sign refers to the "outgoing" geodesics, and the minus sign refers to
"ingoing" geodesics. Thus, we may define null coordinates (u, v) by

u=t-Inx

In making the coordinate transformation, equations (6.4.7) and (6.4.8), we have
not yet achieved our goal of analyzing the singularity at x = 0, since the coordinate
ranges -00 < u < 00 and -00 < v < 00 still correspond only to the region x > 0
of the original Rindler spacetime. However, we are now in a position to repa
rameterize the null geodesics by new coordinates U = U(u), V = V(v), which will
show how to extend the spacetime beyond "x = 0" (or, beyond "u = 00" and
"v = -00"). The form of the metric, equation (6.4.9) is sufficiently simple that we
could easily guess this transformation, but in order to be more systematic we
calculate the affine parameter along the null geodesics. This is most easily done by
using the fact that the "time translation vector" (a/ at)a of the original Rindler metric,
equation (6.4.3), is a Killing field, and thus

E = -gabka(a/at)b = x 2 dt/dA (6.4.10)

is a constant of the motion, where A is the affine parameter. Thus, for the outgoing
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null geodesics, substituting for x and t from equations (6.4.7) and (6.4.8) and setting
u = constant, we find

(6.4.11)

where C is a constant. Thus, Aou! = e v is an affine parameter along the outgoing
geodesics. A similar calculation shows that Ain = -e-U is an affine parameter along
the ingoing geodesics. (Note that the finite ranges of AoUl and Ain show that all the null
geodesics of the original Rindler spacetime are incomplete.) This suggests that we
make the coordinate transformation U = -e-u

, V = e V
, which puts the metric in the

extremely simple form,

ds 2 = -dU dV (6.4.12)

The original Rindler spacetime corresponds to the coordinate ranges U < 0,
V > O. However, there is no longer any singularity in the metric components at
U = 0 or V = 0, so we may now extend the spacetime by allowing the ranges of U
and V to be unrestricted, -00 < U < 00, -00 < V < 00. The final coordinate trans
formation T = (U + V)/2, X = (V - U)/2, converts the metric to the immedi
ately recognizable form,

(6.4.13)

showing that our extended spacetime is just Minkowski spacetime!
The original coordinates (t, x) are given in terms of the final Minkowski coordi

nates (T, X) by

x = (X 2 - T 2)1/2

t = tanh- 1(T/X)

(6.4.14)

(6.4.15)

From equations (6.4.14) and (6.4.15), it can be seen that Rindler spacetime is simply
the wedge X > ITI of Minkowski spacetime, i.e., region I of Figure 6.8. Exam-

Fig. 6.8. Rindler spacetime, displayed as the "wedge," I, of two-dimensional
Minkowski spacetime.
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ination of equations (6.4.14) and (6.4.15) or of Figure 6.8 shows the nature of the
coordinate singularity: The null lines X = ±Tare mislabeled by the original coordi
nates as x = 0, t = ±oo. Our transformation to the null geodesic coordinates (U, V)
allowed us to "break through" the coordinate barrier at X = IT I and extend the
spacetime to all of Minkowski spacetime.

Note that the "time translation symmetry" of the Rindler metric, equation (6.4.3),
really corresponds to the "boost symmetry" of Minkowski spacetime. The observers
at constant x undergo the uniform acceleration a = l/x, which diverges as x -+ O.
It is easy to check that static observers in the Schwarzschild spacetime must undergo
a proper acceleration (in order to "stand still" in the "gravitational field") given by
a = (1 - 2M/r)-1!2M/r2, which diverges as r -+ 2M. Thus, the behavior of the
Schwarzschild time coordinate as r -+ 2M is analogous to the behavior of the Rindler
time coordinate as x -+ O. (Indeed, the mathematical analogy between the two
metrics could be made more manifest by introducing a new space coordinate y = x 2

to put the Rindler metric in the form ds 2 = -y dt 2 + 4y-1 dy 2.) Therefore, it should
not be surprising that the coordinate singularity of the Schwarzschild spacetime at
r = 2M is closely analogous to that of the Rindler spacetime, as we now shall show.

The Schwarzschild spacetime is, of course, four-dimensional, but, because of the
spherical symmetry, only the two-dimensional "r-t part" of the metric is of im
portance for analyzing the nature of the singularity at r = 2M. Hence, we shall study
the two-dimensional metric

ds 2 = -(1 - 2M/r)dt2 + (1 - 2M/r)-1 dr 2 (6.4.16)

We apply the two-dimensional method described above, using the outgoing and
ingoing radial null geodesics of the Schwarzschild spacetime. The null condition,
analogous to equation (6.4.4), is

which implies

(
dt)2 = ( r )2
dr r - 2M

Thus, the radial null geodesics of Schwarzschild satisfy

t = ±r. + constant

where the "Regge-Wheeler tortoise coordinate" r. is defined by

r. = r + 2M In (r/2M - 1)

so that dr./dr = (1 - 2M/ r) -I. We define the null coordinates u, v by

u = t - r.

v = t + r.

(6.4.17)

(6.4.18)

(6.4.19)

(6.4.20)

(6.4.21)

(6.4.22)
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In these coordinates,9 the metric (6.4.16) takes the form

ds 2 = -(1 - 2M/r) du dv (6.4.23)

where r is now viewed as a function of u and v, defined implicitly by

r + 2M In(~ - 1) = r. = (v - u)/2 (6.4.24)

Using equation (6.4.24), we can rewrite equation (6.4.23) as

2Me-r/ 2M

ds 2 = - e(v-u)/4M du dv (6.4.25)
r

where we have factored the metric components into a piece, e- r
/
2M/r, which is

nonsingular as r ~ 2M (i.e., as u~ 00 or v ~ -00) times a piece with simple u and
v dependence. Comparison with the Rindler case, equation (6.4.9) (or calculation of
the affine parameter along the null geodesics) suggests that we define new coordi
nates U and V by

U = _e-u/ 4M

V = ev/ 4M

in terms of which the metric becomes

32M 3 -r/2M

ds 2 = - e dU dV
r

(6.4.26)

(6.4.27)

(6.4.28)

There is now no longer a singularity at r = 2M (i.e., at U = 0 or V = 0), and thus
we can extend the Schwarzschild solution by allowing U and V to take on all values
compatible with r > O. The singularity which persists at r = 0 is physical-as
mentioned above, the curvature scalar RabcdRabcd blows up there-so it cannot be
eliminated by a further coordinate transformation.

If we make the final transformation T = (U + V)/2, X = (V - U)/2, the full
Schwarzschild metric takes the final form given by Kruskal (1960) (see also Szekeres
1960),

(6.4.29)

The relation between the old coordinates (t, r) and the new coordinates (T, X) is given
by

(~ - l)e r
/

2M = X 2
- T2

t (T + X) -I- = In -- = 2 tanh (T/X)
2M X-T

(6.4.30)

(6.4.31)

9. The "hybrid" coordinates (u, r) or (v. r) are known as Eddington-Finkelstein coordinates (Edding
ton 1924; Finkelstein 1958).
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and in equation (6.4.29), r is to be viewed as the function of X and T defined by
equation (6.4.30). The allowed range of the coordinates X and T is given by the
condition r > 0, which yields

X 2 - T2 > -} (6.4.32)

A spacetime diagram for the Kruskal extension is shown in Figure 6.9. The causal
structure of the extended Schwarzschild spacetime is easily seen from the diagram
since, by construction, the radial null geodesics are 45° lines in Kruskal coordinates.
The Kruskal extension is remarkably similar to the extension of the Rindler space
time, the major differences being (1) the Schwarzschild spacetime is four
dimensional, so each point in Figure 6.9 really represents a two-dimensional sphere
of radius rand (2) there are physical singularities in the extended region at
X = ±(T2 - 1)1/2, as shown. Note that the singularities at "r = 0" have a spacelike
character and exist in the future of region II and the past of region III, rather than
corresponding to "a timelike line at the origin of coordinates" as a naive inter
pretation of the Schwarzschild coordinates (t, r) might have suggested. The bad
behavior of the coordinates (t, r) can also be seen in the "Kruskal diagram" 6.9. From
equation (6.4.30) we see that Var = 0 at X = T = 0, and it is not difficult to verify
that the static Killing field e vanishes there also. Note also that Var and ~a become
collinear along the null lines X = ±T. The vanishing of e at X = T = 0 leads to
a mislabeling of the lines X = ±T as "t = ±oo" analogous to the behavior of the
t-coordinate in Rindler spacetime. Note, however, that although the Kruskal coordi
nates are very convenient for analyzing the "strong field" region ofthe Schwarzschild
geometry, they are not convenient for analyzing the asymptotically flat region,
r~ 00.

The extended Schwarzschild spacetime has a rather surprising structure. The
region I of Figure 6.9 corresponds to the original region r > 2M of the Schwarzs
child solution, and can be interpreted physically as representing the exterior grav-

Fig. 6.9. The Kruskal extension of Schwarzschild spacetime.
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itational field of a spherical body. However, a radially infalling observer in region
I will cross the null line X = T and enter region II. Once this observer has entered
region II, he can never escape from it. Within a finite proper time (see problem 6)
he will unavoidably fall into the singularity at X = (T 2 - 1)1/2, and, indeed, any
light signal he sends from region II will remain in region II and also will fall into the
singularity. For this reason, region II is referred to as a black hole. (A general
definition of the notion of a black hole will be given in chapter 12.) Region III has
exactly the "time reversed" properties of region II, and is referred to as a white hole.
Any observer present in region III must have originated in the spacetime singularity
atX = -(T2

- 1)1/2 and, within a finite time, must leave region III. Finally region
IV has properties identical to the original region I. It represents another asymp
totically flat region of spacetime which lies "inside" the "radius" r = 2M. How this
can occur is best illustrated by examining the geometry of the spacelike surface
T = 0, which is shown in Figure 6.10. Note, however, that an observer in region
I cannot communicate with any observer in region IV; as seen from Figure 6.9, a
light signal sent from region I toward region IV will instead go into the black hole
and be "swallowed up" by the spacetime singularity.

Fig. 6.10. The spatial geometry of the hypersurface t = 0 of the Schwarzschild
spacetime, shown as it would look if it were embedded in flat space. (One dimension
is suppressed, i.e., the topology of the hypersurface is IR x S2, not IR x SI, so each
circle-such as the one shown at r = 2M-really represents a two-sphere.) The
portion of the surface lying above the "throat" at r = 2M in the figure corresponds
to the portion lying in region I of Figure 6.9; the portion below r = 2M lies in
region IV of Figure 6.9.

How much of this picture of the extended Schwarzschild solution should we take
seriously? The extended Schwarzschild solution is, of course, a perfectly valid
solution of the vacuum Einstein equation, and as such, represents a possible structure
for spacetime in general relativity. However, in order to "produce" the fully extendeli
Schwarzschild solution, we must "start" with two asymptotically flat regions of
spacetime together with an initial singularity in the region III which connects them.
There is no reason to believe that the initial configuration of any region of our
universe corresponds to these initial conditions, so there is no reason to believe that
any region of our universe corresponds to the fully extended Schwarzschild solution
(although, of course, this possibility cannot easily be ruled out). However, as
discussed in section 6.2, sufficiently massive bodies will undergo complete grav
itational collapse. The interior metric of these bodies will not be the Schwarzschild
metric since Tab '4 0 there, but at all stages of the collapse the metric outside a
spherical body will be the Schwarzschild metric, since, as mentioned at the end of
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section 6.1, it is the only spherically symmetric vacuum solution of Einstein's
equation. Therefore, the spacetime geometry corresponding to the gravitational
collapse of a spherical body will be as shown in Figure 6.11. All of regions III and
IV (as well as parts of regions I and II) will be "covered up" by the matter and thus
replaced by a "normal" spacetime region. However, a spacetime region correspond
ing to region II of the extended vacuum Schwarzschild spacetime will be produced
when the radial coordinate of the collapsing body becomes less than 2M. Another
representation of the spacetime geometry resulting from spherical collapse is shown
in Figure 6.12.

Thus, regions III and IV of the extended Schwarzschild solution are probably
unphysical, but region II is of great physical importance: The complete gravitational
collapse of a spherical body always produces a Schwarzschild black hole region of
spacetime.

r =0
(origin of
coordinotes) /",--1---------\

I

collapsing molter

Fig.6.11. The spacetime resulting from the complete gravitational collapse of a
spherical body. All of regions III and IV of the extended Schwarzschild spacetime
(Fig. 6.9) are "covered up" by the collapsing matter. However, (part of) the black
hole region II is produced.
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Fig. 6.12. Another representation of the spacetime of Figure 6.11. Here, one of
the two suppressed spatial dimensions is restored, so each of the circles shown on
the collapsing body corresponds to the 2-sphere surface of the body at an instant of
time. However, the light cones no longer are represented by 45° lines. Indeed, the
spacelike nature of the singularity and the inevitable capture by the singularity of any
particle or light ray in the region r < 2M is illustrated here by the "tipping over" of
the future light cones in the strong field region.

Problems
1. Let M be a three-dimensional manifold possessing a spherically symmetric Rie
mannian metric with Var =1= 0, where r is defined by equation (6.1.3).

a) Show that a new "isotropic" radial coordinate f can be introduced so that the
metric takes the form ds 2 = H(r)[df2 + f2 dOn (This shows that every spherically
symmetric three-dimensional space is conformally flat.)

b) Show that in isotropic coordinates the Schwarzschild metric is

ds 2 = - (I - M/2f)2 dt2 + (1 + M)\df2 + f2 dOn
(1 + M/2f)2 2f

2. Calculate the Ricci tensor, Rab , for a static, spherically symmetric spacetime,
equation (6.1.5), using the coordinate component method of section 3.4a. Compare
the amount of labor involved with that of the tetrad approach given in the text.

3. Consider the source-free (r = 0) Maxwell's equations (4.3.12) and (4.3.13) in
a static, spherically symmetric spacetime, equation (6.1.5).

a) Argue that the general form of a Maxwell tensor which shares the static and
spherical symmetries of the spacetime is Fab = 2A (r)(eo)[a(et)b] + 2B(r)(e2)[a(e3)b],
where the (eJL)a are defined by equation (6.1.6).
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b) Show that if B(r) = 0, the general solution of Maxwell's equations with the
form of part (a) is A(r) = -q/r2

, where q may be interpreted as the total charge.
[The solution obtained with B (r) =1= 0 is a "duality rotation" of this solution, repre
senting the field of a magnetic monopole.]

c) Write down and solve Einstein's equation, Gab = 81T1"ab, with electromagnetic
stress-energy tensor corresponding to the solution of part (b). Show that the general
solution is the Reissner-Nordstrom metric,

(
2M

2) ( 2M 2)-1ds 2 = - 1 - - + 9.- dt 2 + 1 - - + 9.- dr 2 + r 2d0,2
r r 2 r r 2

4. Let (M, gab) be a stationary spacetime with timelike Killing field e. Let
V

2 = -e~a'
a) Show that the acceleration a b = uaVau b of a stationary observer is given by

a b = Vb In V.
b) Suppose in addition that (M, gab) is asymptotically flat, i.e., that there exist

coordinates t, x, y, z [with ~a = (a / atY] such that the components of gab approach
diag(-I, 1, 1, 1) as r~ 00, where r = (x 2 + y2 + Z2)1/2. (See chapter 11 for
further discussion of asymptotic flatness.) As in the case of the Schwarzschild
metric, the "energy as measured at infinity" of a particle of mass m and 4-velocity
ua is E = -meua • Suppose a particle of mass m is held stationary by a (massless)
string, with the other end of the string held by a stationary observer at large r. Let
F denote the force exerted by the string on the particle. According to part (a) we have
F = mV- 1[vavva V]1/2. Use conservation-of-energy arguments to show that the
force exerted by the observer at infinity on the other end of the string is Fe<> = VF.
Thus, the magnitude of the force exerted at infinity differs from the force exerted
locally by the redshift factor.

5. Derive the formula, equation (6.3.45), for the general relativistic time delay.

6. Show that any particle (not necessarily in geodesic motion) in region II (r < 2M)
of the extended Schwarzschild spacetime, Figure 6.9, must decrease its radial coor
dinate at a rate given by Idr /dTI ~ [2M /r - 1]1/2

• Hence, show that the maximum
lifetime of any observer in region II is T = 1TM [-1O-5(M /Mc;) s], Le., any ob
server in region II will be pulled into the singularity at r = 0 within this proper time.
Show that this maximum time is approached by freely falling (i.e., geodesic) motion
from r = 2M with E ~ O.
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SEVEN

METHODS FOR SOLVING EINSTEIN'S EQUATION

The theory of general relativity presented in chapter 4 provides a complete classical
description of spacetime structure and gravitation. All physically possible spacetimes
correspond to solutions of Einstein's equation (4.3.21). Thus, by solving Einstein's
equation for spacetimes of physical interest, we can obtain complete predictions for
the phenomena ofinterest. Unfortunately, Einstein's equation translates into a com
plicated coupled system of nonlinear partial differential equations and, as with most
nonlinear partial differential equations, <there exist no general methods for obtaining
all solutions. Indeed, aside from the·R~rtson-Walker and Schwarzschild solutions
(discussed in detail in chapters 5 and 6), the Kerr solution (see chapter 12), and some
other solutions mentioned in the present chapter. very few solutions of physical
interest have been found.

In this chapter, we shall d.iscuss some ofthe methods which have been employed
to obtain physically relevant solutions. Our discussion of successful methods is far
from exhaustive. Furthennore, we shall malce no attempt to enumerate all the
solutions which have been obtained or discuss their properties. Rather, our purpose
here is to present some of the most important techniques, for extracting solutions.

In section 7.1 we analyze solutions with stationary and axisymmetric symmetry
and show how Einstein's equation in vacuum can be reduced to a system of two
coupled equations for two unknown functions tOgether with a further quadrature.
Unfortunately. even these equations are difficult to solve directly, except in the static
c~, where the C()mPlete solution can be found. In ~on 7.2 we analyze spatially
homoge~us (but not i$ot;ropic) cosmo1ogi~tnodels and show~w Einstein's
eq~tioJl can be reduced to solving a c'Oupled system of ordinary differential equa
tions. (Such a system always can be solved numerically, if not analytically, so there
is no obstacice to obttlining all homog~scosmologicalsolutions.) In section 7.3
we give a briefdescription of the procedure for obtaining solutions by. assuming
special algebraic properties Of the Weyltensor as a simplifying hypothesis. This
technique has produced a wealth of solutions, though only a few of direct physical
interest.. In section 7.4 we. o\l~a <prqcedure for constructing new solutions from
a givcep solution with a~g vector.field.This technique has proven particularly
useful for, gencerating stationary, ~isymmetIjcsolutions. Finally, in section 7.5 we
derive the equations governing small perturbations from a known exact solution.

161
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Although it may not be possible to find nearby exact solutions, a great deal of useful
infonnation often. can be obtained from perturbation .theory.

7.1 Stationary, Axisymmetric Solutions
As already mentioned in section 6.1, a spacetime is said to be stationary if there

exists a one-parameter group of isometries Ut whose orbits are timelike curves. Thus,
every stationary spacetime possesses a timelike Killing vector field go (see appendix
C). (Conversely, every spacetime with a timelike Killing vector field whose orbits
are complete is stationary.) Similarly, we call a spacetime axisymmetric if there
exists a one-parameter group of isometries X</> whose orbits are closed spacelike
curves, which implies the existence of a spacelike Killing field "'0 whose integral
curves are closed. We call a spacetime stationary and axisymmetric if it possesses
both these symmetries and if, in addition, the actions of U t and X</> commute:

U t 0 X</> = X</> 0 Ut , (7.1.1)

i.e., the rotations commute with the time translations. This is easily seen to be
equivalent to the condition that the Killing vector fields go and .po commute,

(7.1.2)

Stationary, axisymmetric spacetimes are ofconsiderable interest in general relativ
ity since they describe equilibrium configurations ofaxisymmetric, rotating bQdies.
Thus, in particular, in order to generalize the results of section 6.2 to account for
rotation. we must be able to solve Einstein's equation with perfect ftuid source in the
presence of these symmetries. Stationary, axisymmetric vacuum solutions are also
of greatinterest. since they describe the e~teri?rgravi~onal fieldJf rotating bodies
and would be needed to match onto the intenor solutions. .

The commutativity of ~o and "'0 implies that we can choose coordinates(xO == t,
Xl == 4>, x2; x3) so that both go = (i/ iJt)O and .po == (%4>f are coordinate vector
fields. As discussed in appendix C. the metric components in such a coordinate
system will be independent of t and 4>. so· the metric will take the form

(7;1.3)
1£,"

Thus. we must solve for 10 unknown functions, g",,,. of two variables; We shall
show, now, that by a further careful selection of coordinate system, a weak further
assumption (see hypothesis i of theorem 7.1.1 below) and some use of Einstein's
equation. we can reduce the metric to a form involving only three functions of two
variables (see eq. {7.1.22} below), and reduce the problem of solving Einstein's
equation to that of solving two equations for two unknown functions (see eqs.
{7 .1.24] and (7.1.25] below) together with a quadradure for a third function (see eqs.
{7.1.26] and {7.1.27D.

The first crucial simplification arises from the factthat under the hypotheses of the
following theorem. the tw<Hlimensional subspaces of the tangent space at each point
which are spanned by the vectors orthogonal to g/t and .pa are integrable. i.e.• tangent
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to two-dimensional surfaces. We shall state and prove the theorem first and then
discuss its implications for simplifying the general form of stationary, axisymmetric
metrics.

THEoREM 7.1.1. Let ~aand ",a be two commuting Killing fields such that (i)
~[a %Vc~] and ~[a %Vc "'d] each vanishes at at least one point ofthe spacetime
(which, in particular, will be true if either ~a or .po vanishes at one point) and
(ii) ~aR}b~c",d] = ",a Ra[b~c",d] = O. Then the 2-planes orthogonal to ~a and ",a
are integrable.

Proof. This theorem is a direct application of Frobenius's theorem (see appendix
B). We want to know when the planes orthogonal to the I-forms ~ and "'a are
integrable. According to the dual formulation of Frobenius's theorem (theorem
B.3.2) the necessary and sufficient conditions for integrability are

V[a ~b] = (#L l)ra~b] + (p,2)ra"'b] (7.1.4)

V[a"'b] = (al)raQ,] + (a2)ra"'b] , . (7.1.5)

where (#L l)a, (#L 2)a, (al)a, (a2)a are arbitrary I-forms. We shall establish the theorem
by proving that equation (7.1.4) holds; the proof that equation (7.1.5) also holds
follows in an identical manner. Equation (7.1.4) is equivalent to

(7.1.6)

which, in turn, is equivalent to

(7.1.7)

where .~ is the volume element associated with the metric (see l:\ppendix B). We
define the twist, CUa, of ~a by

(7.1.8)

(7.1.9)

(According to eq. [B.3.6], CUa measures the failure of ~a to be hypersurface orthog
onal.) Our task is to show that ",a cua = O.

By hypothesis (i), we know ",a CUa vanishes at at least one point, so it will vanish
everyw~ if and only if its derivative is identically zero. We have

~(",acua) = ",a~cua + CU" Vb",a

= .po'VaCUb + CU,,~.po + 2",aV[bCUa]

= £",CUb + 2.poV[bCUa]

where the formula (C.2.I3) for the Ue derivative was used. However. the group of
diffeomorphisms X~ generated by ",a leaves ~a invariant (since ",a and ~a commute)
and leaves tho metric invarilult (since tlta is a Killing field). Hence. X~ must leave
invariant anytensorfieldtbatcan be constructed uniquely out of ~a and the metric.
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Since CUb is such a tensor field, we musthave1

£",wb = 0 (7.1.10)

Thus, to complete the proof, we need only compute 'TbWa]' We have

Eabc4~Wd == EabcdEdefg~(geVf gg)

=6~(g[cvagb]) (7.1.11)

where equations (B.2.11) and (B.2.13) were used. Now, using Killing's equation
(C.3.l), we have

(7.1.12)

However, we find

~(gcvagb) = (~g1vagb + gc~vagb

= -gcRabcdgd

=0 (7.1.13)

(7.1.15)

Here the trace of Killing's equation was used to eliminate the first term,while
equation (C.3.6) was used to express the second term in terms of the Riemann tensor.
The antisymmetry of the Riemann tensor in its last two indices was used to get.the
final conclusion. On the other hand, we have

~(gbvcga + gaVbg1 = (Vcf~(vcg") + (~ga)(Vbg1 + gb~vcga + gaVcVbgc

= 2grb~Vlcl gal

= _2g[bRa]cgc (7.1.14)

where Killing's eqpation was used to get the second line and equation (C.3.9) was
used to get the third line. Thus, we find

1
'TaCUb] = - 4" €abed EcdefVewt

= -EabcdgcRdege

and, finally,

Vb (",awa) = 2t/1a Vr:b wa)

= - 2Ebacd",agcRdege

=0

by hypothesis (ii). This completes the proof. 0
(7.1.16)

1. Another way of seeing this is that in a coordinate system adapted to both ~a and 1/1", any tensor
Ta ..'''."... d whose components TtJt ..."p •.. f> are constIUcted out of the components ~tJt and 8,._ and their
coontinate derivatives must satisfy o(TtJt .. ·"P ... ,,)/of/J = 0, which proves that [</ITa .. '''C'''d = 0 accord-
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The hypotheses of theorem 7.1.1 will be satisfied in a wide range of stationary,
axisymmetric spacetimes of physical interest. In particular, if the spacetime is
asymptotically flat, there must be a "rotation axis" on which I/Ia vanishes, so hypoth
esis (i) will be satisfied. For a vacuum spacetime, we have Rab = 0, so hypothesis
(ii) is trivially satisfied. In addition, hypothesis (ii) will also be satisfied when the
matter stress-energy Tab == (81T)-'(Rab - !8abR) has the form of a perfect fluid with
4-velocity in the plane spanned by fa and ~ (Le., circular flow) or if Tab is the stress
tensor of a stationary, axisymmetric electromagnetic field (Carter 1969).

For spacetimes which satisfy the hypotheses of theorem 7.1.1, we may choose
coordinates x 2, x 3 in one of the orthogonal two-surfaces and "CaIfY" these coonli
nates to the rest of the spacetime along the integral curves of fa and 1/10. In the
coordinates (t, </>' x 2

, x 3
), the metric components take the form

8,." =(-v ; ~u ~u) , (7.1.17)

(sym.) 833

where V = -800 = - €a fa, W = 801 = fa I/Ia, X = 8t1 == 1/10 1/10' and the 2 X 2
block of zeros expresses the orthogonality of ojax 2 and 0/ax3 with ojat and 0/o4J.
(A physical interpretation of W is established in problem 3.) Thus, theorem 7.1.1
allows us to reduce the number of nonvanishing metric components to six. Without
theorem 7.1.1, only two metric components in the 2 x 2 block could be set to zero
by use of the coordinate freedom available in a coordinate system adapted to fa
and I/Ia.

We still have not specified how the two-surface coordinates x 2 and x 3 are to be
chosen, and, as we shall see, significant further simplification can be achieved by a
judicious choice of these coordinates. We define the scalar function p by

p2 == VX + W2 (i.l.18)

i.e., p2 is minus the determinant of the t - 4J part of the metric. Assuming Va p =1= 0,
we choose P af!0De of the coordinates, x 2, of the two-surface. We choose the other
coordinate, z. == x 3

• so that Vaz is orthogonal to Va p. [This is accomplished by setPng
z == constant along the integral curves of Vap, which uniquely determines z up to the
transfonnations z -+ z' == !(z),] In the coordinates t, q" p, z the metric takes the
form

ds2 == - V(dt - w dq,i + V-'p2dq,2 + O,2(dp2 + A dz2) , (7.1.19)

where w == W jV. Thus, we have reduced the unknown metric components to four
functions, V, w,n, A of two variables p, z. Equation (7.1.19) is the general form
of a stationary, axisymmetric spacetime satisfying the hypotheses of theorem 7.1.1.

ing to equation (C.2.4). That 4w" = 0 holds, ofcourse, also could be proven directly using the fonnulas
of appendix C (problem I).
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(7.1.24)

(7.1.25)

166 Methods for Solving Einstein's Equation

The form of the metric can be simplified further for vacuum spacetimes, Roo = O.
The components of Rob in the plane spanned by fa and I/Ia can be computed from
eqll8tion (C.3.9) or, alternatively, from the general coordinate basis fonnulas of
section 3.4a. The equation

o = R', + R"'", == (VJ)Rabfb + ('V,.4»Robl/lb (7.1.20)
yields

DaDaP = 0 (7.1.21)

where Do is the covariant derivative operator on the two-dimensional surface spanned
by P and z with the induced metric ds 2 = n,2(dp2 + Adz2). Thus, p is harmonic,
i.e., it satisfies thetwo--dimensional Laplace equation in the two-surfaces. This has
two important consequences: (l) Ifp =/= •. constant, it can be shown that Va p can vanish
only at isolated points. Since our coordinates p, z will be well behaved except where
Vap = 0, this shows that our coordinate system can break down only at isolated
points. In fact, in many situations it is possible to show that Va p =/= 0 everywhere,
so the coordinates p, z are globally well behaved (Carter 1973). (2) It follows directly
from equation (7.1.21) that A is a function of z alone. Thus we may use the
remaining coordinate freedom to tr;lnsform z via z -+ I A1/2 dz and thereby set
A = 1. (N(.lte that z then becomes the harmonic functionconjugate to p; see problem
2 of chapter 3.) Except fOr the trivial constant re-scaling or shift of origin of the
coordinates t, q" z, we have now completely specified our coordinate system. In
these coordinates the metric Jakes the remarkably simple form (papapetrou 1953,
1966)

ds 2 = - V{dt - w dq,)2 + V- I[p2dq,2 + e2'Y(dp2 + dz 2)] , (7.1.22)

where 'Y = !In{Vn,2). Note that in flat spacetime (V = 1, W ='Y = 0), the coordi
nates (q" p, z) areordinaty cylindrical coordinates.

In deriving equation (7.1.22), we have used Einstein's equation thus far only in
hypothesis (ii) of theorem 7.1.1 and in equation (7.1.20). The remaining components
of the vacuum Einstein's equation Rob = 0 can be computed in a straightforward
manner using the methods of section 3.4a. We shall Dot present the details here but
will merely quote the final results. We obtain four independent equations for V, w,
and 'Y. The first two involve only V and wand are most conveniently formulated by
defining an (unphysical) tlat three"dimeosional metric,

d§2 = p2dq,2 + dp2 + dz 2 ,
....

and expressing the equations in terms of the flat dgivative operator V associated with
this metric. (We use the usual vector notation V rather than the index notation to
avoid confusion with the derivative ~perator associated with the true spacetime
metric.) In this way, the first two equations may be viewed as equations for axisym
metric scalar fields V, w in the unphysical three-dimensional flatspace of equation
(7.1.23). The equations are:

V· {y-IVV + p-2 v2wVw} = 0

V. {p-2V2VW} = 0
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,(7.1.26)

(7.1.27)

(7.1.28)

The last two equations are in danger of overdetennining 'Y. However, the integra
bility condition a2'Y / tJzap = a2'Y1aptJz is identically satisfied by virtue of equations
(7.1.24) and (7.1:25). Hence, given a solution of equations (7.1.24) and (7.1.25),
a solution of equations (7. 1.26)and (7.1.27) always exists and is unique up t() the
addition of a constant. This, solution can be obtained by perfonning a line integral
of the right sides of equations (7.1.26) and (7.1.27), i.e., explicitly,

'Y(p) ~. 'Y(q) = J: (Z dp + Zdz)
Thus, apart from the computation required to find 'Y explicitly, the problem of

solving for all ,stationary, axisynunetric vacuum solutions ofEinstein 's equation has
been redu<:edto solving equations (7.L24) and (7.1.25) for the two axisymmetric
functions V and w in ordinary three-dimensional Euclidean space. This is a remark·'
able simplification of the original·'problem of solving the full set of Einstein's
equation for 10 unknown functionsgp.II' Nevertheless, these equations are still
sufficiently diffic111t to solve that-with the exception of static solutions discussed
below-almost no sOlutions have been found by direct attack on equations (7.1 :24)
and (7.1.25). (In cases where solutions have been 9btained, it often has proven
~ful to work with coordinatesotherthanp and z [Zipoy 1966; Chandrasekhar
1983].) The equations can be refonnulated through the' introduction of potentials
(Ernst 1968), and a few solutions oHnterest have been found by direct study of these
modified equations (Tomirnatsu and Sato 1972, 1973), However, recent progress in
methods for generating solutions (discussed briefly in section 7A below) has .pro
duced algorithms for obtaining all the asymptotically flat stationary, axisymmetric
solutions, althOugh the computations required in thisprocedute remain formidable.

The major exceptionwhere direct attack has been completely successful is the case
of static, axisymfuetiic spacetitnes (with the axisymmetric Killing field "alying in
the hypersurfaces orthogonal to the static Killing field). In that case. we have w = 0,
so equation (7.1.25) is triviallysatistied, and if we define X = In V, equation
(7.1.24) reduces to simply

(7.1.29)

i.e., X is an axisymmetric. solutip~ of tile ordinary Laplace equation in three·
dimensional fiat space. Since all such solutions of this equation are explicitly known,
all static, axisymmetric solutions of Einstein's equation can be obtained. This anal
ysis of the static, axisymmetric spacetUnes was first carried out byWeyl (1917), and
the solutions are often refe~tQas the Weyt solutions. It should be pointed outthat
the properties of the solution of equation (7.1.29) do not translate in a simple way
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into properties of the spacetime metric it generates. Specifically, the monopole
solution of Laplace's equation does not generate a spherically symmetric spacetime.
To obtain the spherically symmetric Schwarzschild solution by this procedure, one
must choose X to be the potential of a finite rod on the z- axis (centered on the origin)
with constant mass per unit length.

7.2 Spatially Homogeneous Cosmologies
In chapter 5 we studied in detail the solutions of Einstein's equation which are

spatially homogeneous and isotropic. These models successfully account for many
of the observed properties of our universe. However, our universe certainly is not
exactly homogeneous. aDd isotropic, aDd one would like to have a bet.ter under
standing of the possible dynamical behavior of the univerSe in the absence of these
syntrnetries. We already showed in chapter 5 that spatial isotropy at each point
implies spatial homogeneity, so the simplest first step toward generalizing the
Robertson-Walker models would be to obtain the spatially homogeneous but aniso
tropic solutions. We would expect this to be a tractable problem. since on account
of the spaQal symmetry, only the time variations should be nontrivial. Thus,
Einstein's equation should reduce to a system of ordinary differential equations. The
main purpose of this section is to demonstrate that this is indeed the case by outlining
the derivation of equations (7.2.41)-(7.2.43) below. The solutions to these equations
provide interesting models for the possible behavior of the universe near an initial
singularity (Collins aDd Ellis 1979).

We already defined a spatially homogeneous spacetime at the beginning of chapter
5 as one which possesses a group of isometrles whose orbits are spacelike hyper
surfaces which foliate (Le. , pass through every pointof) the spacetime. Our first task
is to define more precisely the nature of the group of isometries we seek and to
develop some important properties of such groups. The notion of a Lie group which
we are about to define generalizes to ,om parameters" the notion of a I-parameter
group of transfonnations discussed in section 2.2.

First, we remind the reader that·a group ~ is simply a set together with a map
~ x ~ -+ ~ (called "multiplication'') and a preferred element e (called the identity
e\ement) such that: (1) the multiplication law is associative.gl(g~3) = (g18'2)g3;
(2}forallg E ~,wehaveeg == ge = g;and(3)foreveryg E~thereisanelement

of ~-denotedg-1 and called the inverse of g-such that gg-1 = g-lg = e.
Many sets consisting of a finite number of elements provide examples of groups.

A good example of a· group with infjnitely many elements is the collection of
diffeomorphisms of a manifold M with "multiplication" given by composition,
.". = "'041, aDd e taken as the identity map, e (p) == p for all p EM. Similarly, the
collection of isom~esof a manifold M with metric gab also forms a group (which
is a subgroup of the group of diffeomorphisms), since the composition of two
isometries is an isometry, and the inverse of any isometry is an isometry.

A Lie group, G, of dimension m is a group which is also an m-dimensional
manifold such that the inverse map i(g) == g-1 aDd the multiplication map
/(g1>g2) = g1g2 are smooth (COO). Thus, the elements of a Lie group can be charac-
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terized locally by m parameters, and the multiplication and inverse operations depend
smoothly on these parameters. The group of diffeomorphisms of a manifold M does
not yield a (finite dimensional) Lie group, since this group is "too big" to be
characterized by m parameters. However, it is possible to show that the group of
isometries always yields a (possibly zero..climensional and possibly disconnected)
Lie group. In fact, an argument given in section C.3 of appendix C shows that on
a manifold, M, of dimensionn. the Lie group of isometries cannot have dimension
greater than n(n + 1)/2. We establish, now, a number of properties of Lie groups
which will be used below in our analysis of homogeneous cQSmologies.

Let G be a Lie group ofdimension m. It follows from the smoothnesS"of i and!
that for each h E G the map

l/Ih(g) = hg (7.2.1)

called left translation by h, is a diffeomorphism. Let l/I; denote the map on tensors
induced by l/Ih (see appendix C). If a vector field va on G satisfies

(7.2.2)

for all h E G, then va is called left invariant. More generally, a tensor field invariant
under l/I: for all h EGis said to be left invariant. It is easy to see that the left
invariant vector fields form a vector space since sums and scalar multiples of left
invariant vector fields are also left invariant. Clearly, a left invariant vector field is
determined by its value at v., the tangent space at the identity element, e, since if va
is left invariant, we have

Valh = l/IZ[va/.] • (7.2.3)

Conversely, if we define a vector field in terms of its valt!e at e by equation (7.2.3),
we Produce a left invariant vector field. Thus, the left invariant vector fields on G
form an m-ditnensional vector sp~.

Now, if. </J is· any diffeomorphism ()n any manifold and va and wa are any two
vector fiel~, we have

</J'([ww]) = [</J·(v),</J·(w)] (7.2.4)

where [ , ] denotes the commutator, defined in section 2.2 above. Thus, if va and
WO are left invariant vector fields on a Lie group, the cominutator [v, wralso will
be a leftinvaJj~t vector fieI4.. S~.the commutatordepends linearly on v~ and wa

,

this implies that there exists a left invariant tensor field C°bc such that c'

[v. wr = Cabcvbwc (7.2.5)

The tensor field Cabc is called the struqture constant tensorof the Lie group. It follows
immediately from its definition that

Furthermore, the Jacobi identity for commutators,

[u, [v, wll + [v,[w,'ull + [w, [u, v]] = 0

(7.2.6)

(7.2.7)
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implies that

(7.2.8)

A finite dimensional vector space with a tensor Cabc of type (l, 2) satisfying
equations (7.2.6) and (7.2.8) is called a Lie algebra. We have shown above that the
left invariant vector fields of a Lie group comprise a Lie algebra. Thus, every Lie
group gives rise to a Lie algebra. Conversely, it is possibl~ to show that every Lie
algebra gives rise to a Lie group in a unique way up to global topological structure.
More precisely, given any Lie algebra, there exists a unique connected, simply
connected Lie group whose Lie algebra coincides with the .given Lie algrebra. 2 This
fact tremendously simplifies the analysis of Lie groups, sinc& Lie algebras are much
simpler objects to work with than Lie groups.

Let aa be a left invariant dual vector field. If va is a left invariant vector field, then
£¥ava is constant, so

o == Vb(aavO) == vaVbaa + a~VbVa (7.2.9)

where ~ is any derivative operator on G. If va and waare both left invariant vector
fields, We have

2vaWb~aab] == (vawb - vbwO)Vaab

== -VaabVawb + abWaVavb

== -ab[v, w:r
(7.2.10)

Thus, we find that every left invariant dualvector field ab satisfies

2~aab] == -acCcab(7.2.11)

The right translation map Xh, defined by Xh(g) == gh, also is a diffeomorphism.
We define right invariant tensor fields analogously to left invariant tensor fields. As
discussed in section 2.2, any vector field generates a one-parameter group of dif
feomorphisms. Let xa be a right invariant vector field, and let tP, be its one-parameter
group of diffeomorphisms. Since xa is right invariant, we have

Xh0tP, == tP,oXh (7.2.12)
I

. ~

for all h E G. Consequently, defining h(t) == tP,(e), we have, for all g E G,

q,,(g) == tP, ° X,(e) == X, ° q,,(e) == X,[h(t)] == h(t)g == l/J,,(,)(g) . (7.2.13)

Thus, we find

tP, == 1/111(') (7.2.14)

i.e., the right invariant vector fields are infinitesimal generators of left translations.

2. Existence of a Lie group associated with a Lie algebra follows from Ado's theorem (see, e.g.,
Jacobson 1962). Existence of a simply connec:ted u~ grQIJp follows from the universal covering group
construction described in chapter 13. Uniqueness is proven, e.g., in Warner (1971).
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?

This immediately implies that if x" is a right invariant vector field and v" is a left
invariant vector field, we have

0= £;ffV" = [x,v]" . . (7.2.15)

Similarly, ifx" is a right invariant vector field and a" is a left invariant dual vector
field, we have

(7.2.16)

(7.2.17)

(7.2.18)

where V" is any derivative operator. Consequently, if x"· and y" are both· right
invariant but ab is left invariant, we find, by a calculation similar to that of equation
(7.2.10), .

2x"yb~abJ = ybx"V"a" - xby"V"a"

= -yba"VbX" + xba"Vby"

=a,,[x,'y]"

On the other hand, by equation (7.2.11), we have

2x"ybVr"a"J = x"yb(-acccab)

Thus, we find

[x,YJ = _cc@xayb (7.2.19)

i.e., except for a change in sign, the right invariant v~tor fields satisfy the same
commutation relations as the left invariant vector fields: Note that equation (7.2.19)
shows that CCab is also right invariant.3

Let us apply the above facts about Lie groups to homogeneous cosmological
models. By definition, in a spatially homogeneous spacetime (M, gab), there exists
a family of spacelike hypersurfaces ~t such that for any two points p, q E ~t there
exists an element g:M -+ M of the Lie group, G, ofisometries such that g(p) = q.
(G is said to act transitively on each ~t.) We will restrict attention to the case where
for all~ and for allp, q E ~t there is a unique element g E G such that g(p) = q,
in which case G is s;rid to act simply transitively on each !t. This implies
dim G = dim'~ = 3. In filet, almost no loss of generality results from restricting
consideration to a simply transitive action because it turns out (see, e.g. MacCallum
1979) that the only case where G does not act simply transitively or does not possess
a subgroup with simply tranSitive action4 is the group SO(3) x R acting on the '.
"cylinder" S2 x R [with the orbits of SO(3) being the two-dimensional spheres];
spatially homogeneous models with this isometry group (called Kantowski-Sachs
models) can be treated separately by similar techniques (see, e.g., Ryan and Shepley
1975).

3. The tensor c'.cdc/> is llymmeu1C in a and b. For semisimple Lie groups it also is non4egenerate.
Thus. semisimple Lie groups possess a natural bi-invariant (i.e.. left and right invariant) metric
g"" = c'.cd

c/>.

4. In particular. the isometry groups of the homogeneous, isotropic models of chapter S all possess
subgroups which have a simply transitive action on the homogeneous surfaces.
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The advantage of considering simply transitive action is that if we (arbitrarily)
choose a point p E ~t, we can put the elements of G into correspondence with the
points of ~t by the association g -+ g(p). (A simply transitive action is needed to
ensure that this correspondence is one-to-one.) Under this identification ofG and ~"
the action on~ of the isometry 9 corresponds to left multiplication by 9 on G. Thus,
the tensor fields on ~t which are preserved under the isometries-in particular, the
spatial metric, hab , on ~,-correspondprecisely to the left invariant tensor fields on
G. In particular, this means that the vector fields on ~t which are preserved under
the isometries satisfy the commutation relations (7.2.5), and, similarly, the invariant
dual vectors satisfy equation (7.2. H). Furd1ermore, the infinitesimal generators of
the isometries on ~,-Le., the Killing vector fields of ~,-correspondto the right
invariant vector fields of G. Thus, the Killing vector fields of ~t satisfy the commu
tation relations (7.2.19).

Our next task is to put the metric of a spatially homogeneous spacetime with
simply transitive group action into a useful canonical form. Consider a single ho
mogeneous hypersurface Io. Ideally, one would like to choose spatial coordinates
adapted to the Killing vector fields so that the coordinate componeQts of·tPe space
time metric would be independent of the spatial coo~inates. However, except for the
simple case of the translation group, G = 1R3, this cannot be done, since coordinate
vector fields must commute, but according to equation (7.2.19) the Killing v~tor

fields do not commute unless CCab = O. Thus, in general, only one Killing vector field
can be employed as a coordinate vector field, and this is notparticularly useful. Thus,
instead.., we choose a basis of dual vector fields «(1'1)/" «(1'2)/1, «(1'3)/1 which are pre
served under the isometries (which we can do. by choosing an arbitrary basis at
p E Io and defining the basis elsewhere by "left translation"). Since t:l'le spatial
metric, hab, on Io (obtained by restriction of the spacetime metric gab to vectors
tangent to Io) is; left invariant. we have . .

3

hab = .L ha/J(craMq~b
a./J-I

(7.2.20)

w~re the comp<?nents, hafJ, are constant on ~, Le., independent of spatial position.
Let p E,~, let ta denote the unit normal to ~ at p, and let 'Y be the geodesic

determined by (p, t4). Then 'Y will be orthogonal to all the spatial hypersurfa~s it
intersects because, by proposition C.3.1, the tangent to 'Y must always remain
orthogonal to all the' spatial Killing vector fields" since it is initially, orthogonal to
them. We label t:l'le other spatially homogeneou~ hypersurfaces by the proper time t
of the intersection of the g~sic 'Y ,with the hypersurface. Then, the vector field
ta =,~vat will~ everywhere orthogonal to eaCh ~I (since t is constant on k t), and
the integral curves of ta are all geodesics (with tata = -1), since this is true along
'Y by construction and hence is true everywhere on each ~t by spatial homogeneity.
We define the dual vector fields (qa)athroughout the spacetime in terms of their
values on the initial surface ~ by "Lie transport" along to, Le., by setting

£t(cr~a = 0 (7.2.21)
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or. equivalently, by defining (u~a on the hypersurface ~, by

(ulr)a(t) = <p;[uO (O)1 (7.2.22)

where q" denotes the one-parameter group of diffeomorphisms generated by··ta• It
follows directly from,.equation (7.2.21) that (ull)..ta = 0 everywhere.

Since q" is constructed in an entirely geometrical manner, it is not difficult to see
that it must commute with any isometry g.

f/>,og = gof/>, . (7.2.23)

It follows immediately~from this fact that on each ~, (Le., not only on Io), the basis
vectors (u~a are invariant under the spatial isometries. Note also that

2ta~..(Ulr)b] = taVa(ulr)b - taVb(ulr)a

= raV..(Ulr)b + (ulr)aVbt"

= £,(Ulr)b
~l

= 0 . (7.2.24)

Thus, ~a(ulr)bJ has no component perpendicular to ~,. Since the part of ~..(Ulr)bJ
projected into~, satisfies equation (7.2.11) since (u~.. is invariant under the spatial
isometries,\we have

2~"(~bJ = -CCab(ulr)c (7.2.25)

The conclusion of all of the above discussion is the following: For a spatially
homogeneous spacetime on which the spatial isometry group G acts in a simply
transitive manner, the manifold structure is M = IR x G. By defining the function
t and the left invariant dual vector fields (u 1

).. , (u~a. and (u3
).. on M in the manner

described above, we can express the spacetime metric gab in the form

3

gab = - VatVbt + L hlrfJ(t)(u lr
)..(qlt)b

o.fJ=1

where the vector fields (~a satisfy

~..{Ulr)bJ = -~ CCab(UO)c

(7.2.26)

(7.2.27)

Thus, to construcupatially homogeneous cosmological models, we simply choose
a three-dimensional Lie group G. choose a basis of left invariant dual vector fields
on G, and choose the functions ~(t) [or. equivalently. choose a time-dependent left
invariant metric Ja..(t) on OJ. We then define the spacetime metric on R x G by
equation (7.2.26), All homoie~s ~pmlogies with simply transitive action can
be constructed in this manner.

Thus, apart from the exceptional case mentioned above where the Lie group action
is not simply transitive. the program for obtaining all general relativistic spatially
homogeneous cosmologies will be completed by (I) obtaining all three-dimensional
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Lie groups G and (2) writing down and solving Einstein's equation for the tnetric
(7.2.26).

The first task was accomplished by Bianchi (1897), who obtained all three
dimensional Lie algebras and classified them into nine types. (A.s mentioned above,
these Lie algebras are in one-to-one cotrespondencewith all connected, simply
connected three-dimensional Lie groups.) We mall derive here a slightly tnodified
version of the Bianchi classification (see Ellis and MacCallum 1969). We seek all
possible tensors CCfIb on a three-dimensional vector space V satisfying CCfIb == CC[flbJ
and the Jacobi identity, equation (7.2.8). Let Eabe be a fixed 3-formon V, i.e., a
totally antisymmetrlctensor of type (O, 3). Given CCfIb, we define Aa and M fIb by

(7.2.28)

(7.2.29)

where Eabc is the unique totally antisymmetric tensor of type (3,0) satisfying
EabcEabe = 3! == 6. Contracting equation (7.2.29) with Eaef and using equation
(B.2.13), we obtain

fib '" ~"EaefM == C ef - () [eAfI • (7.230)

Contracting this equation over e and b and using the definition (7.2.28) ofAa, we find
that M fIb is symmetric,

(7.2.31)

Thus, we have shown that on a three-dimensional vector space, any CC
fib satisfying

CCfIb == CC[fIb} can be written in the form

CCfIb == McdEdfIb + 8c[aA"J (7.2.32)

where M cd == M dc • Substitution of this expression into the Jacobi identity (7.2.8)
yields the remarkably simple result, .~

MfIbA" == 0 . (7.2.33)

Thus, a three-dimensional Lie algebra is determined by a dual vector Aa and a
symmetric tensor MfIb satisying equation (7.2.33).

H Aa = 0, then equation (7.2.33) is trivially satisfied. In this case (referred to as
"class A.''), the resulting Lie algebras are classified (i.e., uniquely determined up to
isomorphisms) by the rank and signature (up'to overall sign) of M fIb. Hence, there
exist precisely six distinct Lie algebras in this case: (i) MfIb == 0, (ii) rank (MfIb) ~ I,
(iii) rank (Mall) = 2, signature + -, (iv) rank (M fIb) ,== 2, signature + +, (v)
rank (Mall) == 3, signature' + + - , (vi) rank (MfIb) == 3, signature + + +.
IfA" :I: 0 (referred to as "class B"), then by equation (7..2.33) the rank ofM fIb cannot
be greater than two. Hence,in this case there exist four possibilities fol'the rank and
Signature (up to overall sign) of Mall. However, in the two cases where the rank of
M fIb is equal to two, a scalar a is determined by the formula

(7.2.34)
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since the tensors appearing on both sides of this equation are nonvanishing and must
be proportional to each other. As a result, in class B there exist two one-parameter
families of Lie algebras classified by the signature of the rank-two tensor Mob and
the value of a, as welloas two further Lie algebras corresponding to the cases where
the rank of Mflb is zero (i.e., Mob = 0) or one. Tables giving explicit formulas for
the components of CCob in conveniently chosen bases for all the above Lie algebras
can be found in Taub (1951} and Ryan and Shepley (1975).

To write down Einstein's equation, we need to compute the curvature of the metric
(7.2.26). The most straightforward procedure to do so is to define a left invariant
orthonormal basis (e/o')" (which, however, will not satisfy [7.2.21]) by

(eo)a = Vat , (7.2.35)

3

(ea)a = ~ BafJ(t)(ult)a (a = 1, 2, 3)
fJ=1

where, in order for the (eJa to be orthonormal, BafJ must satisfy

(7.2.36)

8afJ = ~ BcryBfJ8h,s (a, (3 = 1, 2, 3) (7.2.37)
y.3

where h,s are the components of the inverse metric, hob, in the basis dual to (Ua)a.
(There is, Qf course, considerable freedom involved in the choice of BafJ; additional
conditions, such as BafJ = B{la [Ryan and Shepley 1975] may be imposed in order to
uniquely specify BafJ.) For this orthonormal basis, we have

~a(eO)b] = ~av,,]t = 0 (7.2.38)
and, for a = 1,2,3,

~a(ea)b] = ±{~;IJ ~at(ult)b] - ~ BafJCCob(UIt)C}
fJ=1

3 1
= ~ Aa1'V[at (eY)b] - 2 cCob(ea)c (7.2.39)

1'=1

whereAaY = ~(dBafJ/dt)(B-I)fJY and equation (7.2.27) was used. Equations (7.2.38)
and (7.2.39) 'aetermine the connection one-forms via equation (3.4.24), and,
thus, the curv~ can be calculated by the. tetrad method of section 3.4b. This
procedure will yield a formUla for the Riemann and Ricci curvature tensors in terms
of the matrix BafJ and the structure constant tensor CCob, and such formulas for the
Ricci cUrvature are given by Ryan and Shepley (1975). However, using equation
(7.2.37), we can elirrtinate BafJ in terms of hafJ (as must be possible since the choices
of Lie group and hafJ completely determine the metric [7.2.26] and thus the curvature
must be expressible in terms of them), We then can write the component formulas
thus obtained as tensor equations for the curvature in terms of the metric, hob(t), on
~t and the structure constant tensor CCob' We shall not present the details of these
rather lengthy calculations here but merely present the final result. Defining K:u, by

1
Kob = 2£thob (7.2.40)



176 Methods for Solving Einstein's Equation

[so that, as discusSed more generally in chapters 9 and 10, Kob(t) is the extrinsic
curvature of ~t], we obtain the following formulas for the components GGb(eo)"(e1)b,
GbchbieoY and hCahd~cdof the Einstein and Ricci curvature tensors:

1 1
2GGb(eo)"(eo)b = (K"a)2 - KobKob - C4obCc/ - '2 CacbCcab - 4' CabcC• , (7.2.41)

Gbchba(eoY = Rbchbieo)C = Kbcccbu + KbacCbc

1
hCahdbRcd = [tKob + KCcKGb - 2Kac Kcb + 4" CacdCb cd

- CCcdC(ob)d - Ccd4C(cd)b

(7.2.42)

(7.2.43)

In the right-hand sides of equations (7.2.41)-(7.2.43) all indices are lowered and
raised by the spatial metric,- hob, and its inverse, hob.

Now, the vacuum Einstein equation, Rob = 0, is equivalent to the vanishing of the
left-hand sides of equations (7.2.41)-(7.2.43). (The rion..vacuumEinstein equation,
of course, is obtaine<;t by setting the left-hand sides of equations [7.2.41]-[7.2.43]
equal to appropriate stress-energy terms.) Using the definition of Kgb, equation
(7.2.40), it may be verified that if equations (7.2.41) and (7.2.42) with the left-hand
sides set equal to zero hold "initially," i.e., on the hypersurface ~, then they hold
everywhere ifequation (7.2.43) is satisfied (with the left-hand side set equal to zero);
in other words, the time derivatives of equations (7.2.41) and (7.2.42) vanish
automatically by virtue of equations' (7.2.40) and (7.2.43). The reason this occurs
can be traced directly to the Bianchi identity, Va Gob = 0, and will be discussed more
generally in chapter 10. Thus, equations (7.2.41) and (7.2.42) act as constraint
equations on the initial values of Kob and hob. (The right-hand sides of eqs.
[7.2.41]-[7.2.43], of course, contain he implicitly in the index raisings and low
erings.) On the other hand, equations (7.2.40) and (7.2.43) act as evolution equa
tions for hob and Ke. H we take the components of equations (7.2.40) and (7.2.43)
in our original basis (u")a, we obtain directly a system of ordinary differential
equations which express dh~/dt and dKap/ dt as functions of hap, K~, and the group
structure constants C'YaP' From the theory of ordinary differential equations, it is well
known that a unique solution of equations (7.2.40) and (7.2.43) always exists for
given initial values of he and Kgb.

Thus, to obtain a spatially homogeneous solution of the vacuum Einstein equation,
we need only solve the algebraic constraint equations, (7.2.41) and (7.2.42), for the
initial data hGb, Kgb at t = O. A unique solution then is generated by the evolution
equations (7.2.40) and (7.2.43). Although in most cases it may not be possible to
integrate these equations analytically, numerical integration of such a system of
ordinary differential equations always can be carried out in a straightforward manner.
Similar conclusions hold for the non-vacuum Einstein equation with appropriate
matter sources.

As an example of the above procedure, we shall determine all the spatially
homogeneous vacuum solutions for the simplest case of the Lie group G = R3 with
group "multiplication" given by addition. (This case is called "type I" in the Bianchi
classification of Lie groups.) Since the group multiplication is commutative, the



(7.2.47)

(7.2.48)

(7.2.49)
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vector field generators of left translations must commute, so we have C
C
ab =0 by

equation (7.2.19). Hence any basis of left invariant vector fields forms a coordinate
basis, and for any choice of (O'")a constructed in the manner described above, we can
find coordinates x, y, z on R3 so that (O'I)a = .(dx)a, (0'2)a = (dy)a, «(7'3)a = (dz>a.
('The simple case CCab = 0, of course, is the only case for which this can be done.)
Without loss of generality, we may choose (O'")a to be orthonormal on the initial
surface 1:0, and we may rotate this basis to diagonalize Ka~ on 1:0. The evolution
equations (7.2.40) and (7.2.43) with CCab = 0 then imply that in the basis (O'")a
(which is defined off the initial surface byeq. [7.2.21]) both ha~ and Ka~ must remain
diagonal for all time. Thus, we have

Ka~ = diag (kJ, k2, k3) , (7.2.44)

ha~ = diag (It,f2,f3) , (7.2.45)

ha~ = diag (fl-I,h-I,./J-I) (7.2.46)

By construction, on the initial surface, we havefa = 1. The initial value constraint
(7.2.42) is trivially satisfied, so the only requirement on the initial values of ka comes
from equation (7.2.41) which yields (usingfa = 1),

(kl + k2 + k3)2 = k1 + ~ + ij

The evolution equations (7.2.40) and (7.2.43) yield

1 dfa
ka =2dt'

dka = -("f-Ik)k + ").1:'-11,2
~ ~ ~ ~ a ~ah

~

Hence, we find

~ (f;1 ka) = f;1 { - (2: f~1 k~)ka + 2f;1k~} - kJ;2(2ka)
~ .

= (tfilk~)f;lka . (7.2.50)

Summing equation (7.2.50) over a, we obtain

dKl~ = -K2 , (7.2.51)

where K = If;lka = Kaa. If we exclude the trivial solution K = 0 (which leads
a

uniquely to the Minkowski solution), the general solution of equation (7.2.51) is

K = lit , (7.2.52)

where the constant of integration has been absorbed in the definition of the zero of
t. Substitution of our solution (7.2.52) into equation (7.2.50) yields

~ (f;lka) = -~ (f;lka) , (7.2.53)
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which has the general solution

f;lka = Palt ,

where Pa is a constant. Hence, by equation (7.2.48), we have

!f-l dfa = Pa
2 a dt~ t '

which has the general solution

(7.2.54)

(7.2.55)

(7.2.56)

where Ca is a constant. Equation (7.2.48) (or eq. [7.2.54]) then yields

ka = CaPat~(J-1 (7.2.57)

Substitution of equations (7.2.56) and (7.2.57) in equation (7.2.52) yields

(7.2.58)
a

Equations (7.2.56) and (7.2.57), subject to the condition (7.2.58), are the general
solutions (aside from Minkowski spacetime) of the evolution equations. Taking
t = 1 as our initial surface on which to impose the requirementfa = 1 and kasubject
to the constraint (7.2.47), we obtain

Ca = 1 (7.2.59)

(7.2.60)

Thus, the general spatially homogeneous vacuum solution (aside from Minkowski
spacetime) of Einstein's equation with simply transitive Lie group G = R3 is

ds2 = -dt2 + t~ldx2 + t 2112dy2 + t~3dz2, (7.2.61)

where P.,P2,P3 are constants subject to equations (7.2.58) and (7.2.60). Equation
(7.2.61) is known as the Kasner solution (Kasner 1925).

One solution of equations (7.2.58) and (7.2.60) is PI = I, P2 =P3 = O. The
Kasner solution with this choice of Pa can be recognized to be simply the Rindler
spacetime of section 6.4 (crossed with H2), with t and x interchanged. Thus, in this
case, the apparent singularity at t = 0 is only a coordinate singularity, and the
Kasner solution (7.2.61) is just the wedge of Minkowski spacetime labeled as region
n in Figure 6.8. However, all solutions other than the trivial50lutions where two of
the Pa vanish yield nonftat spacetimes with a physical singularity at t = O. Note that
with the exception of the trivial solutions, all solutions of equations (7.2.58) and
(7.2.60) must have two of the Pa positive and the other negative. Thus, the Kasner
solution describes a homogeneous universe whi~h expands in two directions but
contracts in the other direction. Interestingly, the analysis of the dynamics of ho
mogeneous vacuum solutions with G = SU (2) (Bianchi type IX) shows that near the
initial singularity the evolution can be described as a series of "Kasner epochs"
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connected by "transition regimes" where the values ofPa change (see Belinskii et al.
1970).

7.3 AlgebraicaDy Special Solutions
In the previous two sections (as well as in chapters 5 and 6) progress was made

toward obtaining physically interesting solutions pf Einstein's equation by restricting
attention to spacetimes with a high degree ofsymmetry. In this section, we shall very
briefly discuss a different type of simplifying assumption for obtaining solutions,
which relates to the algebraic properties of the curvature tensor. Unfortunately, since
the character of this simplifying assumption is more mathematical than physical,
many of the solutions obtained by this approach do not appear to be of direct physical
relevance. Nevertheless, this approach has been one of the most successful in
providing us with a large class ofexact solutions, and some physically very important
solutions, such as the Kerr metric (see chapter 12), have been found in this way.

In the same manner as for the spatial metrics considered at the beginning of section
5.1, at each point in spacetime we may view the Riemann tensor Rob cd as a linear map
from the six-dimensional space of antisymmetric tensors of type (0,2) (Le., two
forms) into itself. This map is self-adjoint since Robed = Rcdab• However, it should be
noted that unlike the case of a Rjemannian metric considered in section 5.1, the inner
product induced on the two-forms by the spacetime metric gab is not positive definite,
so the familiar theorem that a self-adjoint linear map has a complete orthonormal
basis of eigenvectors (which holds in any finite dimensional vector space with a
positive definite inner product) does riot apply here.

The analysis of the structure of the Riemann tensor as alinear map was first carried
out by Petrov (1954, 1969). We shall not present the details of the analysis of the
curvature tensor here but tum immediately to an important conclusion of the analysis:
In general, there exist precisely four distinct null directions (Le., null vectors k a,

defined up to scaling k a -+ Ak~ which satisfy the relation

kbkCke., Ca]bc{dkt"J = 0 , (7.3.1 )

where Cobed is the Weyl tensor, defined by equation (3.2.28). The null directions
which satisfy equation (7.3.1) are called principal null directions. Thus, every tensor
satisfying the algebraic conditions satisfied. by the Weyl tensor over a four
dimensional vector space with a metric of Lorentz signature possesses, in general,
four principal null direCtions. A proof of this result by tensor methods requires a
considerable amount of analysis. However, a simple proof of this result can be
obtained by spinor {llethods,and we will present this proof in chapter 13.

Although, in general, the Weyl tensor possesses four distinct principal null direc
tions, it is possible for some of these null directions to coincide-in which case they
satisfy stronger relations than equation (7.3.1)-resulting in fewer than four prin
cipal null directions. Spacetimes for which fewer than four distinct principal null
directions exist at each point are called algebraically special spacetimes. The differ
ent types of algebraically special spacetimes are classified in Table 7.1.

In algebraically special spacetimes, we can take advantage of the conditions
satisfied by the repeated principal null direction by choosing a null tetracj (see the
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Table 7.1
ALGEBRAIC CLAssmCATlON OF SPACETIMFS

Condition Satisfied by
Type Description (repeated) Principal

Null Direction kll

I Algebraically general; four kbkc/cr..C,iJ/Jc£dkrJ = 0
distinct principal null
directions

n One pair of principal null kbkcCabc£dk.] = 0
directions coincides

n-n[D] Two pairs of principal null kbkcCabc£<lk.] '" 0
directions coincide (two solutions)

m Three principal null kCCabc£dke] '" 0
directions coincide

. IV [N] All four principal null kCC_ =0
directions coincide

discussion of the Newman~Penrosefonilalism at the end of section 3.4) with one of
the null vectors. aligned with the repeated prinCipal null direction. Certain tetrad
components of the Weyl tensor then will vanish. This yields extra equations on the
connection components (i.e., the spin coefficients in the Newman-Penrose for
malism) in addition to the conditions itri{x>sed by Einstein's equation. Using these
additional conditions, ithas proven possible to integrate Einstein's equation exactly
in many cases. ....

We shall not attempt to presenthere any ofthe details of how algebraically special
solutions can be found. Foran excellent illustration of this approach, we refer the
reader to the paperofKinnersley (1969) who explicitly found all type II-II solutions
of the vacuum Einstein equation by directintegration of the Newman-Penrose equa
tions. A surv~y of the algebraically special solutions known by the late 1970s can
be found ill the book of Krittner et al. (1980).

7.4 Methods for Ge~tb1g Solutions
It often happens when one is trying tOsolv" an equation that an algorithm will exist

for constru<;ting pew splll~on~ from. a given solution. For exaniple, for Laplace's
equation in~ electrostatics one call /construct new solutions from a. given
solution by dle '~tDethod of inversion" (see, ~.g., Jackson 1962).5 Although such
prescri~ons often. can be. applied readily, the)' usuallY suffer from the serious
drawback that the solutions they generate may be of no physical interest, or at least,
not applicable t()the problem that one desires to solve.

S. The methodOf in"¢rSion works because sphere inversion maps t1ie Euclidean metric into a mUltiple
of itself (i.e., it is a "confoimal isometry") and Laplace's equation has simple confonnal trallsfonnation
properties (see appendix D).
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For the vacuum Einstein equation, Rob = 0, it turns out that if one is given a
solution with a Killing vector field ~a there exists an algorithm for constructing a
one-parameter family of solutions, for which ~a remains a Killing field. Algorithms
of this sort have been given by Ehlers (1957) and others. We shall present the
algorithm in the more general form given by Geroch (1971). To define it, we need
to use the fact that as proven in section 7.1 (see eq. [7.1.15]) in a vacuum spacetime,
the twist Cd.. , of a Killing field ~a, defined by

Cda = etlbc4~bVc~d , (7.4.1)

satisfies

Y£aWlI] = 0 (7.4.2)

Consequently, as remarked at the end of section B.l of appendix B, locally there
exists a scalar function, Cd, such that

(7.4.3)

(Cd is called the scalar twist ofca). Furthermore; using equation (B.2.13), we find

(7.4.4)

Thus, using equation (C.3.9) and the vacuum Einstein equation Rob = 0, we find

'to' {Eab]cdVC~} = 0

which implies the (local) existence ofa f"'fonn field Ctb such that

'taCtb] = 4f.abcdVC ~d •

By adding a gradient to ab, we can adjust it so that
, ,

~aa.. = Cd •

Finally, similar calculations (problem 5) show that

't. {2A Va g.] -+ ~]cd VC ~d} = 0

where

A = ~c~ ,

and thus, locally, there exists a I-fonn /3b such that

'ta/3"j = 2A~ ~b +lIJeabcd VC ~d ,

where /3b can be adjusted to satisfy

~a /3a = Cd2 + A2 - 1

(7.4.5)

(7.4.6)

(7.4.7)

(7.4.8)

(7.4.9)

(7.4.10)

(7.4.11)

The algorithm for generating new solutions from a given solution now may be
stated as follows: Let gob be a solution of the vacuum Einstein equation Rat, = 0 with
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Killing field ~a. Define Cd, a., and f3a as above. For each (J E [0.11"]. define gab«(J)
by

(7.4.12).

where 0'(6) and 'Ya(6) are defined by

0' = (cos(J - Cd sin 6)2 + ,\2 sin 2 6 , (7.4.13)

'Ya = 2a.cos 6 - f3asin 6 . (7.4.14)

Then/or all 6, 8aJi6) is a solution of the vacuum Einstein equation. Furthermore, ~a
remains a Killing field of 8ab(6). Note·thatfor 8 = 11", 8ab reduces to gab; however,
otherwise 8ab(6) is, in general, a 'distinct solution~ Note also thl:lt even if gab is
nonsingular, gab may develop singularities on account of the b~ ~havior of Cd, a.,
or f3a resulting from the possibility that one cannot define them globally.

The reader may verify by d~t computation that equation (7.4.12) indeed does
define a solution of the vacuum EinsteiJl equation. However, for a derivation of
equation (7.4.12) which gives more insight into why this algorithm works, we refer
the reader to Geroch (1971).

Unforfunately, the algorithm (7.4.12) does not reproduce most physically inter
esting features of the originalrnetric; In particular, 8ab will not, in general, be
asymptotically flat even if gab satisfies this property. Furthermore, equation (7.4.12)
produces only a one-parameter family of solutions. If one reapplies the algorithm to
8ab(6), one does notgenerate llDynew solup.ons.

However, if gab has two commuting Killing vector fields, ~a and I/Ja ( as is the case
in the stationary axisymmetric spac~times considered in section 7.1), it can be shown
(Geroch 1972a) that eft' also remains a Killing vector field of the metric 8ab(6)
generated bythe algorithm (7.4.12) lJSingthe Killing field ~a. Hence, we may apply
the algorithm to 8ab (6) using the Killing vector eft'to generate a two-parameter family
of solutions 8ab(8,6') from our original solution gab. We then may reapply the
transformation (7.4.12) to 8ab(6, 6'). Geroch (l972a) bas shown that this procedure
does liat, in general, reproduce ~vious solutions, and thus a three-parameter family
of solutions is generated. Indeed, an infinite dimensional group of transformations
is generated by repeated application of the transformation (7.2.12). Recently, ithas
been proven (Hauser and Ernst 1981) that-as conjectured by Geroch (l972a)-all
asymptotically flat, stationary, axisymmetric vacuum solutions of Einstein's equa
tion can be generated from Minkowskispacetime by an element of this group.
Furthermore, it is known how t<Ygenerate such asymptotically flat solutions with
desired values for all multipole mOments (Hoenselaers, Kinnersley, and Xan
thopoulos 1979; Xanthopoulos 1981). Unfortunately, the alg~braic computations
required to obtain these solutions explicitly remain formidable, so in fact very few
solutions are ~sently known in explicit form. Nevertheless, this method for gener
ating solutions is unquestionably one of the most important techniques for solving
Einstein's equation.
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7.5 Perturba~

As emphasized at· the beginning of this chapter, relatively few physically inter
esting exact solutions of Einstein's equation are known. The known solutions, such
as the Robertson-Walker solutions (chapter 5) and the Schwarzschild solution (chap.
ter6), may tell us agreat deal about cosmology and the gravitational fields of isolated
bodies, but they leave many questions unanswered. For example,~might wish to
know how a small inhomogeneity in the matter distribution· in a nearly Robertson
Walker universe develops with time, or how a nearly spherical star behaves if
displaced slightly from equilibrium, or what happens if a small amount of gravita
tional radiation is incident on a Schwarzschild black hole. It appears hopeless to
attempt to find exact solutions describing these processes. However, if the deviation
from a known exact solutionis small, it makes sense to look for an approximate
solution by writing gob = °gob + 'Yob (where °gob is the known exact solution) and
"linearizing" Einstein's equation in 'Yob' We already followed this procedure in
section 4.4 for the case where °gob was the Minkowski metric, l1ab' In this section,
we shaUsystematize the general procedure for deriving linearized equations, and for
Einstein's vacuum equation we shall obtain explicitly the vacuum perturbation equa
tions off an arbitrary exact solution.

Consider an equation

~(g) = 0 (7.5.1)

for an unknown function g(which, more generally, may be a collection of functions
or tensor fields, etc.). In.the case of interest, g is the spacetime metric possibly
together with variables describing the matter distribution, and ~ is Einstein's equa
tion. Suppose an exact solution, 0g, is known and suppose we are interested in
studying situations where the deviation froW 0g issmall. What we would really like
to have is a one-parameter (or multiparameter) family g(A) of exact solutio~s,

~[g(A)] = 0 (7.5.2)

(7.5.4)

(7.5.3)

where Ameasures the size of perturbation in the sense that (i) g(A) depends differ
entiablyonA, and (ii)g(O) = 0g. Thus, smallAcorrespondstosmalldeviationsfrom
0g, and a knowledge of g(A) for small Awould give us an exact perturbed solution.
However, equation (7.5.2) may be too difficult to solve. Nevertheless, we can derive
a much simpler equation from equation (7.5.2) by differentiating it with respect to
A and setting A equal to zero,

~[~(g(A»]J =0
A=O

Equation (7.5.3) is a linear equation for

'Y - dg I
- dA A=O
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i.e.• it can be expre~ in the fonn ~\

~('Y) ";"Q • (7.5.5)

where ~ is a linear operator.(Eq. [7.5.5] is· referred to as the "linearization" of eq.
[7.5.1] about 0g.) Since linear equations are generally much easier to solve than
nonlinear equations, it may be feasible to solve equation (7.5.5) even if equation
(7.5.1) is intractable. H we can solve equation (7.5.5), then 0g + A'Y should yield
a good approximation to g (A) for sufficiently small A, and issues of physical interest
thus can be investigated.

The above procedure provides a powerful tool for obtaining approximate solu
tions. However, two important points should be kept in mind when employing
perturbation techniques: (1) It is, in general, very difficult to estimate the error
involved in replacing g(A) byOg + A'Y, i.e., to detennine how small A must be in
order that the approximate solution have sufficient accuracy. (2) As derived above,
existence of a one-parameter farmlyof solutions g(A) implies the existence of a
solution of equation (7.5.5), where 'Y = (dgldA) 1,,-0' However, the existence of a
solution 'Yof equation (7.5.5) does not necessarily imply the existence of a corre-
sponding one-parameter family of solutions, g(A), of (7.5.2), i.e., there may be
spurious solutions of equation (7.5.5). Thus, the issue of "linearization stability,"
I.e., the existence of exact solutions corresponding to a solution of the linearized
equations, must be investigated before .a perturbation analysis can be applied with
complete reliability.

Let us now derive the linearized vacuum Einstein equation (7.5.5) fora metric
perturbation 'Y. of an exact scilutionOgab of Binstein's equation in vacuum, .

Ro=O . (7.5.6)

To do so, we need to compute the Ricci tensor R.(A) for the memc g. (A) in a useful
form, speciftcallyin terms of quantitits related to the "background metric" 0g•.
Differentiation of this expression with respect to A at A = 0 then will yield the
equation we seek.
Let"~ denote the derivative operator associated with g.(A) , and let OVa denote the

derivative operator associated with 0g•. According to the general analysis of section
3.1, the difference between"Vtf and OVa is determined by a tensor field CC. (A)~ which,
according to equation (3.1.28), is given by

. 1
CC.(A) = 2gCd(A)f~ghd(A) + OVbgad(A) - °Vdg.(A)}. (7.5.7)

The Riemann tensor R.d(A) associated with .g.(A) can be computed in terms of
OR.d and CC.(A) by replacing the derivative operator "Va in the definition of the
Riemann tensor, equation (3.2.3), by its expression in tenus of OVa and CC•. Pr0
ceeding in the same manner as in the derivation of equation (3.4.3), we find

(7.5.8)
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Thus, the Ricci tensor of gab (A) is given by
~\. - Oft b b
. Rae = -2 ''LaC b]c + 2C~c[aC b]e (7.5.9)

where we have used the fact that °Rae = 0 since °gab is a solution of the vacuum
Einstein equation.

Equation (7.5.9) expresses Rae (A) in a convenient form for evaluating its deriv
ative Rae(A) = (dRae/dA)IA=O' with respect to A at A =O. It follows immediately
from its definition that CCab(A) vanishes wben A = 0, so the term quadratic inCfab

will make no contribution to Rae. Thus, we obtain

Rae = -20\laCbb]c (7.5.10)

wbere

(;Ce = dc
cab I

dA A-O

From equation (7.5.7) we find that

C·c - 10 cd{1IW"r + 0" O"}ab - i g -Va'Ybd Vb'Ylld - Vd'Yab ,

where

(7.5.11)

(7.5.12)

'Yab == d!~ ,- (7.5.13)
CUI. A-O

and we have used the fact that OVa(Ogbc)-= O. Thus, substituting equation (7.5.12) in
equation (7.5.10), the linearized Einstein equation for 'Yab is found to be

. 1 1
0= Rae == - 29gbd OVaOVc'Ybd - iOgbd OVbOVd'Yae + Pgbd OVb~c'Ya)d. (7.5.14)

Since all quantities aside from 'Yab now refer only to the background metric °gab' we
shall in the following drop the superscript zero on the background metric and its
derivative operator, and we shall use the background metric gab and its inverse gab
to raise and lower indices . In this notation, equation (7.5.14) becomes

1 1o == -i~Vc'Y - iVbVb'YtIC + Vb~c'Ya)b (7.5.15)

where ! == .yaa = gab-YalJ. Notethatequation (7.5.15) a8fC7s with equation (4.4.4)
in thespecialcaseofM'tnkowski spacetime, where gab = Tlab and Va = oa'

Eqqatio~ (t-~.15) can be simplified by a convenient choice of gauge. As shown
at the end of section C:2 of appendix C, 'Yab and 'Yab + 2~aVb) represent the s~
physical pertUrbation, where va is an arbitrary vector field. As in the special case of
perturbation~of~inkowsldspacetime considered in section 4.4, we can solve the
curved spacetime wave equation (see theorem 10.1.2 of chapter 10),

VbVbt?a + R/vb == -Vb 'Yab (7.5.16)
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where

(7.5.17)

(7.5.22)

(7.5.18)

(7.5.23)

and thereby set

V"'Yab = 0

In this gauge, the trace of equation (7.5.15) yields

~ VCI'Y = 0 (7.5.19)

Hence, we can use the restricted gauge freedom 'Yab ..... 'Yab + 2Veaw,,) with
V"V"wCl + RCI bWb = 0 to satisfy the curved space analogs of the initial value condi
tions (4.4.34a) and (4.4.34b), thereby obtaining 'Y = 0 throughout the spacetime by
theorem 10.1.2. Thus, for an arbitrary vacuum perturbation 'Yab of an arbitrary
vacuum solution gab, we can always choOse a transverse traceless gauge whereby

VCI'Yab = 0 (7.5.20)

'Y = 0 (7.5.21)

However, in general no analog of the radiation gauge conditions 'Yo,. = 0
(p. = 1, 2, 3) used in perturbations of flat spacetime can be imposed in addition to
(7.5.20) arid (7.5.21).

From the properties of the Riemann tensor, we have

V"VcC'YCI)b = Vec V"'Ya)b + Rbcc,,{''Ydb + Rbccf"jd'YCI)d
V Vb . R" d= Cc 'YCI)b + CCI 'Ydb

where in the second line we have used the fact that R bCCId'Ydb is syrnmdric in c and
a and Rcd = Rb

cbd = 0 since gab is a vacuum solution. Thus, in the transverse
traceless gauge, equations (7.5.20) and (7.5.21), the linearized Einstein equation
becomes simply

Vb'" 'II - 2R b d'll = 0b lac CIC Ibd •

This is remarkably similar in form to Maxwell's equation (4.3.15) in the Lorentz
puge.

While the form ofequation (7.5.23) is simple, it should be kept in mind that, with
the notable exception of a flat background metric, in practice equation (7.5.23)
comprises a very complicated system of coupled partial differential equations. Suc
cess in perturbation aqalyses has been achieved only in a few cases where the
background metric has a great deal of symmetry or possesses other simplifying
properties, and even in these cases success has not usually been achieved by a direct
attack on equation (7.5.23) or (7.5.15). .

Finally, the issue'of linearization stability-Le., the e,xistence of a one-parameter
family of exact solutions corresponding to a solution of the linearized equation-has
been studied extensively for the vacuum Einstein equation. If the background space
time (M, gab) is uclosed"-i.e., if it possesses a compact, spacelike Cauchy hyper-
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surface I (see chapter 8)-then the Einstein equation is linearization stable about
(M, Sab) if and only if (M, Sab) does not possesses a Killing vector field. If (M, Sab)
possesses a Killing field, then it is necessary that 'Yab satisfy a second-order integral
constraint involving the Killing field in order that a one-parameter family Sab(A)
exist. On the other hand, linearization stability is believed to hold for asymptotically
flat perturbations of all asymptotically fiat background spacetimes (even if Killing
fields are present), although this has been proven only for the fiat background
spacetime. Details of the linearization stability analyses can be found in Fischer and
Marsden (1979).

Problems
1. Prove that £.~(J)a == 0 (see eq. [7.1.10]) directly, without appealing to the argu
ments given in the text, i.e., prove first that £.~Eabcd = 0, and then use only £",~ == 0
and the fonnulas of appendix C.

2. Derive Einstein's equation (7.1.24)-(7.1.27) for the metric (7.1.22).

3. For a stationary, axisymmetric'metric of the form (7.1.17), we define the locally
nonrotating,observers to be the family of observers which are "at rest" with respect
to the t'== constant hypersurfacei, i.e., whose 4-velocity, u12

, is proportional to V12t.
a) Show that the angular momentum, L, of such Observers vanishes, where L is

defined by L == u12 t/Ja (see eq. [6.3.13]).
b) Show that such Observers rotate with coordinate angular velocity

d4>1dt == - WIX. Since, in general, the metric (7.1.17) represents the exterior field
of a stationary, axisymmetric rotating body (or black hole), we may interpret this.
d4>/dt as resulting from the "dragging of inertial frames" produced by rotating
matter, in accord with Mach's principle.

4. Since any isometry '" leaves the Weyl tensor invariant, ,,/Cabcd == Cabcd, it follows
that if kll is a principal null vector, then so is 1/1.ktl

• Since there exists only a discrete
set of principal null vectors at each point, it follows that if I/J, is a smooth one
parameter group of isometries which leaves p EM fixed, then 1/1: must leave
invariant all principal directions at p. Use this fact to prove the following results
(without resorting to a calCulation. ofC~ and its principal null directions):

a) Every spherically symmetric spacetime is algebraically special. furthennore,
everj static, spherically symmetric spacetime, equation (6.1.5), is of algebraic type
n-ll.

b) Every Robertson-Walker spacetime, equation (5.1.11), is conformally fiat,
Cabcd = O.

S. Derive equation (7.4.8).
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CAUSAL STRUCTURE

The causal structure of spacetime U). sp.eeial relativity already wasdescri~ bri~fiy

in section 1.2. Associatedwith each event, p, in sp~time is alight con~, .~
illustrated in Figure 1.2. We assign the label "future" to halfof the cone and the label
"past" to the otJter half. The events lying ~ the interior of the fu.ture ligbt~one

represent events which can be reached by a material particle starting at p; these
comprise the "chronological future" ofp.•Tbe chronological future offJ together with
the events iyingQn the conei~lfcomprise the "causal f\iture" ofp, which phy~ically
represents events which, in principle, caQ be influenced by a signal emitted froqtp.

In general relativity, the c.ausal structure of. spacetime is locally of ttie.. Same
qualitative nature as in the fiat spacetime of special relativity. However, signiijcant
differences c~occur globally 6eellUse of. nontrivj~ topology, spacetiIne, .singu
larities, or the ''twisting'' of the d4"ections of Pghtcones as one moves from poiD!~o
point. The purpose of this cl1aptet: is to give ~,account of the definitions ~d basic
results concenU~g the causal strucPn"e of SPllCetimes~ general. relativity. The~
results not only are of interest in their own rigl1t buqtlsoarelJ, crucial ingr¢ien~ .. in
the proof of the singularity theorems, which we shall discuss in the next' ch¢r.
further disc\ission of topics Ql1causa! structure can .befound in }!awking amiWIis
(1973), Penrose (1972)"an4 Geroch (l970b); most.of the discussion presented~
is~ po these referel,lCes. .

The defi,mtiQOsof chronological and causalfutures.in general spacetimes are .8iv~n
in section8.l and several properties of these sets are deriv.ed. The conditiops'!Illlt
express the notion· that·a sAAcetinle ~ "causally well'~l1aved" are discusse<i.in
section8.2,FiRally, in sectipo 8.3 the. notion of dOID-ainso,fdependence andglol>ai
hyperbolicity are defined.and.n\i~rous~s of globally byperbolic~p~~times
are derived. All the arguments given in this chapter rely heavily on the mach~ry
of topologif;81spaces outlined int\J'pendix~, att4 itjsassumed that the reader bas
read (or will refer to) this appendix.

The discussion throughout this chapter will concern arbitrary spacetimes (M,gab)
in the sense that we shall not attempt to impose Einstein's equation on gab. SQme of
the examples given here may llpPear to be artificial in that they are constructed by
removing points and/or making topological identifications of Minkowski spacetime.
Nevertheless, they provide excellent illustrations of the types of phenomena that can
occur in much less artifical spacetime models in general relativity.

188
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8.1 Futures and Pasts: Basic Definitions and Results
Let (M,gab) be a spacetime. At each event p EM, the tangent space, Vp, is, of

course, isomorphic to Minkowski spacetime. We will refer to the light cone passing
through the origin of Vp as the light cone ofp. Thus, we emphasize that the light cone
of p is a ~ubset of Vp, not M. I As in special relativity f at each p E M we may
designate,half of the light cone as "future" and the other half as "past." However,
in a non-simply connected2 spacetime it may not be possible to make a continuous
designation of "future" and "past" as p varies over M. An example of a spacetime
for which no such continuous designation can be made is shown in Figure 8.1. If a
continuous choice can be made, (M, gab) is said to be time orientable. (This property
of a spacetime is analogous to, but distinct from, the notion of orientability of a
manifold defined in section B.2 of appendix B.) Thus, non-time orientable space
times have the physically pathological· property that we cannot consistently dis
tinguish between the notions of going "forward fu time" as opposed to "backward in
time." In the following, we will consider only time orientable spacetimes and will
assume that a continuous designation has been made of the "future" and "past" halves
of the light cones at each point. A timelike or null vector lying in the "future half"
of the light cone will be calledjUtUTe directed. .

----identily-----....·•.. /

Fig. 8.1. A non-time-orientable spacetime.

An important property satisfied by every time orientable spacetime is expressed in
the following lemma:

LEMMA 8.1.1. Let (M, gab) be time orientable. Then there exists a (highly nonunique)
smooth nonvanishing timelike vector field t a on M.

Proof. Since M isparacompaet, we can choose a smooth Riemannian metric kab

on M(see appendixA). Ateachp e M'dKlre will be a unique future directed timelike
vector r' which~ the value of gabvaVb for vectors va SUbject to the condition
that kabVIlV b = 1. This t a will vary smoothly over M and thus provide the desired
vector field. 0

1. It should be noted that some authors use thetenn "light cone" to designate the subset of M
generated by null geodesics from p (as, in fact, we did in chapter 1). They use the tenn "null cone'~ to
designate what we have called. the "light cone." C

2. See chapter 13 for the definition of a non-simply connected manifold.
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P
Fig. 8.2. Minkowski spacetime with a point on the future light cone of p removed.
In this spacetime, no causal curve connects p andq so q fit r(p) but q E rep).
Thus, r(p) is not closed.

spacetimes neither of these statements is valid in general, as shown by simple
examples obtained by removing points from Minkowski spacetime such as in Figure
8.2. However, locally.these properties always remain valid, as expressed by the
following theorem:

THEOREM 8.1.2. Let (M, gab) be an arbitrary spacetime, and let p E M. Then there
exists a convex normal neighborhood ofp, i.e., an open set U with p E U such
that for all q,r E U there exists a unique geodesic 'Y connecting q and r and
staying entirely within U. Furthermore, for any such U, I+(p)lu consists of all
points reached by future directed timelike geodesics starting from p and con
tained within U, where I+(p)Iu denotes the chronological future of p in the
spacetime (U, gab). In addition, j+(P)lu is generaterJ by the future directed null
geodesics in U emanating from p.

Although theorem 8.1.2 may seem obvious intuitively, it is nontrivial to give a
formal proof of it. A proof of the first half is given beginning on page 134 of Hicks
(1965), while the second half is proven as proposition 4.5.1 of Hawking and Ellis
(1973).

Ifq e ;+(p) and Ais a causal curve beginning at p and ending at q, we can cover
A by convex normal neighbOrhoOds, and using the compactness of A (since it is the
contiriuous image of a closed interval), we can extract a finite subcover (see appendix
A). If X failed to be a null geodeskin anysu~hneighborhood,then with the help
of theorem 8.1'.2 we could deform Ainto a timelikecurve in that neighborhOod and
then extend this deformation to the 6ther neighborhoods to obtain a timelike curve
from p to q. Thus, we obtain the folloWing coronary of theorem 8.1.2, which will
be'Strengt'fiened by theorem 9.3.8 of chapter 9:

COROLLARY. If q e ;+(p) - r(p). then any causal curve connecting p to q must
bea nUll~e6desic.

Using similar arguments, we also see that for any set SCM, we have ;+(S) C
r(S): Since. clearly r(S) C ;+(S), it follows immediately that;+(S) = r(S). Sim
Ilarly, we have r(S)= int[;+(S)], and hence the boundaries of the chronological
and causal futures of a set are always e.qual, j+(S) = j+(S) (see problem 2).
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A subset SCM is said to be achronal if there do not exist p, q E S such that
q E r{p), Le., ifr(S) n S = Jet, where Jet denotes the empty set. The next theorem
asserts that the boundary of the chronological future of a set always fonns a "wen
behaved,:' three-dimensional, achronal surface.

'THEoREM 8.1.3. Let (M, gab) be a time orientable spacetime, and let SCM. Then
J+(S) (if nonempty) is an achronal, three-dimensional, embedded,
CO-submanifold ofM.

Proof. Let q E J+(8). Ifp E r(q), then q E r(p) and since r(p) is open, an
open neighborhood 0 of q is contained in r(p) as shown in Figure 8.3. Since q is
on the boundary of r(S), we have 0 n r(S) =1= Jet and thus p E r[O n r(S)] C
r(S). This proves thatr(q) C r(S). Similarly we have r(q) eM - r(S). Now,
if /+(S) failed to be achronal, we could find q, r E J+(S) such that r E r(q) and
hence r E r(S). However, this is impossible since r(S) is open and therefore
J+(S) n r(S) = Jet. This proves that 1+(S) is, achronal. To obtain the manifold
structure of J+(S), we introduce Riemannian normal coordinate~ xO, x I, x2, x 3 at
q E J+(S) and consider a sufficiently small neighborhood of q that (0 / rJx~G is
everywhere tin!elike and each of the iptegral curves of (0 / rJx~G enters r (q) c:: r(S)
and 1-(q) C M - /+(S). But this implies that each such integral curve intersects
/+(S), and sin«e J+(S) is achronal, it must intersect it at precisely one point. Thus,

Fig. 8.3. A spacetime diagramsbowing a set S and the boundary of its future,
j+ (S) (see theorem 8.1.3).

in each such neighborhood, we get a one-to-one association of points of J+(S) with
coordinates (xI,X2,X3) Cl1aracterizing the integral curve of (o/rJx~G. Furthermore,
using the achron~tyof /+(5), the value of XO at the intersection point must be a
continuous (in fact, S C l -) function of the coordinates (Xl, x2, x3), and thus the above
map from a neighborhood of q in /+(S) into R3 is a homeomorphism in the induced
topology ,on /+(S). By repeating this construction for all q E J+(S) we obtain a
C°-compatible:Jamily of charts covering J+(5) which makes J+(S) an embedded
submanifold. 0

Before proceeding further, we need to introduce several notions that will play an
important role in many considerations of this chapter and of chapter 9. First, al
though for many purposes it suffices to consider only differentiable (or even Cj
curves, when it comes to taking limits (as we shall do below) it is essential to extend
consideration to continuous curves,,, The definitions of a timelike or causal curve can

S. See Hawking and Ellis (1973) for the definition of C 1-•



8.1 Futures and Pasts: Basic Definitions and Results 193

be extended to the continuous case by requiring that. locally, pairs of points on the
curve can be joined by a differentiable timelike or, respectively, causal curve. More
precisely, a continuous curve A is said to be afuture directed timelike (or causal)
curve if for eachpEA there exists a convex normal neighborhood U ofp such that
if A(t\), A(t~) E U with t\ < t2, then there exists a future directed differentiable
timelike (or, respectively, causal) curve in U from A(t\) to A(t2)' The timelike or
causal nature of a continuous curve clearly is unchanged by a continuous, one-krone
reparameterization, and in the following we shall consider two curves differing by
such a reparameterization to be equivalent.

Next, we define the notion of extendibility of a continuous curve. We need to
distinguish clearly between the possibilities that a curve "runs off to infinity" or "runs
around and around forever" or "runs into a singularity" as opposed to the possibility
that a curve "stops" somewhere simply because one did not define it to go further.
This distinction can be made precise via the notion of an endpoint of a curve. Let
A(t) be a future directed causal curve. We say that p EM is afulure endpoint of A
if for every neighborhood 0 of p there exists a 10 such that '\(t) E 0 for aliI> to.
(Thus, by the Hausdorff property of M, Acan have, at most, one future endpoint.
Note also that the endpoint'need notlie on the curve. i.e., there need not exist a value
of I such that A(I) = p.) The curve Ais said to be future inextendible if it has no
future endpoint. Past inextendibility is defined similarly. Note that if A is a differ
entiable causal curve with future endpoint p, then it may not be possible to extend
A beyond p as a differentiable causal curve, but A always can be extended as a
continuous causal curve by adjoining a continuous causal curve to A at p.

An importanttecbnicallemma relating to extendibility of causal curves which will
be used in section 8.3 is the following.

LEMMA 8.1.4. Let A be a past inextendible causal curve passing through point p.
Then through any q E r(p) there exists a past inextendible timelike curve y
such that y E r(A).

Proof. 'Without loss of generality we may assume that the curve parameter, t, of
A has the range [0, (0). Following Geroch(l97Ob), we choose an arbitrary Rie
mannian metric on M. Using theorem 8.1.2 we can construct a timelike curve y(t)
for I E [0, 1] which starts at q and satisfies the property that y C ]+(A} and
d[y(t) , A(I)] < C/O + I), where Cis a constant and the distance, d, is the greatest
lower bouoo of the length, measured using the Riemannian metric, of all curves
connecting a point y(l) to a point A(I') with I, t' E [0,1]. By induction, we continue
to extend y(I)· to a curve defined for t E [0, n] for all n (Le., for t E [0, (0»
preserving these properties.· The resulting y will be past inextendible because any
endpoint of 'Y would also be an endpoint of A. Thus, y is the desired curve. 0

Another notion that will playa prominent role in many arguments of this chapter
and of chapter 9 is the convergence of causal curves. Let {An} be a sequence of causal
curVes. A poinfpE Mis saidlo be a convergence poinl of {An} if, given any open
neighborhood 0 ofp. there exists an N such~t An n 0 :f 9J for all n > N. A curve
Ais said to be a convergence curve of {An} if each pEA is a convergence point.
Similarly, p is said to be a limit poinl of {An} if every open neighborhood of p
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intersects infinitely many An. A curve A is said to be a limit curve of {An} if there
exists a subsequence {A:} for which A is a convergence curve. (Thus, if Ais a limit
curve, then eachpEA is a limit point. Note, however, that a curve 'Y such that each
p E 'Y is a limit point need not be a limit curve.) The following result plays a crucial
role in many of the proofs given below.

LEMMA 8.1.5. Let {An} be a sequence of future inextendible causal curves which have
a limit point p. Then there exists a future inextendible causal curve A passing
through p which is a limit curve of the {An}.

Sketch of proof. We choose a convex normal neighborhood of p and a ball of
Riemannian normal coordinate radius R about p contained in this neighborhood. We
pick a subsequence of {An} that converges to p and, using the compactness of the
coordinate sphere of radius R, a sub-subsequence which converges to a point on this
sphere. Then we examine, in turn, all the coordinate spheres whose radii arerationaI
multiples, between 0 and I, of R and continue to extract limit points lying on these
spheres and subsequences converging to these points. Finally, we take the elosure
of the set of these limit points and show that it defines a continuous causal limit curve
A. We then go to the endpoint ofAon the sphere ofradiusR and repeat the procedure.
Continuing in this manner, we extend A indefinitely.6 Technical details of this proof
can be found in Hawking and Ellis (1973). 0

It should be noted that in theorem 8.1.5 if each An is a timelike curve, the limit
curve A still may be only a causal curve, Le., a sequence of timelike curves may
converge to a null curve. Similarly, even if all the A,. are smooth curves, A may be
only continuous.

As a direct application of theorem 8.1.5, we prove, now, a theorem characterizing
the nature of boundaries of chronological futures.

c-

THEoREM 8.1.6. Let C be a closed subset of the spacetime manifold M. Then every
iFpoint P e J+(C) with p ~ C lies on a null geodesic A which lies entirely in

J+(C) and either is past i~endible or ho.s a past endpoint on C.
Proof. Choose a sequence of points {q,,} in r(C) which converges to p, as

illustrated in Figure 8.4. For each qn let An be a past directed timelike curve con
necting q" to"a point in C. Consider, now, the new spacetime manifold M - C
obtained by removing the set C. (It is here that we use the assumption that C is
closed, for otherwise M - C would not define a manifold.) On M - C, each An is
past inextendible andp is a limit point of the sequence {A,.}. Hence, by lemma 8.1.5
there exists a past inextendible causal limit curve A passing through p. Each point
of A is a limit point of sequences in r(C), so A C 'F(C'5. On the other hand, if any
point of A were in r(C), then by the corollary to theorem 8.1.2 we would have
p e r(C), since p could be connected to C by a causal curve which is not a nuH

6. It should be noted that the above argument shows the existence of an extendible limit curve through
p, together with the fact that any extendible limit curve can be further extended as a limit curve. To assert
existenceof an inextendible limit curve (i.e., a maximal element in the set of limit curves under ordering
by inclusion) by this argument we must appeal to Zorn's.lemma. However, it appears that a proof of
lemma 8.L~ could be given without invoking Zorn's lemma.
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C
Fig. 8.4. A spacetime diagram showing a sequence of points in r(C) converging
to p E j+ (C) (see theorem 8.1.6).

geodesic. This contradicts the fact thatp E J+(C). Thus, A C J+(C). Furthennore,
the achronality of J+(C) (theorem 8.1.3), together with the corollary to theorem
8.1.2, implies that A must be a null geodesic. Finally, since A is past inextendible
in M - C, in M it must either remain past inextendible or have a past endpoint on
C.O

An example where Ais past inextendible is provided by point q in Figure 8.2. Note
that although A cannot have a past endpoint except on C, it may have a future
endpoint; an example where A has a future endpoint is given in Figure 8.5.

q
"A,,,'" ,

'" ...." ...'" ...." "

Fig. 8.5. A spacetime diagram of a two-dimensional flat spacetime with topology
R X SI. The null geodesic generators of j+ (p) have q as a future endpoint.

8.2 Causality ConcUUODS
In this ~tion, we sllall give a brief discussion of fonnulations of the notion that

a spacetime be "causally well behaved." Although according to theorem 8.1.2 all
spacetimes in general relativity locally have the same qualitative causal structure as
in special re¥vity. globally very significant differences can occur. For example, we
can construct a (flat) spacetime with topology S I x R3 by·identifying the t == 0 and
t == 1 hypelP~3IlCs.ofMinkowski spacetime. as illustrated in Figure 8.6. The integral
curves of (0/orf in this ~acetimewill be closed timelike curves, and it is not
difficult to see that for all p EM we have r(p) == r(p) == M. Thus, in this
spacetime an observer with "free will" should have no difficulty altering past events.
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identify P,

t =1

t=O

Fig. 8.6. Minkowsld spacetime with the hyperplanes t = 0 and t = 1 identified. A
closed timelike curve through point p is shown.

In addition, in spacetimes with nontrivial closed causal curves [i.e., closed causal
curves other than the trivial curve A(f) ::: p for all f], severe consistency conditions
may exist on solutions of the equations describing the propagation of physical fields.
Note that the existence of spacetimes with closed cau~ curves cannot be blamed
entirely on "artificial" topological identifications such as in Figure 8.6, since exam
ples with topology 1R4 .can be constructed easily by "twisting" the light cones, as
illustrated in Figure 8.7.

Fig. 8.7. A spacetime with topology 1R4 where the light cones "tip over"
sufficiently to permit the existence of closed timelike curves.

It is generally believed that spacetimes with nontrivial closed causal curves are not
physically realistic. However, even if a spacetime does not possess closed causal
curves, it can be "on the verge" of violating causality as illustrated in Figure 8.8. In
this example, th~re e~st causal curves which come "arbitrarily close" to intersecting
themselves, alth0\lgh none of them actpally do. Since an arbitrarily small per
turbation of the pwtric in spacetimes such as this would produce causality violation,
these spacetimes also seem physically unreasonable. The mathematical possibility of
spacetimes such as Fi~e .~.8 frequently arises In. proofs of tlte0rems concerning the
possible global structures of spacetimes, so it is very useful to formUlate precise
conditioD$ wlli.ch c~8J.'aeterize thi~type of behavior. .

One such cruu-acteiizaponis thestrongc~usalitycondition. A spacetime (M, gab)
is said to be stronglycausal if for all p E M and every neighborhood q of p, there
exists a neigh~rb9Qd V()fpcon~ed in 0 su?h thatnoc~usal curve intersects V
mote.than 0lice.ThJ!s, ifa space~violates Strong causality atp, thennearp there
exist causal curves which come arbitrarily close to intersecting themselves. In such
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Fig. 8.8. A spacetime which violates strong causality. The light cones ''tip over"
sufficiently that the curve drawn through p is a null geOdesic (which, however, is not
a closed curve because of the point removed from the manifold). There exist no
closed causal curves in this spacetime, but there are causal curves through p which
come "arbittarily close" to intersecting themselves.

a spacetime closed causal curves could be produced by a small modification of gab
in an arbitrarily small neighborhood of p. In the example of Figure 8.8, strong
causality is ,violated at. the event labeled p.

A useful consequence of strong causality is expressed by the following lemma:

lEMMA 8.2.1. Let (M, gab) be strongly causal and let K C M be compact. Then
every causal curve A confined within K must have past and future endpoints
inK.

Proof. Without loss of generality, we may assume that the curve parameter, t, of
Aruns from -CXl to CXl. Let {til be an increasing sequence of numbers which diverges
to infinity, and let Pi = A(ti)' SinCe {Pi} is a sequence in K, by theorem A.9 of
appendix A it has an accumulation point P E K. Suppose one could find an open
neighborhood OofP such that no to E R exists for which A(t) EO for all t > to.
Then the same must hold for every open neighborhood V CO. This means that A
enters every such V more than once, since infinitely many points of the sequence
{A(tl)} enter V but A(I) never remains in V. This contradicts the hypothesis that strong
causality holds at p. Thus, p is a future endpoint of A. Similarly, a past endpoint
q e K ·of A. also exists. 0

Although the imposition of the strong causality condition suffices to role out the
example of Figure 8.8, one can constIUct more complicated examples where strong
causality is satisfied, but a modification of gab in an arbitrarily small neighborhood
of two or more points produces closed causal curves. Thus, strong causality does not
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fully express the condition that one is not on the verge of producing causality
violation. However, this condition is expressed satisfactorily by the stronger notion
of stable causality, defined as follows.

Let ta be a timelike vector at point p EM, and define gab at p by

gab = gab - tatb (8.2.1)

where gab is the spacetime metric. It is easy to see that gab is also a Lorentz signature
metric at p. Furthermore, the light cone of gab is strictly larger than that of gab; i.e.,
every timelike and null vector of gab is a timelike vector of gab. If a spacetime were
"on the verge" of having closed causal curves, then if we "open out" the light cone
at each point, we should be able to produce closed timelike curves. Thus, we define
a spacetime (M, gab) to be stably causal if there exists a continuous nonvanishing
timelike vector field ta such that the spacetime (M, gab) (where gab is defined by
[8.2.1]) possesses no closed timelike curves. The following theorem shows that
stable causality is equivalent to the existence of a "global time function" on the
spacetime. This greatly strengthens the above suggestion that the requirement of
stable causality should suffice to role out any causal pathologies.

THEoREM 8.2.2. A. spacetime (M, gab) is stably causal if and only if there exists a
differentiable function f on M such that V'1 is a past directed timelike vector
field.

Proofof "if." Since V'1is a past directed timelike vector field, along every future
directe<l timelike curve with tangent va, we have gabvflV1 > 0, and thus v(f) > O.
Hence,fstrictly increases along every future directed timelike cUrve. Clearly, then,
there can be no closed timelike curves in (M, gab) since!earmot return to its initial
value. Now let ta = V1and define the metric gab by equation (8.2.1). It is easy to
check that the inverse metric to gab is

(8.2.2)

Thus, we obtain

gabVafVd == tata + (tata)2/0 ...:. tCtc) = tata/(l - tCtc) < 0 (8.2.3)

where all index raisings and lowerings on the right-hand sides ofequations (8.2:2)
and (8.2.3)are done with g(Jb and gab. Hence gabVbfis a timelike vector in the metric
gab. By the same argument as already given above, it follows that no cIosedtimelike
curves exist in the spacetime (M, gab). Thus, (M,gab) is stably causal.

Sketch ofproofof "only if." We are given that (M, gab) is stably causal and· wish
to construct a global·· time function. A promising candidate can be obtained as
follows: Using the paracompactness ofM,it is possible to show by arguments similar
to those discussed at the end of appendix A, that one can always define a continuous
volume measure, IL, onM such thatthe total volume ofM is finite, JL[M] < CXl. We
define .

F(p) = JL[r(p)J . (8.2.4)
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Then F strictly increases along all future directed causal curves (with nonvanishing
tangent), and thus is a promising candidate for a global time function. Unfortunately,
F need not be continuous. Nevertheless, for stably causal spacetimes we can obtain
a continuous function with these properties by averaging F over nearby spacetimes
with "opened out" light cones. More precisely, let fa be a timelike vector field such
that gab, defined by equation (8.2.1), has no closed timelike curves. For 0 ~ a ~ 1
we define (ga)ab by

and define Fa(p) by

Fa(p) = /L[I;; (p)]

(8.2.5)

(8.2.6)

where I;;(p) denotes the chronological past of p in the metric (ga)ab. By averaging
Fa over a, it can be shown that we produce a continuous function which strictly
increases along causal curves. Further "smoothing out" of this function produces a
differentiable function with tllese properties. Details of this proof can be found in
Hawking and Ellis (1973). 0

As a corollary, we have:
6

CoROLLARY. Stable causality implies strong causality.
Proof. Letfbe aglobal time function on M. Given any p EM and any open

neighborhood 0 ofp, we can choose an open neighborhood V C 0 ofp shaped 'so
that the limiting value of f along every future directed causal curve leaving V is
greater than the limiting value offon every future directed causal curve entering V
(see Fig. 8.9). Thus, sincefincreases along every future directed causal curve, no
causal curve'can enter V twice. 0

In conclusion, stable causality appears to be the appropriate notion which ex
presses the idea that a spacetime is not "on the v~rge" of displaying bad causal
behavior.

o
<z. .p>

Fig. 8.9. The neighborhood. V. of P used in the proof of the corollary to theorem
8.2.2.
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Fig. 8.10. A spacetime diagram illustrating the definition of the edge of a closed,
achronal set S.

8.3 DomaIns of Dependence; Global HyperboHclty
In the previous sections, attention was focused on the collection of events, r(S)

or r(S), that could be influenced by a set, S, of events. In this section, we shall be
concerned with the collection of events which, in the sense described below~ are
"entirely determined" by a set of event~, S, (Which, for technical reasons, will be
taken to be a closed, achronal set). Wealso shall explore the properties ofspacetimes
(or spacetime regions) in which all events are "determined" by an appropriate S.

We begin, however, by pointing out an important property of closed, ~nal
sets. For S closed and achronal, we define the edge of S as the set of points pES
such that every open neighborhood 0 of p contains a point q E. r(p), a point
r E r(p) and a timelike curve A from r to q which does not intersect S (see Fig.
8.10). We often will be interested in closed, achronal sets withoutedge. (Such sets
are sometimes referred to as slices.) A repetition of the proof of theorem 8.1.3
~lishes the following result: .

THooRllM 8,3.1. Let S be a (nonempty) closed achr~l set with edge (S) = lit. Then
S is a tltree..tJimensional, eriUJedded, CO submanifold ofM.

Now, let S be a closed, achronal set (possibly with edge). We define the future
domain ofdependence.ofS, ~notedD+(S), by

D+(S) = { E MIEVery past. inextendible causal curve}
p through p mtersects S

Note that we always have S C D+(S) C r(S) and, since S is achronal, we also have
D+(S) () r(S) = lit. Two examples illustrating the nature of D+(S) are given in
Figures 8.11 and 8.12. OurdefinitionofD+(S) agrees with that of Hawking and Ellis
(1973) but differs slightly from that of Penrose (1972) and Geroch (1970b) in that
they replace "causal curve" by ''timelike curve."

The set D+(S) is of interest because if "nothing can travel faster than light," then
any signal sent to p E D+(S) must have "registered" on S. Thus, if we are given

,appropriate infonnation about "initial conditions" on S, we should be able to predict
what happens at p E D+(S). Conversely, if, say, P E r(S) butp 1/= D+(S), then it
should be possible to send a signal to p without influencing S, and a knowledge of
conditions on S should not suffice to determine conditions at p. These expectations
are confirmed by an analysis of the propagation of solutions to hyperbolic wave
equations representing physical fields in curved spacetime (see chapter 10).
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5
Fig. 8.11. A spacetime diagram showing the future domain of dependence. D+ (S),
and Cauchy horizon H+ (S).of a particular closed achronal set Sin Minkowski
spacetime with a point removed.

The past domain ofdependence of S, denoted D-(S) , is defined by interchanging
''future'' an4 ''past'' in (8.3.1). Again, from a knowledge of conditions on S, we
expect to be able to "retrodict" conditions at all q E D-(S). The (full) domain of
dependence of S, denoted D(S), is defined as simply,

D(S) = D+(S) U D-(S) (8.3.2)

Thus, D (S) represents the complete set of events for which all conditions should be
determined by a knowledge of conditions on S.

·A closedachronal set l; for which D (l;) ::;: M is called a Cauchy surface. It
follows immediately that for any Cauchy surface l;, we have edge (l;) = ~. Thus,
by theorem 8.3.1, every Cauchy surface is an embedded CO submanifold ofM. This
justifies our use of the terminology "surface" to describel;, and, since l; is achronal,
we may think of l; as representing an "instant of time" throughout the universe.

A spacetime (M, gab) which possesses a Cauchy surface l; is said to be globally
hyperbolic. (This definition differs significantly from both the original definition of
Leray 1952 and the definition used in Haw~g and Ellis 1973, but all three
definitions are equivalent; see the remark at the end of this chapter.) Thus, in a

Fig. 8.12. A spacetime diagram showing D+(S) and #+(S) for a particular closed
achronal set S mMinkowski spaCetime. Here S is "asymptotically null" to the right
and becomes "exactly null" to the left. This example shows that H+ (S)can intersect
S even if edge (S) = 9.
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globally hyperbolic spacetime, the entire future and past history of the universe can
be predicted (or retrodicted) from conditions at the instant of time represented by l;.
Conversely, in a non-globally hyperbolic spacetime we have a breakdown ofpredict
ability in the sense that a complete knowledge of conditions at a single "instant of
time" can never suffice to determine the entire history of the universe. There are
some good reasons for believing that all physically realistic spacetimes must be
globally hyperbolic (see chapter 12 and Penrose 1979). However, even if one does
not accept these arguments and wishes to consider a non-globally hyperbolic space
time, one still can apply the theorems proven below on globally hyperbolic space
times to any region of the form int[D(S)] for any closed achronal set S.

The closure of the future domain of dependence of S, D+(S), is characterized by
the following. property.

PROPOSmON 8.3.2. p E D+(S) if and only if every past inextendible timelike curve
from p intersects S.

Proof. If there exists a past inextendible timelike curve from p which does not
intersect S, it is easy to see that the same property must hold for an open neigh
borhoodO ofp. In that case, 0 n D+(S) = SJ andp f/=. D+(S). Conversely, suppose
every past· inextendible timelike curve from p inte~ S. Then either
pES C D+(S) C D+(S) or p E r(S). If the latter holds, let q E r(p) n r(S)
and suppose a past inextendiblecausal curve A from q failed to intersect S. Then
either (i) ,\ remains in [+(S) or (ii) AinterseCts /+(S) at a point r f/=. S. In either case,
we could construct a past inextendible timelike curve from p which does not intersect
S. [In case (i), we use lemma 8.1.4 to get a timelike curve 'Y C r(A) C r(S); in
case (ii) we use the CQrollary to theorem.8.1.~ to obtain a timelike curve from p to
r and then we extend it arbitrarily into the past.] Thus for any q E r(p) () r(S)
we have q E D+(S). Since every open neighborhood of p E r(S) intersects
r(p) n r(S), we have p E D+(S). 0

Some properties of the interiors ofD+(S) and D (S) can be seen from the following
lemma, the proof of which is left as an exercise (problem 3).

LEMMA 8.3.3. int[D+(S)] = r[D+(S)] () r(S) ,

int[D(S)] = r[D+(S)] () J+[D-(S)] .

It follows immediately from the definition of a Cauchy surface that if l; is a
Cauchy surface, then every inextendible causal curve intersects l;. In fact, we have
the following stronger result.

PROPOSmON 8.3.4. Let l; be a Cauchy surface and let A be an inextendible causal
curve. Then A intersects l;, J+(l;), and r(l;).

Proof. Suppose A did not intersect r(l;). By lemma 8.1.4 we. could find a past
inextendible time1ik.e curve 'Y C r(A) C r[l; U r(l:)] = r(l;). If we extend 'Y
indefinitely into the future, it still cannot intersect l; or the acbronality of l; would
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be violated. Since every inextendible causal curve intersects l;, no such 'Yexists.
Thus A muste~ r(l;). Similarly, A must enter r(l;). 0

Let S be a closed achronal set. We define the future Cauchy horizon ofS, denoted
H+(S), by

H+(S) = D+(S) - r[D+(S)] . (8.3.3)

As will be made more precise later (see the corollary to proposition 8.3.6 below),
H+(S) and the analogously defined H-(S) measure the fallure of S to be a Cauchy
surface. Examples of H+(S) are shown in Figures 8.11 and 8.12. Clearly H+(S)
always is closed since it is the intersection of the two closed sets D+(S) and
M - r[D+(S)]. Furthennore, we have

r[H+(S)] c r[D+(S»)

'-0 = r[D+(S»)

C M - H+(S) (8.3.4)

Thus, r[n+(S)] nH+(S) = ~ so H+(S) is achronal. Indeed, H+(S) is a portion of
the boundary of the past of the set D+(S); specifically we have H+(S) =
[r(S) U 5] () I-[D+(S)] (see problem 5).

'One cjf the most important properties ofH+ (S) is stated in the following theorem:

ThJ¥>REM ~ ..3.5. Every pointp E H+(S) lies on a null geodesic Acontained entirely
within H+(S) which either is past inextendible or has apast endpoint on the edge
ofS.

Proof. The basic idea of the proof is similar to that of theorem 8.1.6. Let
p E H+(S) with p 1/= edge(S). Then either (i) p E r(S) or (ii) pES but
p 1/= edge(S). We first will show that in either case, a nontrivial past ~ted null
geodesic contained in H+(S) passes through p.

In case (i), since p 1/= liD+(S)], for every q E r(p) there exists a past inex
tendible ca\1Sal (;urve from q which does not intersect S. Let {qll} be a sequence of
points in r(p) ,which converges to p, and let {A,,} be a corresponding sequence of
such curves as illUstrated in Figure 8.13. Since p is a limit point of {A,,}, by lemma
8.1.5 there exists a past inextendible causal limit curve', A, of the {A,,} which passes
throughp. Now, suppose Aentered the open setr(S) () r[D+(S») C D+(S). Then
so would some A" for sufficiently large n, which is a contradiction since A" ()
D+(S) = SJ because each An falls to interseccS. In particular, since l-(p) C
r[D+(S») = r(D+(S»), this implies that within r(S), A is a past directed causal
curve from p which does not enter r(p). Thus, by the corollary to theorem 8.1.2,
within r(S), A must be a null geodesic. Furthennore, if a past directed timelike
curve from a poinf in A () r (S) failed to intersect S, we could construct a past
directed timelike curve from p with the same property. Since p E D+(S), this is
impossible because of proposition 8.3.2, and thus by the same proposition we have
[A () r(S)] C D+(S). Thus, A () r(S) C H+(S). Putting all theSe results together,
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Fig. 8.13. A point p E H+ (S) () r (S) with a sequence of points q. e r (p)
CODverging.to p (see theorem 8.3.5).

'-"

starting from every p E H+(S) () J+(S) we have obtained a nontrivial past directed
null geodesic segment AJying in H+(S).

.In case (ii) where pES but P f/=. edge(S), we use the definition of edge(S) to
establish existence of an open set 0 such that no causal curve contained in 0 from
a point q E r(p) () Oean enter r(S) () 0 without intersecting S. The arguIllent
establishing eJtistence of a nontrivial past directed null geodesic throughp ~maining

in H+(S) then proceeds along similar lines.
Finally,supp()sea pastdirected nuUgeodesic A leaves H+(S); I.e., suppose the

portion of Acontained in H+(S) has a past endpoint r. Since H+ (S) is closed, we have
r E H+(S). If r.'F edge(S), we can find a nontrivial past directed nullg~sic

segment A' in H+(S) starting from r.How,ever, if A' were not a continuation·of A,
by the corollary to theorem 8.1.2 we could find a timelike curve connecting a point
of Ato a point of AI. This would .viQlate the achronality of H+(S). This proves that
A cannot have a past endpoint except on edge(S). 0

The (full) Cauchy horizon of a closed achronal set S is defined by

H(S) = H+(S) U 1J(S) (8.3.5)

where H-(S) is defined by interchanging past and future in the definition of H+(S).
Using lemma 8.3.3, it is not difficult to show that the Cauchy horizon marks the
boundary of the domain of dependence of S:

PRoPOSmON 8.3.6. H(S) = D(S). '

We leave the proof of this proposition as an exercise (problem 6). As a direct
corollary we have

COROlLARY. IfM is cOnnected, ~n l:l nonempty closed achional set, ~, is a Cauchy
. ~urface. for (M,8ob) if and Qnlyif fl(~) = SJ·

Proof. IfD~) = SJ, we have D(~) = int[D~)J =D(~), so D~) is both open
and closed. Thus, since D(~) :::) .~* SJ and M is connected, we have D(I) =
M.O
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This corollary leads to the following useful criterion for Cauchy surfaces.

THEoREM 8.3.7. If'"i. is a closed, achronal, edgeless7 set, then '"i. is a Cauchy surjoce
ifand only ifevery inextendible null geodesic intersects 1: and enters r(1:) and
r('"i.).

Proof. The "only if" part is a special case of proposition 8.3.4. To prove the "if"
part, it suffices to sbQw that if 1: is not a Cauchy surface, then at least one null
geodesic fails to enter r(1:) or r(1:). But if '"i. fails to be a Cauchy surface, then at
least one of H+(1:) or H-('"i.) is nonempty (unless M is disconnected and 1: does not
intersect a component of M, in which case the result is trivial). If, say, H+(I.) :f SJ,
then since edge(~ = ~, by theorem 8.3.5 there exists a past inextendible null
geodesic which remains forever in H+('"i.) and thus never enters r ('"i.). Clearly, ifwe
extend this geodesiC forever into the future, it still cannot enter r('"i.) or the achro
nality of '"i. would be violated. 0

Now, let (M, gab) be a globally hyperbolic spacetime with Cauchy surface '"i.. It is
easy to see that no closed timelike curves can exist in M: A closed timelikecurve
which intersects '"i. would Violate achronality of '"i., whereas a closed timelike (oreven
causal) curve which fails to intersect '"i. would violate global hyperbolicity, since we
could follow this curve "around and around" to define an inextendible causal curve
which does not intersect "i.. In fact, we will see later (theorem 8.3.14 below) that
(M, gab) must be stably causal. However, we first show that strong causality holds:

LEMMA 8.3.8. Let (M, gab) be a globally hyperbolic spacetime. Then (M,gab) is
strongly causal.

PrOOf. In a globally hyperbolic spacetime with Cauchy surface '"i., we clearly have
M = r(1:) 0 '"i. u r('"i.). Suppose strong causality were violated at p E r('E). It
follows directly from the definition of strong causality violation that we could find
a convex normal neighborhood U ofp contained in r('"i.) and a nested family of open
sets 0" C U which converges to p such that for each n we can find a future directed
timelike curve A" which begins in 0", leaves U, and ends in 0". Using lemma 8.1.5,
we can find a limit curve A which passes through p. Although each of the A,. are
extendible, it is clear that Amust either be inextendible or yield a closed causal curve
through p, in which case it could be made to be inextendible by going "around and
around." Since none of the A" can enter r('"i.) or achronality of '"i. would be violated,
Aalso cannot enter r('"i.). However, this contradicts proposition 8.3.4. Thus, strong
causality cannot be violated atp E r('"i.) or; by the same reasoning, atp E r('"i.).
For the casep E ~, we can choose the {Q,,} so that any future directed timelike curve
starting in 0" must~xit0" in r(1:). Again we would find that the limit curve Acould
not enter r('"i.), in contradiction to proposition 8.3.4. 0

The remaining results of this section deal with the space of causal curves joining
two points· in a globally hyperbolic· spacetime. The arguments used in the proofs

7. nte requirement that I be edgeless can be removed from the hypothesis of this theorem. See
Oeroch (I97Ob).
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provide a beautiful illustration of the abstract topological space methods outlined in
appendix A.

Let (M, gab) be a strongly causal spacetime and let p,q EM. We define C(p, q)
to be the set of continuous, future directed causal curves from p to (j, where curves
that differ only by reparameterization are considered to be the same curve. [Of
course, C(p, q) will be empty unlessq E r(p).] We define a topology, 5",on
C(p, q), thereby making (C(p, q), 1J) into a topological space as follows. Let
U eM be open, and define O(U) C C(p, q) by

O(V) = {A E C(p, q) IA C U} (8.3.6)

In other words, 0 (V) consists of all causal curves from p to q which lie entirely
within V. We define our topology 5" by calling a subset, 0, of C (p, q) open if itcan.
be expressed as

o = U O(U) (8.3.7)

where each O(U) is of the form (8.3.6).
Since 0(V1) nO(V2) = O(UI n V2),it is easy to check that 5" does indeed

define a topology on C (p, q). Since we restrict consideration to spacetimes in which
no closed causalcurYes exist. it follows that ifA.A! E C(p, q) are djstinct cau.sal
curves, tkesubset AofM cannot contain or be contained in the subset At ofM. From
the properties of the topology on M, itthen follows thatthe topology 5" on C(p.q)
is Hausdorff. Furthermore, when no closed causal curves exist, 5" is second.count
able. (See Geroch 1970b for a sketch of the proof of this result.) Finally, the notion
of convergence defined by 5" is the following: A"~ Aiffor every open ~t U .c M
with A C V, there exists anN such that A" C V for all n > N. If strong causality
holds in M as we require, one can show that this notion of convergenceisequivalent
to the notion of convergence ofcurves defined in section .8. 1. Similarly, the notion
of a "limit curve," A,of a sequence {A"lin the sense of section 8.1 coincides wjdl
the topological space notion.of an accumulation .point defined in appendix A.

The key theorem upon which all further results of this section are based is the
following:

THEoREM 8.3.9. Let (M,gaD) be a globally hyperbolic spacetime and let p, q EM.
Then C(p, q) is compact.

Proof Since the topology on C(p, q) is second countable, by theorem A.9 of
appendix A we need only showtbat every infinite sequence {AJI} of points (Le.,
curvesYinC(p, q) has an accumulation point (Le., a limit curve, A) in C(p, q).
Consider, first, the casep, q E. D-~),where ~ isa Cauchy surface for (M, gab), and
let {Att } be a sequence in C(p, q) as illustrated in Figure 8.14. If we (temporarily)
remove q fromM, then {A,,} becomes a sequence of future inextendible causal curves
starting at p. Hence,by lemma 8.1.5, there exists a future inextendible (in M - q)
limit curve Astarting at p. Since none of theA" enters r(~), neither can A. If, nOw,
we restore the point q,then iltMeither (i) A will remain inextendible or (ii) q will
bean endpoint of A.. However, possibility (i) is ruled out by proposition 8.3.4 since
Adoes not enter r(~). Hence, A (with its endpoint at q added) provides the desired
limit curve.
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q

P
Fig. 8.14. A sequence {An} of <;liusal curves from p to q in the case p, q E D- (I)
(see theorem 8.3.9).

The case p, q EcD+(~) obviously follows by the same argument. Thus, the only
remaining nontrivial case is p E D-(~), q E r(~). Given a sequence {A,,} in
C(p, q), the above argument proves existence of a future directed limit curve A
starting at p which enters r(~). We ch()Ose rEA n r(~) and extract a sub·
sequence {Aa such that every point on the segment of A between p and r is a
convergence pointofthis subsequence. Now we reverse the procedure and consider
the sequence of past inextendibl~. (in M - p) causal curves {A~} starting from q. By
the same arguments as given above, we obtain a limit curve A' from q which enters
r(~) and .thus must pass through r, since r is a convergence point of {A~} and if A'
did not extend to r it would have to remain in J+(r) C1+(~). Thus, by joining the
segment of A' from r to q with the segment of Afrom p to r we get the desired.limit
curve. 0

The compactness of C(p, q) directly yields a corresponding compactness of the
subSet r(p) n r(q) in the manifold topology:

THEoREM 8.3.,10. Let (M, gob) be a globally hyperbolic spa<:etime and let p, q E M.
Then r(p) n r(q) iscompa<:t.

Proof. Since paracompactness implies that the manifold topology is second count·
able (see appendix A),~y theorem A.9 in that appendix we need only show that
every sequence {rIll of points in r(p) n r(q) has an accumulation point r. To
prove this, we le~ {A,,}bea sequence of causal curves fromp to q such that An passes
through r". Since C(p, q) is compact and first countable, by theorem A.9 we find a
subsequence {A:}~tiich converges to a curve A E C(p, q).Now view Aas a subset
of M. Since Ais compact (for it is the continuous image of a closed interval of IR),
we can find an open neighborhood U C M of Asuch that U is compact. (Proof.
Cover Awith open sets with compact closure, use compactness of Ato extract a finite
sUbcover, and take the union.) By definition of convergence,.,there exists ,an integer
N such that for all n > N we have A~ C U. Thus, since r~ E A~ and U C U, we
have a subsequence ira contained in U. From the compactness of U, there exists an
accumulation point r E U. If r v= A, we would contradict the fact that Ais the limit
of {A~}. Thus, we have rEA C r(p) n r(q) and r is the desired accumUlation
point of {r.}. 0
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From theorem A.2 in appendix A, we obtain the following corollary:

COROlLARY. In a globally hyperbolic spacetime, r(p) n T(q) is closed.

In fact, it is not difficult to see that r(p) itself must be closed. Namely, if not we
could find a point r E r(p) with r ;:. r(p). Choose q E [+(r). Then we would
have r E r(p) n T(q) but r ;:. r(p) n T(q), which is a contradiction since
r(p) n T(q) is closed. One can strengthen these arguments to obtain the following
more general result, the proof of which is left as an exercise (problem 7).

THEoREM 8.3.11. Let (M, gab) be a globaUy hyperbolic spacetime and let K C M be
compact. Then r(K) is closed.

Recall that for any subset S, we have [+(S) C r(S) C [+(S). Thus, theorem
8.3.11 shows that for a compact set K in a globally hyperbolic spacetime, we have
r(K) == r(K). This implies that j+(K) C r(K), and thus in this case we can
strengthen· theorem 8.1.6 to conclude that every p E j+(K).can be joined to K by
a past directed null geodesic lying in j+(K). Thus, the phenomenon illustrated in
Figure 8.2 cannot occur for compact sets in a $lobally hyperbolic spacetime.

Let (M, gab) be a globally hyperbolic spacetime with Cauchy surface ~. For
q E D+(~) we define C~, q) as the set ofcontinuous future directed causal curves
from I to q and we define a topology on C~,q) in the same way as for C(p, q).
Essentia1lythe same argument as given in theorem 8.3.9 establishes that C (I, q) also
is compact; A repetition of the proof of theorem 8.3. 10·· then yields the following
theorem.

'fHEoRE.M 8.3.12. Let (M,gab) be a globally hyperbolic spacetime with Cauchy
surface I and let q E D+(I). Then r~) n T(q) is compact.

Our final results concern the topology and causal structure of globally hyperbolic
spacetimes.

PR0P0SIi10N 8.3.13. Suppose ~ and ~' both are Cauchy surfaces for the spacetime
(M,gab). Then I and I' are homeomorphic.

Proof. By lemma 8.1.1, there exists a nowhere vanishing timeUke vector field t(J
on M. Since I and I' are Cauchy surfaces, each integral cwve of t(J must have
precisely one intersection point with ~ and I'. The map of ~ onto I' obtained by
associating points which lie on the same integral curve of t 4 yields a continuous,
one-to-one map with continuous inverse. 0

Our final theorem greatly strengthens lemma 8.3.8.

THEoREM 8.3.14. Let (M,gab) be a globally hyperbolic spacetime. Then (M,gab) is
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stably causal. Furthermore, a global time function, f, can be chosen such that
each surface of constant f is a Cauchy surface. Thus M can be foliateli by
Cauchy surfaces and the topology ofM is IR X ~, where ~ denotes any Cauchy
surface.

Sketch ojproof. As in theorem 8.2.2, we introduce a volume measure I.L on M such
that I.L(M) is finite,.and we define the functionf- by

(8.3.8)

Using the fact that, for all q EM, r( q) and r( q) are closed, it is possible to show
thatf-(p) is continuous (Le., the "averaging" used in theorem 8.2.2 is not needed);
see Hawking and Ellis (1973) or Geroch (1970b) for details. Thus, f- defines a
continuous global time function, which can be "smoothed" to yield a differentiable
global time function. This proves stable causality. .To obtain the stronger conclusionS
of this theorem, we define f+ by

(8.3.9)

andfby

(8.3.10)

Then f is continuous, and each surface of constant f is a closed achronal set. It
remains to show that every inextendible causal curve intersects each surface of
constantf. This must occur iff-(p) goes to zero along every past me.xtendible causal
curve, and if, similarly,j+(p) goes to zero along every future inextendible causal
curve, since thenfwill attain all values in the interval (0,00) along every inextendible
causal curve. .To prove this, we suppose that A is a past inextendible causal curve
starting at q along whichf- does not approach zero in the past. Then there must exist
a point p such that p E r(r) for all rEA. Hence Amust be contained within the
setr(q) n r(p). However, by theorem 8.3.10 this set is compact, and by lemma
8.3.8 strong causality holds. Thus, by lemma 8.2.1, Amust have a past endpoint,
which contradicts the fact that A is past inextendible. Thus, f- must approach zero
as one goes along A into the past. Clearly, the analogous property also holds for
r.o

Remark. Our definition of global hyperbolicity of (M, gab) is (I) existence of a
Cauchy surface. Leray,s (1952) original definition was essentially (II) strong causal
ity holds and C (p, q ) is compact for all p, q EM. The definition given by Hawking
and Ellis (1973) is (m) strong causality holds and r(p) n r(q) is compact.
Lemma 8.3.8 and theorem 8.3.9 prove that (I) :::} (II), while theorem 8.3.10 shows
(II):::} (m) since the proof used only the compactness of C(p, q). Finally, the proof
of theorem 8.3.14 establishes that (m) :::} (I), since only properties derived from
(ro) played a role in the construction of Cauchy surfaces. Thus, all three definitions
are equivalent.
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Problems
1. Prove that for any subset 5 of the spacetime manifold. M. we have

a) J+[J+(S)] = r(S) and
b) [+(5) = r(S). where S is the closure of 5.

2. Let 5 be any subset of the spacetime manifold M. Give a proof of the following
two claims made in the text:

a) r(S) c 1+ (S) and
b) [+(S) = int[r(S)].

3. Prove lemma 8.3.3.

4. Let <M.8aJ,) be a globally hyperbolic spacetime with Cauchy surface I. and let
C C I be closed. Show that r(I) = D+(C) U r(I - C).

5. Prove that for any closed. achronal set 5. we have

H+(S) = [r(S) U 5] n J-[D+(S)].

6. Prove pr~sition 8.3.6.

7. Prove theorem8.3.1t.

8. a) Let (M.gab) be a globally hyperbolic spacetime with Cauchy surface I. Let
C c Ibe closed but not necessarily compact. Prove that r(C) is closed.

b) Fmd an example of a closed. achronal set 5 in Minkowski spacetime such that
r(S) is not closed. (Hint: Consider anoncompact subset of a null plane.)
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SINGULARITIES

In chapter 5 we studied the dynamics of a homogeneous, isotropic universe. We
found there that if the universe presently is expanding (as it is observed to be), then
a finite time ago it must have begun in a singular state, with infinite density and
infinite spacetime curvature. In section 6.4 we analyzed the extended Scbwarzschild
geometry. There we found that at "r = 0" an infinite spacetime curvature singularity
is present. Thus, a singularity also is predicted in the complete gravitational collapse
of a spherical body.

However, the above predictions of singularities in cosmology and gravitational
collapse are based solely on the analysis of solutions with a very high degree of
symmetry. It certainly is possible that they could give a completely misleading
picture of singularity formation. For example, in the Newtonian theory of gravity,
if a spherical, nonrotating shell of dust is released from rest, a singularity will be
produced a~ r := 0 when all the matter simultaneously reaches the origin. However,
ifone perturbs the shell away from spherical symmetry or gives it some rotation, then
no such singularity will occur. Thus, one might suspect that in general relativity,
nonspherical collapse will not, in general, lead to a singularity. Similarly, if one
evolves a universe which is not exactly homogeneous and isotropic backward into
the past, perhaps instead of a "big bang" singularity, general relativity might predict
merely a nonsingular, high density phase which might then reexpand into the past.
If this occurred, then in general relativity one would have a viable nonsingularclosed
universe model with infinitely many cycles of expansion, contraction, and "bounce."
Thus. it is of considerable interest to determine if the above predictions of singu
larities are merely artifacts of the high degree of symmetry of. the known exact
solutions, or whether singularities are a true, generic feature of solutions describing
cosmology and gravitational collapse in general relativity.

The purpose of this chapter is to discuss the singularity theorems of general
relativity. These theorems prove that singularities are true, generic features of
cosmological and collapse solutions. AlthOUgh they give very little information
concerning the detailed nature of these singularities, they show that models such as
the nonsingular "bouncing universe" are incompatible with general relativity pro
vided only that certain energy conditions are satisfied by matter and several other
conditions hold in the spacetime.

211
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The prediction of singularities undoubtedly represents a breakdown of general
relativity in that its classical description of gravitation and matter cannot be expected
to remain valid at the extreme conditions expected near a spacetime singularity.
Indeed, on dimensional grounds one would expect a classical description of space
time structure to break down at scales characterized by the Planck length,
lp = <fiG/C3)1/2 "'" 10-33 cm (see chapter 14). Hence, classical general relativity
certainly should break down at or before the stage where it predicts spacetime
curvatures of order lp2. Although the singularity theorems do not prove that the
singularities ofclassical general relativity must involve unboundedly large curvature,
they strongly suggest the occurrence in cosmology and gravitational collapse of
conditions in which quantum or other effects which invalidate classical general
relativity will playa dominant role.

We begin our discussion of the singularity theorems in section 9.1 by attempting
to defin~ the term '·singularity." Although it may be easy to recognize the "big bang"
of the Robertson-Walker solutions or OCr = 0" of the Schwarzschild solution as
singularities, it is extremely difficult to give a satisfactory general notion of that
term. We provide motivation for the notion of timelike and null geodesic incom
pleteness as a criterion for the presence of a singularity, although even this noti~
has some unwanted features. It is this criterion which is used in the singularity
theorems.

The basic idea of the singularity theorems is as follows. As already shown in
section 3.3, geodesics are curves of extremal length. After deriving some useful
equations describing geodesic congruences in section 9.2. we obtain criteria in
section 9.3 for when a timelike geodesic fails to be a local maximum of "length"
(Le., proper time) between two points or between a point and a three-dimensi<.)nal
surface. We obtain silllilar criteria for when a null geodesic fails to remain on the
boundary of the future of a point or two-dimensional surface. Using an inequality on
the Ricci tensor which follows from local positivity properties of the stress-energy
tensor-this being the only place in the analysis where Einstein's equation is used
we show that in appropriate circumstances "sufficiently long" timeIike geodesics
cannot be maximal length curves, and "sufficiently long" null geodesics cannot
remain on past or future boundaries. However, in section 9.4 we give global argu
ments involving compactness of the spaces of causal curves (see section 8.3) to
establish existence of timelike curves of maximal length·· in globally hyperbolic
spacetimes. An analogous result (theOrem 8.3.11) for null geodesics was already
given in chapter 8. The contradiction between these results (even if the spacetime is
not assumed to be globally hyperbolic) produces the singularity theorems of section
9.5: In appropriate circumstances "sufficiently long" timelike or null geodesics
cannot exist; Le., one must have timelike or null geodesic incompleteness.

9.1 What Isa Singularity?
Intuitively, a spacetime singularity is a "place" where the curvature "blows up" or

other "pathological behavior" of the metric takes place. The difficulty in making this
notion into a satisfactory, precise definition of a singularity stems from the above
terms placed in quotes.
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By far the most serious (and, perhaps, insurmountable) difficulty arises from
trying to give meaning to the idea of a singularity as a "place." In all physical theories
.except general relativity, the manifold and metric structure of spacetime is assumed
iD advance; we know the "where and when" of all spacetime events, and our task is
simply to detemine the values of physical quantities at these events. H a physical
quantity is infinite or otherwise undefined at a point in spacetime, we have no
difficulty in saying that there is a singularity at that point. Thus, for example, we
easily may give precise meaning to the statement that the Coulomb solution of
Maxwell's equations in special relativity has a singularity at the events labeled by
r =O. However, the situation in general relativity is completely different. Here we
are trying to solve for the manifold and metric structure of spacetime itself. Since the
notion of an event makes physical sense ogly when manifold and metric structure are
defined around it, the most natural approach in general relativity is to say (as we have
been doing) that a spacetime consists of a manifold M and a metricc8Qb defined
everywhere on M. Thus, the "big bang" singularity of the Robertson-Walker solution
is not considered to be part of the spacetime manifold; it is not a "place" or a "time."
Similarly, only the region r > 0 is incorporated into the Schwarzschild spacetime;
unlike the Coulomb solution in special relativity, the singularity at r = 0 is not a
"place."

On the basis of the Robertson-Walker and Schwarzschild examples, one might
expect that ~ne still could define the notion of a singular boundary of a spacetime.
The idea here would be to add points representing the singularity (e.g., the points
"7 = 0" in the Robertson-Walker spacetime and "r =0" in the Schwarzschild
spacetime) and define a topological space or perhaps even manifold with boundaryl
structure on the resulting collection of points. This would allow one to talk in precise
terms of a singularity as "place" even though the metric is not defined there.
However, while this could be done "by hand" in a few simple cases like the
Robertson-Walker or Schwarzschild spacetimes, severe difficulties arise if one tries
to give a meaningful general prescription for defining a singular boundary. In the first
place, naive definitions based on coordinate component expressions for the metric
have no chance of success as a general prescription since the apparent structure of
a singularity can be altered easily by a coordinate transformation, as illustrated by
simple examples like those given at the beginning of section 6.4 (where no true
singularity was present). Several coordinate independent prescriptions for defining
a singular boundary have been proposed, in particular, the "g-boundary" (Geroch
1968b) and the "b-boundary" (Schmidt 1971). However, these prescriptions and all
others with similar properties produce boundaries with pathological topological
properties in simple examples (Johnson 1977; Geroch, Liang, and Wald 1982).
Geroch, Kronbeimer, and Penrose (1972) have defined the notion of the causal
boundary of a spacetime by using eqUivalence classes of future and past inextendible
timelike curves (called TIPs arid TIPs, respectively) to define the boundary points.
However, some difficulties arise in the identification procedure of TIPs with TIPs
and in the definition of a topology on the spacetime with boundary points adjoined.

1. See appendix B for the definition of "manifold with boundary."
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Thus, at present, no fully satisfactory general notion of a singular boundary exists. 2

Until a satisfactory definition can be prOduced, we must abandon the notion of a
singularity as a "place."

Ofcourse, our failure to describe a singularity as a "place" in precise mathematical
terms does not in any way lessen the obvious fact that singularities exist in, say, the
Robertson;.,Walker and Schwarzschild spacetimes.1t simply means that we must find,
other ways of characterizing a singularity. One approach is to note that the curvature
"blows up" in these spacetimes, i.e., it is unbounded as 7' -+ 0 in the Robertson
Walker spacetimes and as r -+ 0 in the Schwarzschiid spacetime. However, one
encounters a number of serious difficulties if one attempts to use the notion of
curvature "blowing up" as a general criterion for singularities. In the first place,
curvature is desCribed by a tensor field Rabc d, and if one uses bad behavior of the
components of this teDsor or its derivatives asa criterion for singularities, one can
get into trouble since this bad behaviorof components could be due to bad bebavior
of the coordinate or tetrad basis rather-than the curvature. To avoid this problem, one·
could examine scalarS fonlled outofthe curvature, such as R, RabRab, RabcdRtIbcd. and
similar scalars fonlled by polynomial expressions in derivatives of the curvature
tensor. However, even if the value of some curvature scalar is unbounded in a
spacetime, the curvature might blow up only "as one goes to infinity," in which case
one would not want to say tilat the spacetime is singular. On the other hand, for
"plane gravitational waves," i.e., type IV vacuum solutions of Einstein's equation
(see section 7.3), all such polynomilifcurvature scalars vanish, but the curvatUre
tensor still may be singularr[Analogous behavior occurs for the plane wave solution:,
Fab =f(U)nr~db)U, of Maxwell's equations in special relativity, where u = t - X,it·
is a constant vectorficld orthogonal to g4IA ,andfis an arbitrary function. All field
invariants formed by polynomials ipFab and its derivatives vanish identically, burFab
will be singular if f(It) is singular.] Furthermore, in a physically meaningful sense
spacetimes may be singular without any bad behavior of the curvaturelensor. For
example, we can remove the ''wedge''of Minkowski spacetime consisting of points
with azimuthal cOordina~<psatisfying 0 < Cb < <Po. Then we can identify the points
<P = 0 with the corresponding pointsat<p=<po. The resulting space can be given
the manifoldstrueture of jR4 by redefining the coordinate neighborhoods of the points
with <p = 0 (including r= 0). The fiat metric of the original spacetime at the points
with <p =1= 0 (where the mariifold structure is unaltered) is naturally defined on our
newmanifold, and it can be smoothly continued to the points with <p = 0 and r > O.
However, it cannot be smoothly continued to f = O. We have a "conical singularity"
at r = 0 (and, thus, we must exclude r = 0 from the spacetime) even though the
curvature tensor Rabcdvanishes everywhere el$e! Thus, the general characterization
of singularities by the "blowin.g up" of curvature is unsatisfactory. The character
ization of singularities by.a detailed enumeration of the possible other types of

2. A manifoll1 with a Riemannian metric defined on it can be made into a metric space by using the
greatest lower l:>ound of the.length of curves connecting two points as a distance function. For a metric
space, the Cauchycompletion canstruetion (see, e.g., Royden 1963) gives a fully satisfactory notion of
a "singUlar boundary." However, a Lorentz metric does not naturally give rise to a distance function,
so the Cauchy completion construetton cannot be applied here.
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"pathological behavior" of the spacetime metric also appears to be a hopeless task
because of the infinite variety of possible pathological behavior.

How, then, can one characterize singular spacetimes? By far the most satisfactory
idea proposed thus far is basically to use the uholes" left behind by the removal of
singularities as the criterion for their presence. These "holes" should be detectable
by the fact that there will be geodesics which have finite affine length; Le., more
preCisely there should exist geodesics which are inextendible in at least one direction
but have only a finite range of affine parameter. Such geodesics are said to be
incomplete. (For timelike and spacelike geodesics, finite affine "length" is equivalent
to finite proper time or length so the use of affine parameter simply generalizes the
notion of "finite length" ~ null geodesics.) Thus, we could define a spacetime to be
singular if it possesses at least one incomplete geodesic.3 We then also may classify
a singularity represented by an incomplete geodesic according to whether (i) a scalar
constructed polynomially from R.d and its covariant derivatives blows up along the
geodesic (Uscalar curvature singularity") or (ii) no such scalar blows up, but a
component ofR.d or its covariant derivatives in a parallelly propagated tetrad blows
up along the geodesic ("paral1elly~propagated curvature singularity") or (iii) no such
curvature scalar or component blows up ("non-curvature singularity").

One possible objection to this definition is that spacetimes which are otherwise
nonsingular but simply have points "artificially" removed would be considered
singular. However, we can avoid this possibility by restricting consideration only to
iMxtendible spacetimes, Le., spacetimes which are not isometric to a proper subset
ofanother spacetime. A much more serious objection is that geodesic incompleteness
does not always correspond to the intuitive notion that there are "holes" in the
spacetime produced by the excision of singularities. If a "hole" is present, then
incompleteness should occur for all types of geodesics. However, Figure 9.1 shows
an example of a spacetime which is spacelike and null geodesically complete but
timelike geodesically incomplete. By ''turning this example on its side," we obtain
a spacetime which is timelike and null geodesically complete, but spacelike geodes
ically incomplete. Thus, in this latter spacetime, there is a singularity; but no
observer or light ray can ever reach it! Further examples of this nature are given in
problem 1. Furthennore, there exist spacetimes which are timelike, null, and space
like geodesically complete, but possess future inextendible timelike curves of
bounded acceleration which have·finiteproper length (Geroch 1968c). Such a space
time would be considered nonsingular according to the above definition, but given
a rocket ship with a sufficient1ylarge but finite amount of fuel, there exists an
observer who can end his existence in a finite time.

In fact, much more dramatic examples can be given of the failure of geodesic
incompleteness·· to correspond to the· intuitive notion of the excision of singular
"holes." In a compact spacetime. every sequence of points has an accumulation
point, so in a strong intuitive sense, no "holes" can be present. Yet, compact
spacetimes exist which are geodesie@y incomplete; an example ofone due to Misner

3. In thec8se of a manifold with Riemannian metric, geodesic completeness is equivalent to Cauchy
completeness (see n. 2 and see, e.g., Kobayashi and Nomizu 1963 for a proof of eqUivalence).
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2
90b=.n l10b

Fig. 9.1. A spacetime diagiam of a spacetime (R4, gdb) confonnal to Mmlcowski
spacetime (R4, "lab), i.e., we have gdb = 0211db (see appendix D). The confonnal
factor 0 is chosen to bespheric~y symmetric with 0 = 1 for r > 1. From the
spherieal symmetry of 0, it follows that the curve labeled r .= 0 isa·~
geodesic of g.. If we choose 0 so that O(r = 0, t) -+ 0 sufficiently rapidly as.
t -+ oc, this timelike geodesic will be incomplete. However, all $pacelike and null
geodesics simply "Pass through" the world tube of nonzero curvature and thus are
complete.

(1963) is given in problem 2. This failure of geodesic incompleteness to correspond
properly to theexistenee of "holes" is, of course, closely related to the difficulty
discussed above of defining a singularity as a "place."

N~vertheless.there is a serious physical pathology in any spacetime which is
timelike ornuU geodesicaUy incomplete. In such a spacetime, it is possible.for at
least one freely falling particle or photon to end its existence within a finite ''time''
(Le., affine parameter) or to have begun its existence a finite time ago. Thus, even
if one does not have a completely satisfactory general notiOn of singularities, one
would be justified in calling suchspacetimes ph"icaUy singular. It is this property
that is proven· by the singularity theorems to hold in a wide class of spacetimes.
Given the existence of an incomplete timelike or null geodesic, one would like to
know more about the character of the singularity, e.g., whether it is a curvature
singularity [types (i) or (ii) above] or a non-curvature singularity. Unfortunately, the
singularity theorems give virtually no information about the nature of the singu
larities of which they prove existence.

9.2 TbneUke and NuB Geodesic Congruences
Let M be a manifold and let 0 C M be open. A congruence in 0 is a family of

curves such that through eachp e 0 there passes precisely one curve in this family.
Thus, the tangents to a congruence yield a vector field in 0, and, conversely, as
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~ussed in section 2.2, every continuous vector field generates a congruence of
CWVes. The congruence is said to be smooth if the corresponding vector field is
smooth. In this section we shall define the expansion. shear, and twist of timelike
and null geodesic congruences in a spacetime (M.8ab) and derive equations for their
rate of change as one moves along the curves in the congruence.

Consider, first, a smooth congruence of timelike geodesics. Without loss of
generality. we may assume that the geodesics are parameterized by proper time 7',

so that the vector field, ?, of tangents is normalized to unit length, €Q~ = -1. Then
the tensor field, Bab, defined by

(9.2.1)

and thus

(9.2.6)

(9.2.7)

(9.2.8)

8 = B~hab

1
Uab = B(ab) - 38hab

EbVb1JO = 1JbVb€O = BOb1Jb (9.2.4)

Thus, BOb measures the failure of 1J0 to be parallelly transported. An observer on the
geodesic 'Yo would find the nearby geodesics surrounding him to be stretched and
rotated by the linear map BQb'

We ~fine the"spatial metric" hab by

hab = 8ab + €o€b (9.2.5)

Thus, hQb = glll:hcb is the projectionoperatorpnto the subspace of the tangent space
perpendicular to €o. We define the expansion 8, shear (Tab, and twist Wab of the
congruence by

Thus. Bab is decomposed as

1
Bab = "j8hab + O'ab + Wab (9.2.9)

Note that by virtue of equation (9.2.2) and Frobenius's theorem, the congruence is
(locally) hypersurface orthogonal if and only if Wab= O(see appendix B)..

From equation (9.2.2), we see that. Uab and (A)ab are purely spatial, i.e.,
Uab€b = (A)ab€b =O. From equation (9.2.4), it follows that along any geodesic in the
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congruence, 8 indeed measures the average expansion of the infinitesimally nearby
surrounding geodesics; Wab, being the antisymmetric part of the linear map Bab,
measures their rotation; and Uab measures their shear, Le., an initial sphere in the
tangent space which is Lie transported along go will distort toward an ellipsoid with
principal axes given by the eigenvectors of uP", with rate given by the eigenvalues
of UO".

It is clear that the geodesic deviation equation (3.3.18) will yield equations for~
rate of change of 8, Uab, and (A)ab along each geodesic in the congruence. However,
it is just as easy to derive these equations from scratch. We have

gC'VcBab = gC'Vc'V,,€a = gc'V"v.: €a + Rcb./gc€d

= 'V,,(gcv.:€a) - ('V"g")(v.:€a) + Rc,,/gc€d

== -BcbBar: + RcbadE"€d (9.2.10)

Taking the trace of equation (9.2.10), we obtain

d8 1
E"'Vc8 = d7' = -'3 82 - Uabuab + Wab wab - Rcdgcgd (9.2.11)

The trace-free, symmetric part of equation (9.2.10) yields

gC'VcUab = -~8uab - uaeU"" - war:WC,,+jhab(Ucducd - WcdW~

+ CcbadgC~d + 4Rab ,

where Rab is the spatial, trace-free part of Rab, i.e.,

- cd 1 cdRab = hachbdR - 3habhcdR

Finally, the antisymmetric part of equation (9.2.10) yields,

2
gcv.:Wab = - '38wab - 2u"[bW o]c .

(9.2;13)

(9.2.14)

Equation (9.2.11) is known as Raychaudhuri's equation and is the key equation
used in the proof of the singularity theorems. We turn our attention, now, to
investigate the positivity property of the last term on the right-hand side of this
equation. Using Einstein's equation, we may write this term as

Rabgogb = 8'IT[Tab - 4T8ab]gogb = 8'IT[Tabgag"+ 4T] . (9.2.15)

Now, Tab gog" physic8IIy represents the energy density of matter as measured by an
observer whose 4-velocity is g4. It is generally believed that for all physically
reasonable classical matter this energy density is nonnegative, i.e.,

Tab~4gb.~ 0 (9.2.J6)



9.2 Timelike and Null Geodesic Congruences 219

for all timelike ga. This assumption is known as the weak energy condition. How
ever, it also seems physically reasonable that the stresses of matter will not become
so large and negative as to make the right-hand side of equation (9.2.15) negative.
This assumption that

(9.2.17)

for all unit qrnelike ga is known as the strong energy condition. For completeness,
we also mention another energy condition which is believed to hold for physically
reasonable matter~ For all future directed, timelike ga, -Ta"g" should be a future
directed timelike or null vector. Since for an observer with 4-veloeity ga the quantity
"'T""g" physically represents the energy-momentum 4-current density of matter as
seen by him, this condition, known as the .dominant energy condition, can be
interpreted as saying that the speed of energy flow of matter is always less than the
speed of light. Indeed, this interpretation can be made precise: One can prove that
if Tab is conserved (i.e., 'VaTab = 0), satisfies the dominant energy condition, and
vanishes on a closed, achronal set S, then it also vanishes in D (S) (see lemma 4.3.1
of Hawking and Ellis 1973). Note that the dominant energy condition implies the
weak energy condition, but otherwise the above three energy conditions are mathe
matically independent assumptions. In particular, the strong energy condition does
not imply the weak energy cOndition.4 It is "stronger" only in the sense that it appears
to be a stronger physical requirement to assume equation (9.2.17) rather than
(9.2.16).

The stress tensor Tab is symmetric in its two indices, but since gab is not positive
definite. the linear map Ta" from vectors into vectors need not be diagonalizable, i.e.,
it need not have four linearly independent eigenvectors. However, with the exception
of a stress-tensor representing a null fluid (specifically, Tab of the form
Tab = plJl" + p\xaX" + P2Y,.y" where III is null and xaand ya are orthonormal space
like vectors o{thogonal to I"), all stress-tensors·representing what is believed to be
physically reasonable matter are diagonalizable. The eigenvectors ofTa" with differ
ent eigenvalues are automatically orthogonal, while eigenvectors with the same
eigenvalue can be chosen to be orthogonal, so in the diagonal case, Tab takes the form

(9.2.18)

where {ta, x a, ya, za} is an orthonormal basis, with ta timelike. The eigenvalue p
may be interpreted as the rest energy density of the matter, while the eigenvalues PI,
P2. P3 are called the principal pressures. For Tab of the form (9.2.18), the above
energy conditions are equivalent to the following conditions. The weak energy
coodition will be satisfied if and only if

p~O and p + PI ~ 0 (i = I, 2, 3) (9.2.19)

4. In some references, the terminology "weak energy condition" is defined to mean TlIbkGk b e: 0 for
all null kG. With this definition, the strong energy condition does imply the weak energy condition.
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The,strong energy condition is equivalent to

3

P + ~Pi ~ 0
i=1

and P + Pi ~ 0 (i = 1, 2, 3) (9.2.20)

Thus, the weak and strong energy conditions will be satisfied provided only that
P ~ 0 and there do not exist negative pressures (i.e., tensions) comparable in
magnitude or larger than p. Finally, the dominant energy condition is equivalent to

p ~.Ipd (i = 1, 2, 3) (9.2.21)

Let us return now to Raychaudhuri's equation (9.2.11). As discussed above, if
Einstein's equation holds, and the strong energy condition is satisfied by.Tab , then the
last term of the rigbt~hand side of equation (9.2.11) will be negative. This can be
interpreted, physically,as a manifestation .of the attractiveness of gravity. If the
congruence is hypersurface orthogonal, we have cu. = 0, so the third term vanishes.
The second term, -Uabuab, is manife~y nonpositive. Thus, under these assump
tions we find

which implies

and hence

dO .!-02 sO
d7' + 3 - (9.2;22)

(9.2.23)

(9.2.24)

where 180 is the initial value of 0" Suppose, now, that 80 is negative, Le., the
congruence is initially converging; l'henequation (9.2.24) implies that. 0- 1 must pass
through zero, Le., 0-+ -00, within a proper time 7' ~ 3/1801. Thus, we have
proven the following lemma.

LEMMA 9.2.1. Let ~a be the tangent field of a hypersurface orthogonal timelike
geodesic congruence. Suppose Rab~a~b ~ 0, as will be,the case if Einstein's
equation holds in the spacetime and the strong energy condition is satisfied by
the matter. If the expansion 0 takes the negative value 80 at any point' On a
geodesic in the congruence, then 0 goes to -00 along that geodesic within
proper time 7' ~ 3/180 I.

In general, the singularity in 0 implied by lemma 9.2.1, of course, represents
merely a singularity in the congruence, not a singularity in the structure of spacetime.
It simply states that caustics will develop in a congruence if convergence occurs
anywhere. The conclusions of lemma 9.2.1 hold for congruences in Minkowski
spacetime and in many other singularity free spacetimes. However, in the next three
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sections we shall show that in certain spacetimes, the conclusions of lemma 9.2.1
in conjunction with properties derived from global arguments prove the existence of
spacetime singularities.

We tum our attention; now, to mill geodesic congruences. Again, we parameterize
the geodesics by an affine parameter A, but, unlike the timelike case, we now have
no natural way of normalizing the tangent field ka and thereby adjusting the scale of
Aon different geodesics. In the timelike case, we restricted consideration to devi
ation vectors "1a orthogonal to €a. There actually ·were two independent (though
related) reasons for doing so. (1) We have €aVa(€b"7~ = €a€bVa"1b = €b£E"1 b +
"1ag,Va€b = 0 provided €a€a is. normalized to be constant. Thus, €a "1a is constant
along each geodesic, and the behavior of the "nonorthogonal" part of "1a is unin
teresting. (2) Deviation vectors which differ only by a multiple of €a represent a
displacement to the same nearby geodesic. Orthogonality fixes a natural "gauge
condition" on "1a•

In the case of a null geodesic congruence, the above reasons for restricting the
choice of deviation vector still apply, but now they lead to two independent re
strictions. First, for any deviation vector "1a, we again have kaVa(kb"1~ =
k,,£k"1b + "1akbVakb = 0, so kb"1b does not vary along each geodesic. This implies
that an arbitrary deviation vector "1a may be written as the sum of a vector not
orthogonal to ka which is parallelly propagated along the geodesic, plus a vector
perpendicular to ka• (Note, however, that there is no natural, unique way of decom
posing "1 a in this manner.) Thus, the behavior of the "nonorthogonal" part of "1a

again is uninteresting, and we may restrict consideration to deviation vectors satis
fying "1aka = O. Second, deviation vectors which differ only by a multiple of ka

again represent a displacement to the same nearby geodesic. Thus, the physically
interesting quantity is really the equivalence class of deviation vectors, where two
deviation vectors are considered equivalent if their difference is a multiple of ka

•

Since ka is null and thus is orthogonal to itself, this second restriction is independent
of the first restriction,and it reduces the physically interesting class of deviation
vectors to a two-dimensional subspace, as we now shall describe with more pre-
ciswn. .

Let Vp denote the tangent space at a pointp EM. The tangent vectors in Vp which
are orthogonal to ka form a three-dimensional subspace, which we shall denote by
~. We de~ne ~ to be the vector space of eqUivalence classes of vectors in ~, where
xa, ya E Vp are defined.. to be equivalent if there exists a number e E R such that
xa - ya = eka. Then Vp is a two-dimensional vector space, althoug~ it camtot be
identified as a subspace of Vp in any natural 'flay. As explained above, the deviation
vectors of interest live in the vector space Vp. •

A tangent vector ta E Vp does not naturally give rise to a tangent vector in Vp,
because there is no.natural way of decoI!lposing it as a sum of a vector in Vp and a
vector not lying in Vp. !Iowever, if ta E Vp (Le., if taka = 0), then tanaturally gives
rise to a vector ia in Vp by taking its equivalence class. On~ other hand, a dual
vector P-a E Vp" nat1!I'ally gives rise to a dual vector ii-a E (Vp)* by restricting }ts
action to vectors in Vp. However, ii-a naturally gives rise to a dual vector I1a E (Vp)"
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if and only if iloka = P-aka = O~ More generally...a tensor Tat'''al'w''b/ over Vp
naturally gives rise to a tensor rat" .alb} " 'bl over Vp if and only if the result of
contracting anyone of its indices with ka or ka and contracti..ng its..remaining indices
with vectors.or dual vectors which give rise to elements of Vp or (v"t is always zero.
For tensors satisfying this property•.the operation of taking outer products com
mutes with the "projectioIl" into tensors over v". Furthermore. for a tensor satisfying
the stronger property !hat contraction of anyone of its indices into ka or lea gives zero,
then projection into v" commutes with contraction.

The spacetime metric gab satisfies..the above property and thus giv~rise to a tensor
over V;. which we shall denote as h ab• 11 is not difficult to see that h ab is ~ positiv~
definite (Le.• signature + + ) metric on Vp. (On the otherhan~. the tensor h ab over Vp
,!btained by ~stricting the action ,!f gab to vectors in Vp is dege~erate, since
habkb = 0, so nab is Ilot a metric on v".) Note that the inverse metric h ab is just the
"hatted" tensor associated with gab.

Consider, now. a congru~nce of null geodesics with tangent field k a
• The tensor

field
Bab = Vbka (9.2.25)

also satisfies the above property, and thus gives rise to a "hatted" tensor field Bab• We
can decompose Bab as .

(9.2.26)

with
(9.2.21)

(9.2.28)

Wab = Brab} (9.2.29)

so that O. Uab, and Wab again have the phySical interpretation as, respectively, the
expansion, shear~ and twist of the congruence. The change in the numerical factor
in the term ! Ohab (as compared with I ()hab in the timelike case) arises simply beCause
the relevant vector space is now two-dimensional rather than three-dimensional.

The same derivation as ted to equation (9.2.10) in the tirrielike case now yields

kcVcBab + BC~ac = Rcb/kdkc (9.2.30)

"Hatting" this equation, we~tain A" ~

kCVcBab + BC~ac = Rcbadkckd (9.2.31)

Finally, substituting our decomposition (9.2.26) for Bab and taking the trace, sym
metric traceftee; and antisymmetric parts of the equation, we obtain, respectively,

~~= -402 - (Tabuab + tl)abwab - R c4k ck d (9.2.32)

kCVc,d-ab = - ()(Tab +~ , (9.2.33)
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(9.2.34)

Notice that the last tenn on the right-hand side of equation (9.2.33) vanishes if and
only if CCbadkckdxayb = 0 for all x a, yb orthogonal to ka. This is equivalent to
/cr.eCb]cd[aknkckd = 0 which is just the condition that kabe a principal null vector of
the Weyl tensor' (see section 7.3);

The nature of equation (9.2.32) for the expansion of null geodesics is very similar
to that of Raychaudhuri's equation (9.2.11). The only significant change is that,
using Einstein's equation, we now obtain

Rabkakb = 81TTabkakb (9.2.35)

Thus, all that is needed to ensure that the last tenn ofequation (9.2.32) is nonpositive
is that for all null ka,

(9.2.36)

If the strong energy condition, equation (9.2.17), holds, then for all timelike ga we
have Tabgagb - !Tgag., ~ 0, and by continuity equation (9.2.36) will hold for all
null ka • Similarly, if the weak energy condition (9.2.16) holds, then by continuity
equation (9.2.36) also will be satisfied. For a diagonalizable Tab, equation (9.2.18),
the necessary and sufficient requirement for satisfying equation (9.2.36) for all null
ka is

P + Pi ~ 0 (i = 1, 2, 3) (9.2.37)

Thus, the requirements on Tab needed to ensure that the last tenn ofequation (9.2.32)
is nonpositive are weaker than tfie corresponding requirements it) the ti1l)elike case.

By the same arguments as led to lemma 9.2.1 we obtain the following result.

LEMMA 9.2.2, Let ka be the tangent field of a hypersurface orthogonal null geodesic
congruence. Suppose Rabkakb ~ 0, as will be the case if Einstein's equation
holds in the spacetime and the weak or strong energy condition is satisfied by
the mattter. If the expansion 8 takes the negative value 80 at any point on a
geodesic in the congruence, then 8 goes to -00 along that geodesic within affine
length A ~ 2/{80 1.

9.3 Conjugate Points
Let M be any manifold on which a connection is defined and let 'Y be a geodesic

with tangent va. A solution 'ria, of the geodesic deviation equation

vaVa(vbVb'rlC) =-RabdcTJbVaVd (9.3.1)

(see eq. [3.3.l8J) is called a Jacobi field on 'Y. A pair of points P, q E 'Yare said to

5. Thus, it follows immediately from equation (9.2.33) that if the shear, do"", of a null geodesic
congruence vanishes, then kQ is a principal null vector. In the case of a vacuum spacetime, R"" "" 0,
considerably stronger results hOld. If do"" "" 0, then kQ must be a repeated principal null vector.
ConverseIy, if kQ is a~peated principal null vector in a vacuum, algebraiclillY special spacetime, then
it is tangent to a shear-free, null geodesic congruence. These results are Ialown as the Goldberg-Sachs
theorem, and a proof can be found in Newman and Penrose (1962).
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q

P
Fig. 9.2. A spacetime diagram illustratipg the notion of conjugate points along the
geodesic 'Y.

be conjugate if there exists a Jacobi field 'TI a which is not identically zero but vanishes
at both p and q. Thus, roughly speaking, p and q are conjugate if an "infinitesimally
nearby" geodesic intersects 'Y at both p and q as illustrated in Figure 9.2. As a simple
example, the north and south poles of the sphere in Riemannian geometry are
conjugate points of eveQ' "longitudinal geodesic." Note, however, that the definition
requires only the existence of a Jacobi field vanishing at p and q; there need not exist
an actual geodesic other than 'Y which passes through p and q. Conversely, the
existence of a geodesic other than 'Y which passes through p and q does not mean that
p and q are conjugate or even that some point conjugate to p exists between p
and q.

Conjugate points are of interest because, as we shall see below, in spacetimes they
characteri~ the stage at which a timelike geodesic fails to be a local maximum of
proper time between two points and a null geodesic fails to remain on the boundary
of the future of a point. (In Riemannian geometry, they similarly characterize the
stage at which a geodesic fails, locally, to be the minimum length curve connecting
points.) We shall consider, first, conjugate points on timelike geodesics. We begin
by using the results of the previous section to obtain criteria for the existence of
conjugate points.

Let 'Y be a timelike geodesic with tangent ga and let p E 'Y. Consider the congru
ence of all timelike geodesics passing through p. (This congruence, of course, is
singular at p itself.) Then every Jacobi field which vanishes at p is a deviation vect{)f
for this congruence. We shall show that a point q E 'Y lying to the future of p is
conjugate to p if and only if the expansion, 0, of this congruence approaches -00 at
q. For this purpose, it is convenient to introduce an orthonormal basis of spatial
vectors e1, ~, 4 orthogonal to gil and parallelly propagated along 'Y. Since the
components, 'TIl', of the deviation vec~a for this congruence satisfy the linear
ordinary differential equations,
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d2111'
dT2 = - ~ RaPvl'€al1P€v (9.3.2)

a.p,v

the value of 111' at time T must depend linearly on the initial data 111'(0) and
dl11'ldT(O) at p. Since, by construction, 111'(0) = 0 for this congruence, we must
have

3 dl1v
l11'(T) = ~ AI'v(T) dT (0) . (9.3.3)

v=1

Substituting this in equation (9.3.2), we see that the matrix AI'v(T) satisfies the
equation

d
2
AI'v = _ "" R I'/:a/:uAP

dT2 .LJ apu!>!> v
a,p.u

Clearly, we also have AI'v (0) = 0 and dAI'vidT(O) = 51'v' Now, q will be conjugate
to p if and only if there exists nontrivial initial data [i.e., dl11'1dT(O) ::I: 0] for which
1114 = 0 at q. By equation (9.3.3), this occurs if and only if det A I'v = 0 at q, so
det AI'" = 0 is theDecessary and sufficient condition for a conjugate point to p. Note
that between conjugate points we have det A I'v ::I: 0, so the inverse of AI'" exists.

Clearly, the matrix AI'" must be related to the tensor field Bah = Vb€" of the
congruence. To find this relation, we note that

dl11'
dT = €aVal11' = €aVa[(el')bl1b]

= (el')b€aVal1b

= (el')bB b
al1a

3

= 2 BI'al1ti

ti=1

However, using equation (9.3.3), we find

dif = ~ dAI'" dl1
v

(0)
dT dT dT

"
so we obtain

~ dAP." dl1" (0) = ~ BI'.. Ativ dl1
v

(0)
" dT dT~ a," dT

Thus, in matrix notation, we find

dAldT = BA

i.e.,

(9.3.5)

(9.3.6)

(9.3.7)

(9.3.8)

(9.3.9)
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Consequently, we obtain

8 = trB = tr [:A-1
] (9.3.10)

where "tr" denotes the trace of the matrix. However, it follows from the fonnula for
the inverse of a matrix that for any nonsingular matrix A, we have 6

tr [:A-
1

] = de~A:T(detA) (9.3.11)

so that

d
8 = dT (In /det A /) (9.3.12)

Since A satisfies the ordinary differential equation (9.3.4), d(det A)/dT cannot be
come infinite anywhere along 'Y. Therefore, if 8 -+ -00 at q, it follows from equation
(9.3.12) that detA -+ 0 atq. CQDversely, ifdetA -+ 0 atq, it follows that 8-+ -00

at q. Thus, as desired, we have proven that a necessary and sufficient condition for
q to be conjugate to p is that for the congruence of timelike geodesics emanating from
p, we have 8 -+ -00 at q.

The congruence of timelike geodesics passing through p is hypersurface orthogo
nal. Indeed, as proven in lemma 4.5.2 of Hawking and Ellis (1973), within a convex
nonnal neighborhood of p, the geodesics in this congruence are orthogonal to the
surfaces of constant proper time T along the geodesics and, from equation (9.2.14),
it follows that if (dab vanishes at one time, it must vanish at all times. Thus, we may
use lemma 9.2.1 to establish immediately the following result on the existence of
conjugate points:

PROPOSmON 9.3.1. Let (M, 8ab) be a spacetime satisfying Rab~a~b ~ 0 for all time
like ~a. Let 'Y be a timelike geodesic and let p E 'Y. Suppose the convergence
of the congruence of timelike geodesics emanating into the future from p attains
the negative value 80 at r E 'Y. Then within proper time T ~ 3/ /801 from·r
along'Y~ exists a point q conjugate top, assuming, of course, that 'Yextends
that far.

In fact, the existence of a pair of conjugate points on a complete timelike geodesic
'Y can be proven under far weaker hypothe~es than those of proposition 9.3.1. If
R.m~a~b ~ 0 everywhere along the geodesic and Rab~~b > 0 at point r E 'Y, then
one can show that for p sufficiently far from r, the expansion of the timelike geodesic
congruence emanating from p must be negative at r. Hence p will have a conjugate
point q on 'Y. However, even ifRab~a~b = 0 everywhere on 'Y, if the curvature tenns
on the right-hand side of equation (9.2.12) are nonzero at r E 'Y, then O"ab cannot
vanish in a neighborhood of r. Since -O"aba-ab also appears on the right-hand side of

6. This formula previously was used in equation (3.4.8) above. It is closely related to the identity
exp(tr C) = det[exp(C)] for any matrix C. which can be proven by putting C in upper triangular fonn.
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Raychaudhuri's equation, a similar argument establishes existence of conjugate
points. Thus, all that is required for existence of conjugate points on 'Y is that
Rob~a~b $; 0 everywhere on 'Y and Rabcd~b~d :f 0 at at least one point of 'Y. The full
proof of this result can be found in proposition 4.4.2 of Hawking and Ellis (1973).

A spacetime (M, gab) is said to satisfy the timelike generic condition if each
timelike geodesic possesses at least one point at which Rabcd~a~d ::I: O. Although the
timelike generic condition may fail to hold in spetial, idealized spacetime models,
it seems reasonable that it will hold in all physically realistic "generic" spacetimes.
In view of the remarks of the previous paragraph, we have the following result which
plays an important role in the proof of theorem 9.5.4 quoted in section 9.5.

PROPOSmON 9.3.2. Let (M, gob) satisfy the timelike generic condition and suppose
Rob~a~b $; 0 for all timelike ~a. Then every complete timelike geodesic pos
sesses a pair of conjugate points.

Next, we tum our attention to the relation between conjugate points and the
extremal length properties of timelike geodesics. Let p, q E M and consider a
smooth one-parameter family of smooth timelike curves Aa (t) from p to q, where the
curve parameter t is chosen so that for all a we have Aa(a) =p, Aa(b) = q. We
denote the tangent vectors, (aliJt)a, by Taand the deviation vectors, (al aa)a, by Xa.
Then xa vanishes at both p and q and, as usual, we have £TXa =
TbVbXa - XbVbTa = 0 everywhere. The length of each curve is given by

T(a) = I:!(es t)dt , (9.3.13)

where! = (-TaTa)I/2. In section 3.3 we showed that the necessary and sufficient
condition for the curve 'Y to extremize T for all possible smooth families Aa with
Ao = 'Y was that 'Y be a geodesic. We repeat, DOW, this calculation in a coordinate
invariant form and then compute the second variation of arc length. We have

dT = (b a! dt
da Ja aa

= I: x aVa(-TbT,,)1/2dt

= -I: :1 T"XaVaTb
dt

= -I:JT"rav"xbdt

= -I: TaVa [:1T"XbJdt + f XbTaVa(T,,/!)dt

= 1: xbTaVa(T"If)dt , (9.3.14)
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since TIl'Vo(j-I1j,Xv., = a(j-I1j,Xb)/at and X b vanishes at the endpoints. Thus,
setting a =0 we see that dT/da = 0 for arbitrary X b if and only if Ta'Vo(1j,/!) = 0
at a = 0, which is just the geodesic equation exPressed in an arbitrary parameter
ization.

The second variation of arc length is
2 0

:a: = I: XC'V" [Xb TaVa(1j,/!)]dt (9.3.15)

Evaluating this expression at a = 0, assuming that "0 is a geodesic, we find

d
d

2
: I = rb

Xb (xc'V"Ta)'Vo(1j,/!)dt
a ..=0 Ja

+ I: X b TaXc'V"Va(1j,/!)dt

~ = I: X b(TcVcxa)Va(1j,/!)dt

+ J: Xb Ta XC'Vo 'V" (1j,/!)dt

+ I: X b Ta Xc Rcab
d 1d/! dt

= J: X b TCv" [XaVa(1j,/!)]dt

+ I: X b Tax cRcab
d 1d/! dt

The term in square brackets can be reexpressed as

X a'Vo(1j,/f) = J)' 'Va 1j, - )2 1j,XaVa/

= JT"'VoXb + )21j,TaVa[J Tcxc] (9.3.17)

where the manipulations of equation (9.3.14) and the geodesic equation at a = 0
were used. Equation (9.3.16) can be put in more easily recognizable form by
choosing the curve parameterization so that! = 1 along the geodesic Ao and also
choosing the deviation vector xa to be orthogonal to Ta along "0. With these choices,
we find

d
d

2
: I = rb

Xb{Tc'V"(Tav,,Xb) + Rcabd Ta1dxc}dt
a ..=0 Ja

o = J: Xb«(JX)bdt , (9.3.18)
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where 0 is the operator appearing in the geodesic deviation equation (9.3.1). Using
this formula, we may establish the following theorem.

THEoREM 9.3.3. Let 'Y be a smooth timelike curve connecting two points p, q EM.
Then the TJecessary and sufficient condition that 'Y locally maximize the proper
time between p and q over smooth one parameter variations is that 'Y be a
geodesic with no pOint conjugate to p between p and q.

Sketch of proof. H 'Y is not a geodesic, then using equation (9.3.14) we can
construct a one-parameter family of curves A.a with dT/ da > 0 at a = O. H 'Y is a
geodesic but has a conju~ate point, r, between p and q, then we can find a deviation
vector xg such that (OXty' = 0 and xg vanishes at p and r. By equation (9.3.18), the
variation xa = xg between p and r followed by X a = 0 between r and q produces
no change in T to second order (see Fig. 9.3). By "rounding off the corner" at r for
this variation,' one can produce a smooth deviation for which d 2T/da 2 > 0 at
a = O.

P
Fig.·9.3. A spacetime diagram illustrating the fact that if a timelike geodesic y
connecting points p and q has a point r conjugate to p lying between p and q, then a
nearby timelike curve y' connecting p and q can be constructed which has greater
elapsed proper time than y (see theorem 9.3,3).

Conversely, if 'Y is a geodesic with no point conjugate to p between p and q, then
the matrix A defined above will be nonsingular between p and q, so we can define
YJO = ~(A~I)#..X". Substituting ~A""Y" for X" in equation (9.3.18), we can show
that d2~/da2 is manifestly negative definite at a = O. These calculations can be
found in proposition 4.5:8 of Hawking and Ellis (1973). 0

A notion similar to conjugacy of two points along a timelike geodesic can be
defined for a point and a smooth (or, at least, C2) spacelike hypersurface ~. (By

7. Note that this "rounding off the comer" argument is made for the (infinitesimal) deviation vector,
not for an Rctua1 (finite) geodesic. see Penrose (1972) for further discussion.
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hypersurface, we mean an embedded, three-dimensional submanifold lsee appendix
BJ.) First, we define the extrinsic curvature, Kab , Of2. Let ~a be the unit tangent field
of the congruence of timelike geodesics orthogonal to 2. We define Kab by

I

Kab = Va 9> = Boo (9.3.19)

where evaluation of these tensors on 2 is understood. Note that Kab is purely spatial,
i.e., Kab~a = Kab~b = O. Since this congruence is manifestly hypersurface orthogo
nal, we have Wab = 0 so Kab is symmetric, Kab = Koo. Hence, using equation
(C.2.16), we canreexpress Kab as

~ 1
> Kab = "2 £~gab

1
= "2 £~(hab - ~~b)

1
= "2 £~hab

where hab was defined by equation (9.2.5) and the geodesic equation was used in the
last step. Now, hab is the spatial metric induced on the hypersurfaces of constant
proper time from 2 along the geodesic congruence orthogonal to 2. Thus, Kab

measures the rate of change of thitspatial metric as one moves along the congruence;
Le., it measures the "bending" of 2 in the spacetime (M, gab). Indeed, since Gaussian
normal coordinates (see section 3.3) are adapted to ~a (see appendix C), in these
coordinates we have

(9.3.21)

which reinforces our interpretation ofKab as representing the "time derivative" of hab.
The trace of the extrinsic curvature is often denoted by K,

K ;e Kaa = h abKab (9.3.22)

Thus, we have

K = (J , (9.3.23)

where (J is the expansion of the geodesic congruence orthogonal to 2.
A point p on a geodesic 'Y of the geodesic congruence orthogonal to 2 is said to

be conjugate to 2 along 'Y if there exists an orthogonal deviation vector T'/a of the
congruence which i$nonzero on 2 but vanishes atp. Thus, intuitively, p is conjugate
to 2 if two "infinitesimally nearby" geodesics orthogonal to 2 cross atp as illustrated
in Figure 9.4. By the same argument as given above for conjugate pairs of points,
p will be conjugate to2 if and only if the expansion, (J, of the congruence of
geodesics orthogonal to 2 approaches -00 at p. Since this congruence is manifestly
hypersurface orthogonal, lemma 9.2.1 immediately yields the following result.

PROPOsmON 9.3.4. Let (M, gab) be a spacetime satisfying Rab~a~b E; 0 for all time-
like ~a. Let 2 be a spacelike hypersurface with K = (J < 0 at a point q E 2.
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Fig.~.4. A spacetime diagram depicting a point p conjugate to the hypersurface I
along the geodesic y. (The two geodesics shown are supposed to be "infinitesimally
nearby.")

Then within proper time T ~ 3/1K! there ex.ists a point p conjugate to ~ along
the geodesic 'Y orthogonal to ~ and passing through q, assuming that 'Y can be
extended that far.

Furthermore, by arguments similar to those used to prove theorem 9.3.3, the
following theorem can be proven.

THEoREM 9.3.5. Let 'Y be a smooth timelike curve connecting a pOint pE M to a
point q on a smooth spacelike hypersurface~. Then the necessary and sufficient
condi~()n that ylocatlymaximizetheproper time between p and ~oversmooth
one~parametervariations is tkat-y be a geodesic orthogonal to ~ with no
conjugate point to ~ between ~and p. .

We tum.our attention, now, to conjugate points of nUllgeodesics. It follows
directly from the geodesic deviation equation that for any Jacobi field T'/4 on a null
geodesic p. with tangent k4

, we have

kC~[kbVb(k4114)] = 0 (9.3.24)

which immediately implies that T'/4 cannot vanish at two points p, q E J.L unless
k4T'/4 == o everywhere along IJ.. Furthermore, if .,,4 is a JaCobi field, then so is
T'/4 + (a + bA)k4

, where a and b are constants, so p and q will be conjugate if and
only if there exists a Jacobi field T'/4 which differs from zero by only a multiple of
k4 atbOthpand q. Thus, along a null geodesic IJ.. the points p,q E IJ. will be
conjugate if and only if avectot"""inV (see section 9.2) satisfies the geodesic
deviati011 equatiomand vanisheS at p and q. It is clear that all such 1j4 which vanish
atp arise" as deviation veCtors of any null geodesic congruence containing the
tw<rdimensional family of nullgeodesics emerging from p. By the same arguments
as given above in the ~tneHke case, q~ be conjugate to p if and Only if the
expansion., 9,of suCh a null geOdesic congruence approaches -00 at q.Thus, lemma
9.2.2 implies the following result~

PRoPOsmON 9.3.6. Let (M, gab) be a spacetime satisfying Rabk 4 k b E; 0 for all null
k4

• Let IJ.be a null geodesic andletp E IJ..Suppose the convergence, 8,ofthe
null geodesics emanating from p attains the negative value 90 at r E IJ.. Then
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within affine length A ~ 2//901 from r, there exists a point q conjugate to p
along p., assuming that p. extends that far.

Again, this result can be strengthened to conclude that ifRabkQkb~ 0 everywhere
on a complete null geodesic p. and there exists at least one point rEp. at which
either RabkQkb> 0 or kreCQJbcf.d~]kbkc :f 0, then p. possesses a pair of conjugate
points. A spacetime (M, gab) is said to satisfy the null generic condition if every null
geodesic possesses at least one point where either RobkQkb =F 0 or
kreCQ}bt;{d/cnkbkc :f 0, i.e., at least one point where kre8a}bt;{d~]kbkc :f O. Thus, in
analogy to proposition 9.3.2, we have:

PROPOsmON 9.3.7. Suppose (M, gab) satisfies the null generic condition and
RabkQkb~ 0 for all null kQ. Then every complete null geodesic possesses a pair
of conjugate points.

As discussed above, for timelike geodesics conjugate points signal when a time
like geodesic, 1, can be varied to yield a curve of greater length between two ~ts
p,q EM. If a conjugate point, r, to p exists betweenp anp q along 1, we can fiDd
a longer curve by perturbing toward an appropriate "infinitesimally close" geodesic
betweenp and r, following "y from r to q, and then "rounding off the corner" at.r.
In an exactly similar manner, for null g~sics, conjugate points signal when a null
geodesic p. connecting p and q can be varied tQ yield a timelike cUrve betweenp and
q. Again, if we have a C9njuga~ point, r, be~een p and q, we can perturb toWard
an "infinitesimally close" null geodesic from p to r, follow JJ- from r to q, and then
"round off the comer" to produce a timelike curve fromp to q. Thus, in analogy to
theorem 9.3.3, we obtain the following result, the full proof of which can be found
in Hawking and Ellis (1973).

THEoREM 9.3.8. Let p. be a smooth causal curve and let p, q E p.. Then there does
not exist a smooth one-parameter family ofcausal curves Aa connecting p and
q with Ao = p. and Aa timelike for all a > 0 (i.e., p. cannot be smoot1J1y
deformeti to a timelike curve) ifand only if p. is a null geodesic with no point

", conjugate to p along p. between p and q.

For null geodesics, a notion pf conjugacy also can be defined for a point and a
two-dimensional spacelike swface (Le., eml)ed(led sub~old) S. At eaohq,E S
theJ:e will exist precisely twp future directed null vectors kf, k! which are orthogonal
toS.·1f Sis orientable.wecan make a continuous choice of kf and k! over Sand
thereby define twoJarnilies ofnull geodesics, which we may refer lOas "outgoing"
and "ingoing" families. (Even if S is not orientable,. we still can define these two
families locally in a neighborhood of any point.) We will refer to each of these
families as congruences even though each spans only a null hypersurface rather than
an.open region of spacetime. The expansion 8, shear ltab, and twist tlJob = 0 of these
congruences are well defined, since all deviation vectors orthogonal to the geodesic
tangents k" are included.in the congruences. Let 1.£ be a null geodesic in one of these
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congruences. A point p ElLis said to be conjugate to S along IL if along ILthere
exists a deviation vector 1)" of the congruence which is nonzero on S but vanishes
at p. In analogy to proposition 9.3.4, we have

PROPOsmON 9.3.9. Let (M, gab) be a spacetime satisfying RaJ,kakb ~ 0 for all null
ka. Let S be a smooth two-dimensional spacelike submanifold such that the
expansion, 8, of, say, the "outgoing" null geodesics has the negative value 80
at q E S. Then within1lffineparameter A ~ 2/1801, there exists a point p
conjugate to S along the outgoing null geodesic IL passing through q.

In analogy to theorem 9.3.5, we also have:

THEOREM 9.3.10. Let S be a smoothtwo·dimensional spacelike submanifold and let
IL be a smooth causal curve from Stop. Then the necessary and sufficient
condition that IL cannot be smoothly deformed to a timelike curve connecting
S and p is that IL be a null geodesic orthogonal to S with no point conjugate to
S between S and p;

As a consequence of this theorem j and the results of chapter 8 w.e obtain the
follow~g theorem which will be used in the proof of singularity theorem 9.5.3.

THEoREM 9.3.11. Let (M. gab) be a globally hyperbolic spacetime and let K be a
compact. orlentable, two-dimensional spacelike submanifold ofM. Then every
p E J+(K) lies on a future directed null geodesic starting from K which is
orthogonal to K and has no point conjugate to K between K and p.

Proof. That p lies on a null geodesic from K follows from the remarks below
theorem 8.3.11. H this null geodesic were not orthogonal to K or had a conjugate
point, then by theorem 9.3.10 we would have p E r(K) and therefore p ft:.
J+(K). 0

9.4 Existence of Maximum Length Curves
In the previous two sections we established by means of "local" calculations

necessary criteria for a timelike curve to be a curve of maximum length between two
points (theorem 9.3.3) or between a point and a hypersurface ~ (theorem 9.3.5) as
well as conditions under which these criteria could not be met (propositions 9.3.1 and
9.3.4). In this section, we shall use global arguments involving compactness of the
spaces of causal curves C(p, q) and C(~, q) defined ill section 8.3 to prove existence
of maximum length curves in globally hyperbolic spacetimes. In the next section we
shall see that, under further hypotheses, these two sets of results lead to con
tradictions if all geodesics are complete, thereby producing the singularity theorems.

The length, '1', of a smooth (or even C 1) causal curve Abetween points p, q EM
with tangent TO = (8/at)O is given by the formula

(9.4.1)
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However, for the global arguments of this section, it is necessary to generalize this
notion of length to continUous causal curves between p and q in order that T be
defined for all curves in C(p, q). Let C(p,q) denote the subset ofC(p, q) consisting
of smooth timelike curves, with the topology induced by C(p,q). J1ten-with the
possible exception of cases where null geodesics connectp and~(p, -q) is dense
in C(p, q), i.e.~ except for certain null geodesics every continuous casual curve
can be expressed as a limit [in the topolm of C(p, q)] of a sequence ofcsmooth
timelike curves. If 'Twere continuous on C(l1, q), we could extend it to a continuous
function on all of C (p, q) by setting

T[#£] = lim T[A,,] ,........
where {A,.} is a sequence in C(p,q) which approaches the continuous causal curve
p. E C (p, q). However, as Figure 9.5 illustrates, T is not continuous on C(p, q).
Arbitrarily close in the topology ofC (p, q) to any smooth timelike curve we can find
a "zigzag" smooth timelike curve of length arbitrarily close to zero. Nevertheless,
we shall show below that T is upper semlcontinuous on C(p,q), i.e.; for each
AE C(p, q) given E > othere exists an open neighborhood 0 C C(p, q)of '\such
that for all A' E 0 we have T[A'] :iii T[A] + E. Given that Tis upper semicontinuous
on C(p,q), we can extend it to an ltppersemicontinuous function on C(p,q) as
follows. For #£ E C(p,q} and 0 C C(p,q) an open neighborhood of #£' we define

T[O] = l.u.b.{T[A]I'\ EO, ,\ E C(p,q)} , (9.4.2)

where "l.u.b." denotes the least upper bound. Then we define T[#£] by,

T[#£] = g.l.b.{T[O]IO an open neighborhood of #£}, (9.4.3)

where "g.l.b." denotes the greatest lower bound. Thus, the key fact that allows us
to extend the definition of T to C(p, q) is expressed by the following proposition.

q

P
Fig. 9.5. A smooth time1ike curve I.drom p to q. Arbitrarily close to p. in the
topology of C(p,q) is a smooth timelike curve p.' with total elapsed proper time
arbitrarily close to zero.
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PROPOSITION 9.4.1. Let W, gab) be a strongly causal spacetime. Letp, q EM with
q E J+(p). Then -r is uppersemicontinuous on C(p, q).

Proof. Let A E C(p, q). We parameterize Aby proper time and denote its tangent
by ua• Within a normal neighborhood of each point rEA, the spacelike geodesics
orthogonal to ua will form a three-dimensional spacelike hypersurface. Within a
sufficiently small open neighborhood U eM of A, these hypersurfaces will foliate
U; i.e., a unique hypersurface will pass through each point of U. On U, we define
the function F by setting F(p) equal to the proper time value of Aat the intersection
of Awith the hypersurface on which p lies. Then VaF is timelike everywhere in U,
and on A we have ua = - VaF, soVaF'VaF = -1 on A. Now, let P E C(p, q) with
p C U. We parameterize p by F and denote its tangent by va. Thus, by our
parameterization choice,we

We decompose va as

va = aVaF + ma

(9.4.4)

(9.4.5)

where ma'VaF = 0, and thus ma is spacelike. Contracting equation (9.4..5) with 'VaF
and using equation (9.4.4), we evaluate a and find

(9.4.6)

Therefore, we find

(9.4.7)

and thus

(9.4.8)

since ma is spacelike. Since VaF is continuous, given E > 0, we can choose a
neighborhood U' C U of Aso that (-VaF'VaF)-J/2 ~ 1 + E/-r[A] in V'. Then for
all p E C(p, g) contained in the open neighborhood 0' in C(p, q) defined by U',
we have

-r[p] = f (-v ava)J/2 dE' .~ -r[A] + E

which proves upper semicontinuity. 0

(9.4.9)

In section 8.3 we defined C(!"p) for a Cauchy surface!' in a glohally hyperbolic
spacetime, but, more generally, we may define C(!"p) analogously for any achronal
set !, in a strongly causal,spacetime~ Essentially the same argumeJ!ts as given above
establish that "is an upper semicontinuous function on the space C(!',p) of smooth
timelike curves from !, to p. Therefore, by the same argument as given above, one
can extend -r to an upper semicontinuous function defined <>p all of C(I,p).
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In the previous section, we showed that the necessary and sufficient condition for
a smooth curve to locally maximize the length between two points or a point and a
hypersurface was that it be a~esic without conjugate points. Now that we have
extended the definition of .,. to continuous curves, there is a possibility that a
continuous, nonsmooth curve between two points or a point and a hypersurface could
have length greater than or equal to that of any geodesic. However, this possibility
can be ruled out as follows. By direct calculation, one can prove that in any convex
normal neighborhood U, the unique geodesic '1 ~nnecting two causally related
points r, s E U has length strictly.greater than that of any other piecewise smooth
causal curve connecting those points (see proposition 4.5.3 of Hawking and Ellis
1973 for a proof). Therefore, by upper semicontinuity any cQntinuous causal curve,
JL, connecting r and s in U must satisfy 't[JL1;;i! T[ '1]. However,; ifequality held with
JL :(:: '1, let point q be such that q E JL but q f= 1'. Let '11, 1'2 be the geodesic
segments connecting r and q and q and s, respectively. Since by the above result 'Yl
maximizes the length between r and q, while 'Y2 maximizes the length between q and
s, we have "'[1'11 + .,.['YJ ~ "'[JL] = "'['1], which contradicts the fact that 'Y has
strictly greater length than any other piecewise smooth curve between r and s. Thus,
within any convex normal neighborhood, the unique geodesic connecting any pair
of causally related points has length strictly greater than that of any other continuous
causal. curve connecting the points. Thus, an arbitrary continuous causal curve
connecting any two points cannot be a curve of maximum length between those
points unless it is a geodesic, since if it failed to be a geodesic at any point, we could
deform it in a convex normal neighborhood of that point to obtain a longer curve.
Thus, in view of theorem 9.3.3 we have the following result. .

'I'HEoftEM 9.4.2. Let (M, gab) be a strongly causal spacetime. Let p, q EM with
q E r(p), and consider the length function "'defined on C(p,q). A necessary
condition for.,. to attain its maximum value at '1 E C(p, q) is that '1 be a
geodesic with no point conjugate to p between p and q.

Similarly, we have:

ThlEOREM 9.4.3. Let (M, gab) be a strongly causal spacetime. Let p E M, kt I be
an achronal, smooth spacelike hypersurface, and consider the lengthfunction
.,. defined on C(I,p). A necessary condition for .,. to attain its maximum value
at '1 E C(I,p) is that 'Y be a geodesic orthogonal to I with no point conjugate
to I between I and p.

The above results, of course, do not assert that.,. must attain a maximum value.
However, we conclude this section by proving two key results which show that a
maximum is always attained in globally hyperbolic spacetimes.

THEoREM 9.4.4. Let (M, gab) be a globally hyperbolic spacetime. Let p, q EM with
q E r(p). Then there exists a curve '1 E C(p, q) for which.,. attains its
maximum value on C(p, q). . -
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Proof. By theorem 8.3.9, C (p, q) is compact, and by proposition 9.4.1, l"is upper
semicontinuous. Hence, by a slight generalization of theorem A.6 of appendix A, 1"

is bounded and attains its maximum. 0

'nmoREM 9.4.5. Let (M, gab) be a globaUy hyperbolic spacetime. Let p E M and· let
~ be a Cauchy surface. Then. there exists a curve 'Y E C~,p) for which 1"

attains its maximum value on C (~,p).
Proof. Again. C(~,p) is compact and 1" is upper semicontinuous. 0

9.S SiDplarity Theorems
We now have developed the machinery required to prove some of the singularity

theorems. We shall give a complete proof of three theorems which establish the
existence of singularities in the sense of timelike or null geodesic incompleteness
under conditions relevant to cosmology and gravitational collapse. Then we shall
simply quote a fourth theorem that establishes the existence of singularities under
significantly weaker hypotheses.

The first theorem we shall prove can be interpreted as showing that if the universe
is globally hyperbolic and at one instant of time is expanding everywhere at a rate
bounded away from zero. then the universe must have begun in a singular state a
finite time ago.

THEoREM 9.5.1. Let (M, gab) be a globally hyperbolic spacetime with RabtGeb ~ 0
for till timeliketG, which will be the cllSe ifEinstein's equation is satisfied with
the strong energy condition holding for matter. Suppose there exists a smooth
(or, at leastC2)spaceli/ce Cauchy surface ~for which the trace ofthe extrinsic
curyature (for the past directed normal geodesic congruence) satisfies
K ~ C < 0 everywhere, where C is a constant. Then no past directed timelike
curve from ~ can have length greater than 3/1cl. In particular, all past
directed timelike geodesics are incomplete.

Proof. Suppose there were a past directed timelike curve, A, from ~ with length
greater than 311 C I. Let p be a point on A lying beyond length 311 C I from ~. By
theorem 9.4.5, there exists a maximum length curve 'Y fromp to~, which, clearly,
also must have length greater than 3/1 C I. By theorem 9.4.3, 'Y must be a geodesic
with no conjugate point between ~ ·and p. However, this contradicts proposition
9.3.4 which states that 'Y must have a conjugate point between ~ and p. Therefore,
the original curve A cannot exist. 0

The strongest unwanted hypothesis in theorem 9.5.1 is that the universe be
globally hyperbolic. Indeed. given only theorem 9.5.1, it might seem more reason
able to conclude that an everywhere expanding universe must fail to be globally
hyperbolic rather than that it must be singular. Since theorem 9.4.5 plays a critical
role in the proof, it might appear that the assumption of global hyperbolicity cannot
be eliminated. However, we now shall prove a theorem due to Hawking (1967)
which does remove this assumption. The main price paid for this removal is the
additional hypothesis that ~ be compact (Le., the universe is "closed") and the
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significantly weakened conclusion that only at least one past direct timelike geodesic
(rather than all past directed' timelikecurves) must be incomplete.

THEoREM 9.5.2. Let (M, gab) be a strongly causal 8 spacetime with Rab€G€b ~ Ofor
all timelilce €Q, as will be the case if Einstein'sequation is satisfied with the
strong energy condition holding for matter. Suppose there exists a compact,
edgeless, achronal, smooth spacelike hypersurjace 8 such that for the past
directed normal geodesic congruence from 8 we have K < 0 everywhere on S.
Let C denote the maximum value ofK, so K ~ C < 0 everywhere on 8. Then
at least one inextendible past directed timeli/ce geodesicfrom·8 has length no
greater than 3/1cl.

Proof. Suppose all past directed inextendible timelike geodesics from S had length
greater than 3/1 ci. Since the spacetime (int[D(S)], gab) satisfies the hypotheses of
theorem 9;5.1, all inexteDdiblepast directedtimelike geodesics from 8 must leave
int[D(S)}.Since8(S) is the boundary of D(S)(see propositionS.3.6), aU such
geodesics must intersect 8-(S) before their length becomes greater than 3/1 C I; ln
particular,.this implies thatH-(S) ", ~. We shall prove that 8-(S) must be compact
and tllenshow that thiseJeads to a contradiction.

The key step in proving compactness ofH-(S) is the demonstration that for each
p E 8-(S) there exists a maximum length orthogonal geodesic from 8 to p. First,
the length ofany causal curve from S toP E 8-(S) is bounded from above by 311 c I,
so the least upper bound, 'To, of the length of all causal curves from 8 to p exists. We
wish to find an orthogonal geodesic from S-top with length 'To. Let {A,,} be a sequence
oftimelike curves from Stop such that

lim· 'T[A,.] = 'To
"...,..

Choose qll E All with qll :;:. p such that the sequence {qll} converges to p (see Fig.
9.6). Sinceqll E rep), we have qll E int[D-(S)]. Hence, by theorem 9.4.5, there
exists a nonnal geodesic 'YII from 8 to qll which maximizes the length of all causal
curves from S to qn' Clearly, we have

lim'T[ 'YII] = 7'0
.....09 •

Let rll be the intersection point of 'Yn with 8. Since 8 is compact, there exists an
accumulation point r of the sequence {rll}' Let 'Y be the geodesic normal lo8
originating from r. Then, because of the continuous dependence ofgeodesics on their
initial point and tangent vector, 'Y must intersect H-(S) at p aild

7'['Y] = lim 7'['YII] = 7'0-'"Thus, we have found the desired timelike geodesic orthogonal to 8 which maximizes
the length;from 8 to p.

To prove the compactness of 8-(S), we show that every sequence {PII} in 8-(8)
has an accumulation pointp E 8-(S). Let {YII} be a sequence of maximum length

8. It has been shown by Hawking (1967) that the assumption of strong causality can be eliminated
(see problem 3).
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Fig. 9.6. A spacetime diagram showing a construction used in the proof of theorem
9.5.2.

orthogonal geodesics from S to Pll' We, now, in essence, repeat the argument given
at the end of the previ9us paragraph. Let rll be the in~section point of I'll with S,
and let f be an accumulati9npoint of {fll}' Let l' be the geodesic starting from r
orthogonal to S, and letp be the intersection point of l' with H-(S). Then p is an
accumulation point of {PII}' Thus, n-(S) is compact.

However, since edge(S) = ~, by theorem 8.3.5, H-(S) contains a future inex
tendible null geodesic. Since(M, gab) is strongly causal, by lemma 8.2.1 this is
impossible if H-(S) is compact. Thus, our assumption that all past directed inex
tendible timelike geodesics from S have length greater than 3lie I has led to a
contradiction., 0

The previous two theorems established timelike geodesic incompleteness in cos
mological contexts. The next theorem proves null geodesic incompleteness in a
context relevant to gravitational collapse. A compact, two-dimensional, smooth
spacelike submanifold, T, having the property that the expansion, fJ, of both ~ts

(Le., "ingoing" and "outgoing") of future directed null geodesics orthogonal to T is
e~rywhere negative is called. a trapped surface. In the extended Schwarzschild
solution, allspheres inside the black hole (region II of Fig. 6.9) are trapped surfaces.
As will be discussed further in chapter 12, it follows from this fact that trapped
surfaces must form in any gravitational collapse whose initial conditions are
sufficiently close to initial conditions for spherical collapse. The next theorem
which, historically, was the first general singularity theorem to be proven (Penrose
1965a)--shows that, under some further hypotheses, a singularity must occur after
a trapped surface has formed.

THEOREM 9.5.3. Let (M, gab) be a connected, globally hyperbolic spacetime with a
noncompact Cauchy surface I. Suppose Rab kOkb ~ 0 for all null k a

, as will be
the case if(M, gab) is a solution ofEinstein's equation with matter satisfying the
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weak or strong energy condition. Suppose, further, that M contains a trapped
surface T. Let 90 < 0 denote the maximum value of8for both sets oforthogonal
geodesics on T. Then at least one inextendible future directed orthogonal null
geodesic from T has affine length no greater than 2/190 I.

Proof. Suppose all future directed null geodesics from T have affine length ~
2/1901. Then we may define the map f+:T x [0,2/1900 -+ M by setting f(q,a)
equal to the point of M lying at affine parameter a on the "outgoing" null geodesic
normal to Tstarting at q. Similarly, we definef- for the "ingoing" geodesics. Since
T x [0,2/1901] is a compact set andf+ andf- are continuous, the images off+ and
f- and hence their union

A = f+{T x [0,2/190 I]} U f-{T X [0,2/190 I]}

must also be compact (see appendix A). However, by proposition 9.3.9 and theorem
9.3.11, j+(T) is a subset of A, and since j+(T) is closed, we conclude that j+(T)
is compact.

We show, now, that compactness of j+(n contradicts the existence of a non·
compact Cauchy surface I. Using lemma 8.1.1, we choose a smooth timelike vector
field til on M. Since j+(T) is achronal, each integral curve of til can intersect j+(T)
at most once, while every integral curve of til intersects I precisely once. Thus, we
may define a map l/J: j"1T) -+.~ by following the integral curves of til from j+(T)
to I. Let SCI denote the image, c1J(j+(T)], of j+(T) under l/J, and letS be pven
the topology induced by I. Then "': j+(T) -+ S is a homeomorphism. Since J+(T)
is cotnpact, so is S, and, hence, viewed as a subset of I, S must be closed. On the
other hand, since j+{T)is a CO·manifold (see theOrem 8.1.3), each point of j+(T)
bas at neighborhood homeomorphic to an open· ball in R3. Since l/J is a homeo
morphism, the same property holds for S, and, hence, viewed as a subset of I, S
must be open. However, since M is connected, I also must be connected (see
theorem 8.3.14). Therefore, since j+(T) +SJ, we must have S = I. However, this
is impossible since S is compact but I is noncompact. 0

Again, theorem 9.5.3 contains the unwanted hypothesis that (M, gab) is globally
hyperbolic. However, with some additional assumptions, this hypothesis again can
be eliminated by arguments similar to those given in the proof of theorem 9.5.2. We
shall not attempt to give these arguments here, but will merely quote a singularity
theorem of Hawking and Penrose (1970) which eliminates most of the unwanted
assumptions, referring the reader to that reference or Hawking and Ellis (1973) for
a proof.

'nmoREM 9.5.4. Suppose a spacetime (M, gab) satisfies thefollowing four conditions.
(1) Rabv"v b ~ 0 for all timeli/ce and null va, as will be the case if Einstein's
equation is satisfied with the strong energy condition holdingfor matter. (2) The
timelilce and null generic conditions are satisfied (see section 9.3). (3) No closed
timeli/ce curve exists. (4) At least one of the follOWing three properties holds:
(a) (M, gab) possesses a compact achronal set without edge {i.e., (M, gab) is a
closed universe], (b) (M, gab) possesses a trapped surface, or (c) there exists a
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point P E M such that the expansion of the future (or past) directed null
geodesics emanating from p b-ecomes negative along each geodesic in this
congruence. Then (M, gab) must contain at least one incomplete timelike or null
geodesic.

. As compared with theorem 9.5.2, the above theorem adds only the hypothesis that
the generic conditions are satisfied. However, it entirely eliminates the assumption
that the universe is expanding everywhere. Similarly, as compared with theorem
9:5.3, the above theorem adds only the generic condition plus the condition that
Rab ~Q~b ~ 0 for alltimelike vectors. Howe~et, it eliminates entirely the assumption
that (M, gab) be globally hyperbolic. Thus, theorem 9.5.4 has much wider applica
bility than the three previous theorems proven above. On the other hand, the conclu
sions of theorem 9.5.4 are sfightly weaker in that no information is provided con
cerning which timelike or null geodesic is incomplete.

Gannon (1975) has strengthened theorem 9.5.4 by adding a fourth alternative to
condition 4, namely that (M, gab) possesses a closed, achronal, edgeless set S which
is non-simply conJleCte(J9 and is "regular near infinity." Here "regular near infinity"
means that S can be expressed as a union of a nested family of sets, Wi (i.e., each
Wi satisfies Wi C Wi+I), such that (i) each Wi is compact, (it) its boundary, Wi, in
S is homeomorphic to a 2-sphere, (iii) S - int(Wi) is homeomorphic to S2 x R+,
where R+ = [O,~OO), and (iv) the expansion, 8, of the inward directed null geodesics
orthogonal to each Wi is negative everywhere on Wi. Except for the compactnesslO

of the Wi' the four conditions defining .asymptotic regularity are satisfied by all
asymptotically fiat hypersurfaces in.asymptotically flat spacetimes (see chapter 11).
Thus, in essence, Gannon's theorem shows that an asymptotically flat spacetime
satisfying conditions (1)-(3) of theorem 9.5.4. and which "initially" has appropri
ately nontrivial topology must develop a singularity. We refer the reader to Gannon
(1975,.1976) for further details and results.

Theorem 9.5.4 gives us strong reason to believe that our universe is singular. As
discussed in chapter 5, the observational evidence strongly suggests that our
universe-or, at least, the portion of our universe within our causal past-is well
described by a Robertson-Walker model (differing not too greatly from a k = 0
model), at least back as far as the decoupling time of matter and radiation. However,
in these models, the expansion of the past directed null geodesics emanating from
the event representing us at the present time becomes negative at a much more recent
time than the decoupling time. Thus, there is strong reason to believe that condition
4(c) of theorem 9.5.4 is satisfied in our universe. 11 Since we expect that conditions
(1)-(3) also are satisfied, it appears that our universe must be singular. Thus, it
appears that we must confront the breakdown of classical general relativity expected
to occur near singularities if we are to understand the origin of our universe.

9. See chapter 13 for the definition of simply connected.
10. A singularity theorem applicable to the case where the Wi are noncompact is given by Gannon

(1976).
II. This conclusion also can be drawn from much weaker assumptions; see chapter 10 of Hawking

and Ellis (1973).
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Problems
1. Let (M,gab) be a spacetime with an everywhere timelike Killing field E". Let p,
be an arbitrary timelike curve parameterized by proper time, 'r, and let u" denote the
unit tangent to p,. Define E = - u" E".

a) Show that ldE/d'rl ~ aB, where a denotes the magnitude of the acceleration
of p,.

b) Use the result of part (a) to show that for a timeJjke curve with bounded
integrated acceleration, i.~~ J a d'r < 00, Bcan change only by a finite amount. Use
this result to prove that IE. E"I is bounded along every timelike curve of bounded
integrated acceleration.

The condition J a d'r < 00 is satisfied by all world lines whose acceleration is
produced by a physically realizable rocket ship. Thus, part (b) shows that even if
observers are equipped with rocket ships, they cannot reach spacetime singularities
w~ the norm of the timelike Killing field diverges to -00, as occurs, for example,
in the negative IIlQS Schwarzschild solution; see Chakrabarti, Geroch, and Uang
(1983).

2. Let M be the torus (S 1 X S I) and define the Lorentz metric gab by (Misner 1963)
ds'2 =,cosx(dy'2 - dx'2) + 2 sinx dxdy, where the angular coordinates x,y have
rangesO ~ x ~ 2'7l'>c 0 ~ Y ~ 21T. Show that the closed curves defined by x = '1T/2
andx = 31T/2 are null geodesics with affine parameter, A, related to the y-coordinate
by! Ady/ dA = 1. Hence, show thlit if one traverses either of these curves infinitely
many times in the negative y-direction, only a finite amount of affine parameter is
used up. Note that when one parallelly transpOrts the tangent to the geodesic around
one cycle in the negative y-direction, the tangent comes back larger by the factor of
eft. Thus, this compact manifold with smooth metric is null geodesically incomplete.
Timelike and spacelike geodesics similarly wind around the torus infinitely many
times in the y-direction using up only a finite. amount of affine parameter as they
approachx = 1T/2 and x = 31T/2, so (M,gab) al$ois timelike and spacelike geodes
ically incomplete.

3. Eliminate the hypothesis of strong causality in theorem 9.5.2 as follows. Under
the assumption that all past directed time1ike geodesics have length greater than
3/lc I, it was shown that (a) forp E H-(S) there exists a maximum length geodesic,
'Yp, from p t<> S and (b) H-(S) is compact. Define T:H-(S) -+ R by T(p) = 'r['Yp},
(i) Show that T is continuous and, hence, achieves a minimum value on H-(S). (il)
Show that T strictly decreases along each future directed null geodesic generator of
H-(S). Thus, obtain a contradiction with (i).



TEN

THE INITIAL VALUE FORMULAnON

As discussed in chapter 4, general relativity asserts that spacetime structure and
gravitation are described by a spacetime (M, gab) where M is a four-dimensional
manifold aDd gab is a Lorentz metric satisfying Einstein's equation. In chapters 5 and
6 we obtained exact solutions of Einstein's equation which made highly successful
physical predictions concerning cosmology and the structure and gravitation fields of
spherical, bodies. However, much more is required in order that general relativity be
a physically viable theory. We see a wide variety of physical phenomena for which
general relativity must account. Thus, it is essential that there exist a correspondingly
wide class of solutions of Einstein's equation. For example, we know on physical
grounds that there is a large class of possible gravitational fields of isolated bodies.
Ifa correspondingly large class of solutions of Einstein's equation failed to exist, we
would be forced to reject general relativity as a correct·theory of nature.

A clo~y related issue concerns the fact that quite generally in classical physics
we have a great deal of physical control over initial conditions of systems. IT the
system then is allowed to evolve freely, its behavior is completely determined by the
initial conditions. For example, in ordinary particle mechanics we are able to control
the initial positions and velocities of the particles. Given these initial conditions, if
the system is permitted to evolve without outside interference, the dynamical evo
lution of the particles is determined. Similarly, as discussed in section 10.2, in
electromagnetism ws are able to arrange the initial val~es Qf the electric ~ld,j, and
the magnetic field, B, subject only to the constraints V . E = 41TP and V . B = O.
Again, given these initial conditions, the subsequent evolution of the system is
determined. Although our practical ability to control initial conditions in grav
itational problems is far more limited, it seems natural to believe that (at least over
regions much smaller than cosmological scales) we should, in principle, be able to
control the initial conditions of the gravitational field and matter distribution, perhaps
subject .to some constraints as in electromagnetism. Thus, unless general relativity
differs drastically from other theories of classical physics, it should permit a phys
ically reasonable specification of initial data. Furthermore, given these initial data,
Einstein's equation (possibly supplemented by additional equations for the matter)
should determine the subsequent evolution.

If a theory can be formulated so that "appropriate initial data" may be specified
(possibly subject to contraints) such that the subsequent dynamical evolution of the
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system is uniquely detennined, we say that the theory possesses an initial value
formulation. However, even if such a formulation exists, tltere remain further prop
erties that a physically viable theory should satisfy. First, in an appropriate sense,
"small changes" in initial data should produce only correspondingly "small changes"
in the solution over any fixed compact region of spacetime. If this property were not
satisfied, the theory would lose essentially all predictive power, since initial condi
tions can be measured only to finite accuracy. It is generally assumed that the
pathological behavior which would result from the failure of this property does not
occur in physics. Second, changes in the initial data in a region, S, of the initial data
surface should not produce any changes in the solution outside the causal future,
r(8), of this region. If such changes occurred, we should be able to use them to
propagate signals "faster than the speed of light." This would undermine the entire
framework of relativity theory. If a theory possesses an initial value formulation
which satisfies both of the above properties, we say that this initial value fotmulation
is well posed. Note, however, that we have not attempted to give a mathematically
precise definition of "well posed initial value formUlation" here siricethe precise
criteria depend on the type of theory considered.

The purpose of this chapter is to establish·· that general relativitY adnlits a well
posed initiaI value formulation. Thus, general relativity survives this rather stringent
test of the phrsiCal viability of the theory. "Ie begin· in section 10. t by discussing
the initial value formulation of Particle mechanics and the theory of the Klein
Gordon field in Minkowskisp~time.IIlsection 10.2 ",e analyze .the initi~ value
formulation of Maxwell's equations in Minkowski spacetime, which shares many
features analogous to general relativity with regard to initial constraipts and gallge
freedom. The initial value formulatiOn ofgen~ral relativity then is presented.

01lr analysis of Einstein's equation and other fi~ldequations will be based on
expressing them as ~ondorderh)'J>el'bolic systems. Analysis ofEinstein's equation
formulated as a first order hyperboliC system (Fischer and Marsden 1972)wiUnot
be discussed here. Inaddition,weshall.consider only initial vallie Jormulations on
spacelike Cauchy surfaces. An initial value formulation for general relativity on an
initial surface formed bytvvo intersecting nuU surfaces also can be given (Sachs
1962a; Muller zum Hagen and Seifert 1977).

10.1 Initial Value Fonnulatfonof Particles and Fields
A fundamental feature of NeWton'ssecQnd law of motion

F=ma
in ordinary, nontelativistic, particle mechanics is· that it relates the second time
derivative, a, Of the spatial positionaf a particle to the force, F, which-in usual
cases-is a known function of the position and velocity ofthe particles in the system.
Thus, for a system of particles interacting with themselves and/or external potentials
with forces possibly dependent on positions and velocities but not on higher time
derivatives of the particle positions, die laws of mechanics take the form

d
2
qi r( dql tiqll)

dt2 = ri qlo . . . , qll; -;it' . . . , -;it
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where i = 1, . . . , n and the number, n, of unknown positions is called the number
ofdegrees offreedom of the system. Equation (10.1.2) is a system of n second order
ordinary differential equations for the n quantities ql(t) , ... , q,,(t). From the theory
of such ordinary differential equations, it is well known (see, e.g., Coddington and
Levinson 1955) that, given arbitrary initial values for the particle positions
qlO' ... , q"o, and velocities (dqddt)o, ... , (dq"jdt>o at t = to there always exists
a unique solution of equation (10.1.2) over a finite time interval about to with these
initial values. Thus, ordinary particle mechanics pOssesses an initial value formu
lation. Furthermore, at a fixed time t the ~sitions ql(t), ... , q,,(t) are continuous
functions of the initial positions and velocities of the particles. Since the causal
propagation ofchanges in theinitial data is not an issue in nonrelativistic mechanics,
we conclude that the initial value formulation of nonrelativistic particle mechanics
is well posed.

The above simple example from particle mechanics contains the essential features
of initial value formulations found in all physically reasonable field theories. Con
sider, for example, the massive Klein-Gordon field, ~, propagating in Minkowski
~~~, .

a"aacP -.m2cP = 0 (10.1.3)

Choosing global inertial coordinates t, x, y, Z, we may write this equation in the form

a2cP a2cP a2cP a2cP
at2 = ax2 + iJy2 + az2 - m2cP

The mathematical structure of equation (10.1.4) is markedly different from that of
equation (10.1.2): Equation (10.1.2) is a system of ordinary differential equations
while equation (10.1.4) is a single partial diff~rential equation. Nevertheless, the
essential content of these equations is quite similar. They both tell us how to compute
the second time derivative of the unknown quantity (or quantities) at an instant of
time, given the value and first time derivative of the quantity (or quantities) at that
time. (Actually, for eq. [10.1.4] one does not even need to know acP/at to compUte
a2cP/at2,but in more general equations or with non-inertial time slicings, acP/at and
its first spatial derivatives would appear on the right side of the equation correspond
ing to eq. [10.1.4].) Indeed, we may heuristically view equation (10.1.4) as arising
from the limit as N -J> CXl of a system of N particles coupled by nearest neighbor
hannonic oscillator interactions (see, e.g., Goldstein 1980). In this limit, the discrete
index i goes over to the continuous label:; and the finite set of variables qi(t)
satisfying equation (10.1.2) goes over to the field variable f!>(:;, t) satisfying equation
(10.1.4).

The physical and mathematical analogy between equations (10.1.2) and (10.1.4)
suggests that Klein-Gordon theory should have the following initial value formu
lation: We arbitrarily specify the values of cP and acP/at on a spatial hypersurface I o
ofconstant inertial time, t = to. Then there should exist a unique solution ofequation
(10.1.4) having this initial data.

Indeed, it is not difficult to show that Klein-Gordon theory admits this formulation
when one considers only analytic initial data, Le., when f!> and af!>/at are analytic
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functions on 10. To see this, we observe that from such initial data, we can compute
all spatial derivatives of 4> and 04>1at at t = to. Equation (10.1.4) then gives 024>/at2

at t = to and by taking spatial derivatives of this equation, we may compute all the
spatial derivatives of 02<f>/at2at t = to in terms of previously computed quantities.
We then may differentiate equation (10.1.4) with respect to t, and thereby compute
034>/at3 and allits spatial derivatives at t = to. Continuing in this manner, we obtain
all derivatives of 4> at t = to. This enables us to write down a formal power serieS
solution for 4>. As proven by Cauchy and generalized by Kowalewski, fora wide
class of partial differential equations-or even systems of partial differential
equations-this power series has a finite radius of convergence. We state their
theorem for second order partial differential equations (i.e., equations containing
second partial derivatives of the unknown variables but none of higher order), but
it is easily generalized to equations of arbitrary order. A proof of this theorem.can
be found in most books treating partial differential equations (e;g., Courant and
Hilbert 1962).

THEoREM 10.1.1 (Cauchy-Kowalewski theorem): Let t, Xl, ... ,X",-I be coordi
nates ofR"'. Consider a system ofnpartial differential equations for n unknown
functions 4>1> . . . , 4>" in IR"', having the form

a2c/>.
at/ = F;(t, x a; 4>j; a4>J/at; 04» iJxa; a2cPj/ataxa; a24>J/ iJxaiJxp) ,(10.1.5)

where each F; is an analytic function of its variables. Letf;(xa
) and g;(x a

) be
analytic functions. Then there is an open neighborhood 0 of the hypersurface
t = to such that within 0 there exists a unique analytic solution of equation

(10.1.5) such that 4>;(10, xa) ;:;: Ji(xa) and. at; (to,xa) ;:;: g;(xa).

The. Cauchy-Kowalewski theorem shows that Klein-Gordon theory has an initial
value formulation, at least for analytic initial data. It shows that, in analogy to
particle mechanics, the initial.vallJe of q, and its time derivative may be specified
arbitrarily, and that these initial values det~rmine the subsequent evolution of 4>. It
thereby also shows that there exists a large class of solutions to the Klein-Gordon
equation, since there exist as many analytic solutions of equation (10.1.4) as tilere
are pairs of arbitrary analytic functions ofthe three s,patial variables x a

•

However, the Cauchy-Kowalewski analysis is not adequate for showing that the
initial value formulation of Klein-Gordon theory is well. posed. First, the analysis
does not establish continuous.Pependenceof solutions on iJlitial data in J1 suitabl~

sense. More precisely, we may.define a topology on the space of initial data which
makes two functions "close" if they and a finite number (or all) of their derivatives
are close~Forexample•.we may define a "distance" between two functionsfl andh
on the t =to iJlitial data surfac~ Io,by summing the least upper bounds (l.u.b.) of
the magnitude of (/1 - fz) and all its derivatives up to order k,

IIfl - f211 ;:;: l.u.b·lfl(x) - f2(X) 1
.tE~

I
akt+k2+k3(f1 - f2) I+ l.u.b.~ .tE~ axklayk2jjzk3

kto k2. k3
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where kt + k2 + k3 ~ k. We then may take the open balls in this nonn as a basis
of a topology (see appendix A). (Other reasonable choices of topology also can be
given.) In a compact region of spacetime, we may define a similar topology on the
solutions. The Cauchy-Kowalewski theorem gives no guarantee that-for any rea
sonable choices of topology on the space of initial data and the space of solutions
the map taking analytic initial data to the analytic solutions to which they give rise
is continuous.

Furthennore, the Cauchy-Kowalewski analysis cannot even deal with the issue of
causal propagation of the field. An analytic function is uniquely determined by the
values of it and all its derivatives at one point and, thus, in particular, is uniquely
determiiled by its value in an arbitrarily small open neighborhood of a point. This
implies that in the analytic case if we alter the initial data in .an arbitrary open region
U of the initial surface Ito, we must, in fact, alter the initial data over the entire
bypersurface Ito. Thus, to analyze the issue of causal propagation, we must consider
nonanalytic initial data. However, the Cauchy-Kowalewski analysis does not even
prove existence of a~Solution for C<¥>, nonanalytic, initial data.

Thus, to show that the initial value formulation of Klein-Gordon theory is well
posed, methods other than the Cauchy-Kowalewski analysis are required. We now
shall outline a proof that the initial value formulation of the massive Klein-Gordon
field in Minkowski spaeetime is well posed. Then we shall state some much more
general results obtained by this approach.

Let 4> be a smooth solution of equation (10.1.3). Then the stress-energy
momentum tensor of 4>,

1
Tab = i)a4Wb4> - "2 TJab (i)c4Wc4> + m24>2) (10.1.7)

(see eq. [4.2.20]), is conserved,

i)aTab = 0 (10.1.8)

Consequently, letting ~a = (a/ iJt)a denote the time translation Killing field orthogo
nal to the t = to hypersurface Ito, we have

(10.1.9)

[In fact, for any Killing field ~a and any conserved, symmetric Tab in curved space
time, we have va(Tab~b) = Tab va~b = 0 by eq. (C.3.1)] Let So be a (three
dimensional) closed ball on the initial hypersurface Ito. Let I 1 denote the hyper
surface t = tt (with tt > to), let K = D+(So) n r(It), and let St = D+(So) nIt.
Finally, let 52 denote the "null portion" of the boundary of K (see Fig. 10.1). We
integrate equation (l0.1.9) over K and apply Gauss's law, thereby obtaining

{to. 1. 10)

where l a is the future directed normal to S2' (The natural volume elements on So and
St are understood in eq. [10.1.10]; the volume element on the null surface S2 is
explained in appendix B.) However, it is not difficult to verify from equation
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So
Fig. 10.1. A spacetime diagram showing the region K over which eq. (10.1.9) is
integrated to obtain equation (10.1.1-0).

(10.1.7) that Tab satisfies the dominant energy condition, i.e., if v" is a future directed
timelike vector, then -T"bvb is a future directed timelike or null vector. Con
sequently, we have Tabl"~b ~ O. Hence, the second term on the left-hand side of
equation (10.1.10) is nonnegative. Writing out the other terms explicitly, we obtain

Ll [(~r + !Vcf>12 + m
2cf>2] ~ Lo [(ZJ + IVcf>12 + m

2cf>2] . (10.1.11)

Equation (10.1.11) is the key equation needed to demonstrate the existence of a
well-posed initial value formulation. First, it shows-without appealing to
analyticity-that there can be at most one solution in D+(So) with given initial data
(cf>, acf>/at) on So. Namely, if cf>1 and cf>2 both are C2 functions satisfying equation
(10.1.3) with the same smooth (but not necessarily analytic) initial data, then their
difference, I/J = cf>2 - cf>h would be a C2 solution of equation (10.1.3) with van
ishing initial data. Hence, for I/J, the right-hand side of equation (10.1.11) vanishes,
which implies (assuming m =#= 0) that I/J = 0 qp SI and hence (since II is arbitrary)
I/J = OthroughoutD+(So). [Hm = 0, we have VI/J = 0 and aI/J/at = OinD+(So) and
since I/J = 0 on So, this again implies that I/J ::: 0 throughout D+(So).] Similarly, I/J
also vanishes througllout D-(So). This result also shows that the second requirement
for a well posed initial value formulation is satisfied: A variation of the initial data
outside of So cannot affect the solution within D(So).

Equation (10.1.11) also shows that solutions depend continuously on the initial
data. To prove a useful form of this continuous dependence that also allows us to
prove existence of solutions for arbitrary smooth initial data, we proceed as follows.
For simplicity, we shall restrict attention to the massive case, m * O. First, by
differentiating equation (10.1.4) with respect to the coordinates xl! we see that all
partial derivatives of cf> also satisfy the Klein-Gordon equation. Hence, we obtain
inequalities ofthe form (10.1.11) bounding square integrals of higher space and time
derivatives of cf> on SI by the corresponding square integrals on So. Using equation
(10.1.4), we can express all terms on So containing more than one time derivative
in terms of the initial data cf>, rJcf>/at and their spatial derivatives on So. Thus, we
obtain inequalities of the form

1Icf>lblok S CI,klllcf>lllso,k + C2,klllacf>/atlllso,H (10.1.12)

where the norms 1/ cf>lblok and 1\1 cf>IIISo.k are defined by
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II </>1I~t.k = il {I </>12+ + ~ Iakl </>12}, (10.1.13)

JII </>lll~o.k = Lo {I </>12 + + ~ IDk/</> 12}, (10.1.14)

where ak; denotes a kth order partial derivative with respect to space and time
coordinates, while D k; denotes a kth order partial derivative with respect to space
coordinates only. (In eqs. [10.1.13] and [10.1.14] we take the sums of all such
partial derivatives of order less than or equal to k. The norms defined by eqs.
[10.1.13] and [10.1.14] are called Sobolev norms.) By integrating equation
(10.1.12) over t l from to to the maximum value oft for which D+(So) n It =f:: 0, we
obtain

II </>11o+(S).k :5 Ci,klll </>lIlso.k + C2,k III tJ</>1atlllso•H (10.1.15)

Now, we apply the following key result. ~t A be any subset of 1R" (with the
natural Euclidean metric) which satisfies the uniform int~rior cone condition, defined
as follows: There exists a cone of fixed height h and fixed vertex angle (J such that
for'eachp E A this cone can be mapped isometrically intoA·with vertex atp. Then,
for k > nl2 the II IIA.k norm of a smooth functionj(defined by eq. [10.1.13] with
the integration region taken to be A) bounds the numerical values ofjin A, i.e., there
exists a constant C· such that

l.~.lj(x)1 :5 ClljllA.k . (10.1.16)

A proof of this result is outlined in problem 1. Thus, taking A = D+(So) and k = 3,
we find using equations (10.1.15) and (10.1.16),

l.u.b. I</>1 :5 crill </>IIISo.3 + c2IUthPlatIllSo•2 • (10.1.17)
xED+(So)

Similarly, the numerical values of any mth order partial derivative of </> are bounded
in terms of th~ initial data by

l.u.b. 1alll</>1 :5 C1.... III</>lIIso.3+111 + c2.lII lIIa</>latIlISo.2+111 • (10.1.18)
xED+(So)

The same type of bounds hold, of course, for x E D-(S).
Equations (10.1.17) and (10.1.18) demonstrate the continuous dependence of </>

and its derivatives on the initial data ina strong sense. More precisely, if we define
a topology on solutions in D (So) via a norm of the form equation (10.1.6) with k = m
and define a toPOlogy on the initial data on So (or on allofIo) via the IlIlIIso.3+111 norm
or the norm (10.1.6) with k = m t 3, then equation (10.1.18) demonstrates that the
linear map from initial data to solUtions is bounded and, hence, is continuous. More
generally, the map from initial data on In to solutions in any fixed compact region
of spacetime is continuousinthese topOlogies.

Finally, we·use this ContinUity tq prove existence of a smooth solution </> for
arbitrary smooth initial data (<I>, a</>Iat) On In. We proceed by choosing a sequence
{(</>r, a</>rI at)}, i = 1,2, ... , of analytic initial data on I osuch that the functions
in this sequence and their spatial derivatiyes up to order (3 + m) converge uniformly
to (</>, a</>Iat) on So. By theorem 10.1.1 there exists a soluti?D </>'!' with initial data
(</>,!" a</>rI at) on I o. (Actually, theorem 10.1.1 as stated guarantees existence of a
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solution only in an open neighborhood of Io, but further analysis in the linear case
establishes that a solution exists throughout IR~.) However, according to equation
(10.1.18) [and the corresponding inequality for D-(So)], {4>r} and its first m deriv
atives must converge uniformly in D(So) to a function 4>/tl and its first m derivatives.
Choosing m ~ 2, we easily verify that this limit function 4>/tl must satisfy equation
(10.1.4). Thus, for allm ~ 2 we obtain a C/tl solution inD(So). However, we proved
above that there is at most one C 2 solution in D(So). Thus, 4>/tl = 4>/tI' iii 4> for all
m, m I ~ 2. Since 4> is C/tl for all m ~ 2, we have proven existence of a C" solution
throughout D(So). Since So is arbitrary, this solution exists on all of W.

Thus, we have established· that the massive Klein-Gordon field in Minkowski
spacetime has a well posed initial value formulation. Note that, unlike the Cauchy
Kowalewski analysis, the proof of a well posed initial value formulation made use
of detailed structure of the Klein-Gordon equation. In particular, the linearity of the
equation was used in a number of places, and its "wave equation" character was
essential to the construction of a conserved Tab with positive energy. If we changed
the sign of a24>/ iJt2 in equation (10.1.4), thereby turning equation (10.1.4) into a
fo~-dimensional "Laplace type" equation, we would not be able to construct such
a Tab, and the method of proof would break down even though the applicability of
theorem 10.1.1 would not be affected. Indeed, it is well known that equations of
"Laplace type" do not have a well posed initial value formulation.

The above results for the Klein-Gordon field can be significantly generalized. In
particular, we may replace the Klein-Gordon equation (10.1.3) in R' by any equation
on a manifold M of the form

gabV"Vbq, + A"V,,<p + B4> + C = 0 , (10.1.19)

where ~ is any derivative operator, A" is an arbitrary smooth vector field, Band C
are arbitrary smooth functions, and gab is an arbitrary smooth Lorentz metric such
that the spacetime (M, gab) is globally hyperbolic. (A second order linear partial
differential equation is said to be hyperbolic if and only if it can be expressed in the
form [10.1.19].) This equation will have a well posed initial value formulation for
initial data (4), n"~<p) on any smooth, spacelike Cauchy surface I, where nil is the
unit normal to I. There are only a few significant additional complications to the
proof of this mJlch more general result. Specifically, for equation (10.1.19) in
general we cannot construct a conserved x., satisfying the dominant energy condi
tion, but we may construct a Tab satisfying the dominant energy condition whose
failure to be conserved. can be bounded, SO that inequalities of the form (10.1.12)
(with Cl.t and C2,k now functions of time) still hold. Also, in the proof of existence,
if the coefficients gab,A",lJ, and C are nonanalytic, we must also approximate them
by analytic coefficients before we can appeal to theorem 10.1.1.

These results can be further generalized to systems of equations, resulting in the
following theorem, a complete proof of which can be found in Hawking and Ellis
(1973). ..

THEOREM 10.1.2•. Let (M, gab) be a globally hyperbolic spacetime (or a globally
hyperboJ;c regia" of an arbitrary spacetime) and let ~ be any derivative
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operator. Let I be a smooth, spacelike Cauchy surface. Consider the system oj
n linear equations for n unknown functions 4>1, . . . ,4>" of the form

~

gabV" Vb 4>, + }: (A'j)"V,,4>j + }: Bij4>j + C, = 0 (10.1.20)
j j

(Eq. (10.1.20] is referred to as a linear, diagonal second order hyperbolic
system.) Then equation (10.1.20) has a well posed initial value formulation on
I. More preCisely, given arbitrary smooth initial data, (4);, n"V,,4>,) for
i = 1, ... , n on I there exists a unique solution of equation (10.1.20)
throughout M. Furthermore, the solutions depend continuously on the initial
data in the sense described above for the Klein-Gordon equation in flat space
time. Finally, a variation of the initial data outside ofa closed subset, S, ofI
doe$c not affect the solution in D(S).

We remark: also that the differentiability assumptions on the coefficients gab, (Aij)",
and B/j as well as on I and the initial data 4>" n"V"q,,· on I can be weakened
significantly (see Hawking and Ellis 1973). For results on the initial value fonnu
lation of linear partial differential equations not of second order diagonal fonn, see,
e.g., Bers, John, and Schechter (1964).

Fuuilly we discuss generalizations of theorem 10.1.2 to some nonlinear systems
of equations. Very few results other than theorem 10.1.1 are known concerning the
initial value fonnulation of general, nonlinear systems of equations. However, for
second order differential equations which are qussilinear, i.e., linear in the highest
derivative terms, many of the results on linear systems apply locally. More precisely,
we call a system of n second-order partial differential equations for n unknown
functions 4>lt ... , q". on a manifold M a qussilinear, diagonal, second order
hyperbolic system if it can be put in the fonn

gab(x; 4>j; Vc4>j)V" Vb 4>, = F;(x; 4>j; Vc4>j) (10.1.21)

where ~ is any derivative operator, gab is a smooth Lorentz metric, and each F; is
a smooth function of its variables. (Eq. [10.1.21] differs from eq. [10.1.20] in that
gab is now permitted to depend on the unknown variables and their first derivatives,
and F; now may have nonlinear dependence on these variables.) For equations of this
type, we have the.following theorem due to Leray (1952):

THEoREM 10.1.3. Let (4)o)lt ..• , (4)0),, be any solution of the quasilinear hyper
bolic system (10.1.21) on a manifold M and let (go)ab = gab(x; (4)o)j; Vc(4)o)j)'
Suppose (M, (go)ab) is globally hyperbolic (or, alternatively, consider a globally
hyperbolic region of this spacetime). Let I be a smooth spacelike Cauchy
surfacefor (M, (go)ab). Then, the initial valueformulation ofequation (10.1.21 )
is well posed on I in the following sense: For initial data on I suffiCiently close
to the initial data for (4)o)lt ... , (4)0),,, there exists an open neighborhood 0
oj1 such that equation (10.1.21) has a solution, 4>1, ... , 4>", in 0 and (0,
'ab(x; 4>j; Vc4>j» is globally hyperbolic. The solution is unique in 0 and propa
gates causally in the sense that if the initial data for 4>:, . . . , 4>~ agree with
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that of 4>1> ... , 4>11 on a subset, S, of I, then the solutions agree on
o n D+(S). Finally, the solutions depend continuously on the initial data in the
sense described above for the Klein-Gordon field.

The basic idea of the proof of theorem 10.1.3 is to start by solving the linear
system of the fonn (10.1.20) obtained by replacin~ 4>j and Va 4>j by (4Jo)j and ~ (<Po)j
in gab and Pi in equation (l0,1.21). Then weoburln a solution (4)l)j by theorem
10.1.2. We substitute this s(}lutioninto the coefficients gab and Pi and repeat the
procedure. In this way, we obtain a sequence. (q,II)j of solutions to linear equations.
For initial data sufficiently close to that for (<Po)j it can be shown that this sequence
converges in a neighbQrhood of I and that theJimit satisfies equation (l0.I,2l) and
has the above tiesired properties. The proof Of this convergence and the other
properties quoted in theorem 10.1.3 is outlined in Hawking and Ellis (1973).

10.2 Initial Value Formulation of ~lIerai Relativity
In this section, we shall show that generalrelativity has a well posed initial value

formulation. We prove this by cllSting.Einstein's equation into theform (l0.1.21) for
which theorem 10.1.3 Jlpplies. Aswe shall see, the analysis of Einstein's equation
differs from that of the Klein·Gordon field in. that there are initial value constraints .
and in thatwe: will ~dto make a "ga.uge.choice,"J.e., a.choice of coordinates, so
that Eins~in 'sequation,t4kes the de~iredJopn.· In order to gain more insightinwthe
nature ofthese diff~nmce"it., we begin by analyzing the simpler problem of the initial
value formulation of Maxwell's·equations Jor the vecwr potential All in Minkowski
spacetime. As we shall $(!C, ~jnitialvalue··fornlldation()fEinstein's equation is
very closely analogous to the initial value formulation of these equations.

As discussed in~tion 4.2t tile· vacuum Maxwell's equations for the vector
potential Aa in Minkowski spacetime take the form

ua(uaAb --: a~a)= 0 (10.2.1)

At first glance,equation (l0.2.l) may appear satisfac::tory for detennining Aa;We
have four equati0J;18 for the fourunknQwncomponents of Aa• However, a closer
examinati9ll of equation (10.2.1) indicates the .possibility of seriou~ trouble, since
equation (10.2. I} is not of the fonn (l0.1.2() fOf.which a well posed initial value
formulation is known to e~ist, Indeed, if we choose a surface,~, ofconstant inertial
time, t = to, 88 our initial hypersurface, we see that the time component ofequation
00.2.1) contains no SCCOJ;ldtime derivatives~t all. In ordinary vector notation,this
equation is ... ,......

V2Ao - V· (3A/Of) = 0

i.e.,
........
V· E= 0 ,

....
where the electric field, E, is defined by

-+ ... -+ -+
E == VAo - uA/Of ,

(10.2.2)

(10.2.3)

(10.2.4)
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Le., in index notation,

(10.2.5)

where na is the unit normal to Io. Thus, equation (10.2.2) (or, equivalently, eq.
[10.2.3]) gives an initial value constraint on the initial data (AI" oA1'1at). Initial data
which fail to satisfy (1O.2.2) cannot possibly yield a solution of Maxwell's equa
tions.

The remaining three components of Maxwell's equations do contain second time
derivatives ofl the spatial components of Aa, so we can solve for jj2AI'/at2 . for
fL = 1,2,3 in the manner required by the Cauchy-Kowalewski theorem 10.1.1.
(Note, however, that even these three equations are not of the form [10.1.20] for
which a well posed initial value formulation is known to exist.) One might expect
that by differentiating the initial value constraint (10.2.2), one could end up with an
equation for o2Ao/ at 2 which then would permit an initial value formulation, at least
in the sense of theorem 10.1.1. However, this is not the case. We have the identity

(1O.2.6)

and this shows that the time derivative of equation (10.2.2) vanishes identically if
the spatial components of Maxwell's equations are satisfied. Hence, the complete
Maxwell's equations are equivalent to the spatial components of Maxwell's equa
tions together with the initial value constraint (1O.2.2). Thus, equation (10.2.1) is
an underdetermined system for Aa; we really have only three equations (plus an initial
value constraint) for four unkhown functions. Indeed, by theorem 10.1.1 it is not
difficult to see that in the analytic case we may specify Ao arbitrarily throughout the
spacetime and still obtain a solution. Thus Maxwell's equations do not admit an
initial value formulation for Aa in the straightforward, mathematical sense discussed
in the previous section.

However, this difficulty is not of a physical character. As already mentioned in
section 4.2, two vector potentials which differ by the gradient, oaX, of a function,
X, represent the same physical electromagnetic field. Thus, on account of this gauge
arbitrariness, Maxwell's equations cannot possibly be expecte4 to determine Aa from
initial conditions. On the other hand, we now shall show that the initial values ofAI'
and oAI'/at do uniquely determine a solution up to gauge, and that, physically,
Maxwell's equations do admit a well posed initial value formulation.

The most direct way of showing this is to choose an appropriate gauge for Aa and
show that Maxwell's equations for Aa in this gauge are of the form (10.1.20), thereby
yielding a well posed initial value formulation. We choose the Lorentz gauge

oaAa = 0 (1O.2.7)

(see eq. [4.2.31] above). Maxwell's equations in this' gauge are simply

jj40aAb = 0 (l0.2.8)

Equation (l0.2.8) together with equation (1O.2.7) is physically equivalent to the
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original system (10.2.1) in the sense that solutions of (10.2.1) can differ from
solutions of (10.2.7) and (10.2.8) only by a gauge transformation.

Given our initial data (Ap , aAp / at), we make a gauge transformation so that
a"A." = 0 on I o. Now, equation (10.2.8) implies that

a"aa(abAb) = ab(aaa"Ab) = 0 , (10.2.9)

and thus, by theorem 10.1.2, if equation (10.2.8) is satisfied everywhere, then the
gauge condition (10.2.7) also will be satisfied everywhere if and only if
abAb = a(abA,,)/at = 0 on I o• We already have ensured that aaAa = 0 on. I o, and
using equation (10.2.8), we see that the initial C()ndition a(abAb)/at = 0 is equiv
alent to the initial value constraint, equation (10.2.2). Thus, ifV. E= 0 on I o, then
for our gauge transformed initial data, equation (10.2.7) will be satisfied throughout
the spacetime ifequation (10.2.8) holds. Thus, we need only solve.equation (10.2.8)
with the given values of the initial data. However, we can do this because equation
(10.2.8) does have the form (l0.1.2Q) for which. a well posed initial value formu
lation has been established. Thus, by theorem 10.1.2, there exists a unique solution
of (10.2.8) for the given (new) values of the initial data. Furthermore, this solution
depends continuously on the initial data and has the desired domain of dependence
property.

To obtain a solution with the original values (AI" aAp / at) of the initial data, we
simply ''undo'' the gauge transfOrmation which made a"Aa .= 0 on I o• To show that
this solution· is physically unique, we note that two solutions of the original
Maxwell's equations (10.2.1) with identical initial data, can be brought by gauge
transformations into solutions of (10.2.8). with identical initial data. Since solutions
of (l0.2.8) with given initial data are. unique, this shows that our two solutions can
differ, at lll9st. by a gauge transformation. Thus, Maxwell'sequations in Minkowski
spacetime possess a well posed initial value formulation in this sense.

Indeed, ':'Ve ~y ref,2nDulate this result in a physically more satisfactory manner
as follows: Let E and B be spscified a~arbitrary smooth vector fields on I o, subject
only to the co~traints V· E = V' B = 0 on Io. Then there exists.a unique
SOlution, FDb , of Maxwell's equations~i~theseini.tial data•. Furthermore, FDb de
pends continuously on the initial data (E ,B), andFab atp E r(Io) depends only on
the initial data onJ'-(p) n.Io. This result can be proven by introducing a vector
potential, A". whose initial data on I o satisfies aaA" = 0 and reProduces the given

-+ -+
v!!!ues of E.. apd B .on ~o. (A particularly simple choice i~ to l;!ke Ao = 0,
aA/at = -E, choose A to be any solution of V x A = B, and set
aAo/at = V· it.) Then we simply apply the results of the previous paragraph to
construct a solution with the. desired properties. Finally, we prove uniqueness by
verifying that two different solutions, Aa and A~, of Maxwell's equations which
reproduce the given Eand Bon Io can be brought by a gauge transformation into
solutions of equation (l0.2.8) with the same initial data. Hence, by uniqueness of
solutions of equation (l0.2.8), Aa and A~ differ at most by a gauge transformation.
Thus, they produce the same F/Ib.

Thus, Maxwell's equations in Minkowski spacetime physically possess a well
posed initial value formulation. This result may be generalized to curved spacetime
(see problem 2).
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We tum our attention, now, to Einstein's equation in a vacuum, Gab = O. The first
issue to consider is the nature of the initial value formulation in this the<lry. In other
theories of classical physics we are given the spacetime background and our task is
to determine the time evolution of quantities in the background from their initial
values and time derivatives. However, in general relativity we are solving for the

)

spacetime itself. What should be the quantity or quantities to prescribe initially in
general relativity in order that spacetime structure be determined?

In order to answer this question, we must view general relativity as describing the
time evolution of some quantity. Let (M, gab) be a globally hyperbolic spacetime.
(We consider only globally hyperbolic spacetimes since the initial valueJormulation
should be relevant only in this case.) As proven in theorem 8.3.14, we can foliate
(M, gab) by Cauchy surfaces, It> parameterized by a global time function, t. Let na

be the unit normal vector field to the hypersurfaces It. The spacetime metric, gab,
induces a spatial metric (Le., a three-dimensional Riemannian metric) hab on each It
by the formula

hab = g~ + nanb (10.2.10)

Let ta be a vector field on M satisfying taVat = 1. We decompose ta into its parts
normal and tangential to It by defining the lapse function, N, and the shift vector,
Na, with respect to ta by

N = -tana = (naVat)-1

Na = habtb

(10.2.11)

(10.2.12)

(see Fig. 10.2).
We may interpret the vector field ta as representing the "flow of time" throughout

spacetime. As we "move forward in time" by parameter time t starting from the t = 0
surface I o, we go to the surface It. If we identify the hypersurfaces I o, It by the
diffeomorphism resulting from following integral curves of t a , we may view the
effect of "moving forward in time" as that of changing the spatial metric on an
abstract three-dimensional manifold I from hab(O) to habet). Thus, we may view a
globally hyperbolic spacetime (M, gab) as representing the time development of a
Riemannian metric on a fixed three-dimensional manifold. This suggests that we
view the spatial metric On a three"dimensional hypersurface as the dynamical vari
able in general relativity. (The lapse function, N, and shift vector, Na, are not

Fig. 10.2. A spacetime diagram illustrating the definition of the lapse function, N,
and shift vector N°.
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considered dynamical, since they merely prescribe how to "move forward in time."
Further motivation for viewing the spatial metric as the dynamical variable in general
relativity arises frbl;D the Hamiltonian formulation given in appendix E.) Hence, we
WQuld expect appropriate initial data to consist of a Riemannian metric, hab, and its
"time derivative" on a three-dimensional manifold I.

In section 9;3 above, we introduced the notion of extrinsic curvature as represent
ing a well-definedcnotion of the "time derivative" of the spatial metric on a hyper·
surface I embedded in spacetime. In equation (9.3.19), €Q was the unit tangent to
the congruence of timelike geodesics orthogonal to I. However, if nQ is any other
unit timelike vector field which is normal to I, then its derivative along a direction
tangential to I must agree on I with that of €Q, so we have

Kab = VQEb = hQc~€b

= hQc~nb

1
= 2£"hab

where the reader is asked to verify the last equality in problem 3. This generalizes
the formula for extrinsic curvature to nongeodesic normal slicings of spacetime. The
relation between Kab and the coordinate time derivative £ thab is given by equation
(E.2.30) of appendix E. Figure 10.3 illustrates the interpretation of Kab in terms of
the "bending" of I in spacetime.

The above considerations suggest that in general relativity, appropriate initial data
should consist of a triple (I, hab, Kab), where I is a three-dimensional manifold, he
is a Riemannian metric on I, and Kab is a symmetric tensor field on I. We shall show
below that given such initial data-subject to certain initial value constraints-there
exists a globally hyperbolic spacetime (M, gab) satisfying Einstein's equation which
possesses a Cauchy surface diffeomorphic to I on which the induced metric, equa
tion (10.2.10), is hob and the induced extrinsic curvature, equation (10.2.13), is Kllb•

Furthermore, this solution depends continuously on the initial data, satisfies the
desired do~ of dependence property, and is unique in a sense made precise
below.

First, however, we establish some useful relations between the spacetime metric,
derivative operator, and curvature, and the corresponding qqantities they induce on
a spacelike hypersurface I embedded in M. We already noted that the spacetime

Fig. 10.3. A spacetime diagram illustrating the notion of the extrinsic curvature of
a hypersurface I. The dashed arrow at p represents the parallel transport of the
normal vector. nG

, at q along a geodesic connecting q to p. The failure of this vector
to coincide with n G at p corresponds intuitively to the bending of I in the spacetime
in which it is embedded. The fonnula KGb = hG eVen" shows that KGb directly
measures this failure of the two vectors at p to coincide for q near p.
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metric gab induces a Riemannian metric hab on I by equation (10.2.10). However,
by theorem 3.1.1, hab uniquely determines a natural derivative operator on I, which
we denote as Da• Furthermore, the derivative operator, Da, on I gives rise to a
curvature tensor (3)Rabc

d on I. We obtain, now, formulas relating Da and (3)Ral>/ to
four-dimensional quantities.

Let va be a (spacetime) vector at a pointp E I. We may uniquely decompose va

into components tangent to and perpendicular to I via

va = V.J.na + vll (10.2.14)

where n& is the unit normal to I and vnna =O. If V.J. = 0 so that va = vii, we may
view va as a vector lying in the tangent space to I at p. The condition that V.J. = 0
is equivalent to .

va = hal>vl> (10.2.15)

with hab given by equation (10.2.10) and the first index of hab is raised by gab. More
generally, we may view a spacetime tensor Tal'" akl>l . "I>z at p E I as a tensor over
the tangent space to I at p if

(10.2.16)

Conversely, any tensor defined at point p on the manifold ~ uniquely gives rise to
a spacetime tensor at p (Le., a tensor over the tangent space to Matp) which satisfies
equation (10.2.16). Note that hal> plays the role of a projection operator from the
tangent space to M at p to the tangent space to ~ at p.

Let r al ' ""*1>1" '1>, be a tensor field on the manifold ~. If we view Tal'" "*1>1' .. I>, as a
spacetime tensor satisfying equation (10.2.16), we still cannot ·define ~ T"I ... "*1>1" '1>/

since in order to calculate this quantity we would need to know howT"I"'''bl'''I>,
varies as we move offof ~. However, hdc~Tal ... akl>l' .•'I>z is wen defined since for this
quantity, no derivatives in ditections pointing out of ~ are taken. This tensor need
not .satisfy equation (10.2.16), b~t we;canproject its indices using ha

b to obtain a
tensor fieldon ~. Then, we have the following result.

LEMMA 10.2.1. Let (M,gab) be a spacetime and let~ be a smooth spacelike hyper
surface in M.l.et ~denote the induced metric on ~, equation (10.2.10), and
let Do denote the derivative operator associated with hab (see theorem 3.1.1).
Then Da·isgiven by the formula

(10.2.17)

where.v.r is the <ienvative ()perator aSsociated with gab'
Proof. It is ~traig))tforw~d to venfy tharDa•. defilled by eq~ation (10.2.17).

satisfies the properties (1)-(5) of the4efillition pfd<rrivative opePl.tor given in section
3.1. Furthermore. we have

(10.2.18)

since Vdge/ = 0 and habn" = O. Thus. Da is the unique derivative operator associated
with hab• 0
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From equation (10.2.17) one can derive relations between the curvature (3)R. d of
~ and the spacetime curvature R.d. If tlJa is a dual vector field on ~, we have

(3)R.,,/tlJd = DaD"tlJc - D"DatlJc (10.2.19)

However, we have

DaDbtlJc = Da(hbdhc ·Vd<d.)

=h/hb'hck'Vt(h/hk·VdtlJ.)

= h/hJ/h/'VtVdtlJ. + he" KabndVd<d.

+~dKacn'Vd(l). ,

where we have used the fact that

h/h/Vbhd' = habh/Vb(gd' + nan") = Kacn' (10.2.21)

Now, the middle tenn on the right-hand side of equation (10.2.20) vanishes when
antisymmetrized over a and b. Furthennore, we have

hbdn·Va(l). = hbdVd(n·w.) - hbdw.Vdn" = -Kb"w". (10.2.22)

Putting together all these results, we obtain

(3)R.d = h/hb'hckhdiRr,ti - KacKbd + KbcKad

A similar calculation (problem 4) shows that

DaKab - DbKaa = Rcdndhcb (10.2.24)

Equations (10.2.23) and (10.2.24) are known as the Gauss-Codacci relations.
We tum, now, tb the analysis of the vacuum Einstein's equation. We will give

initial data (he, Kab) on a three-dimensional manifold ~and attempt to construct a
g1obaI1y hyperbolic spacetime (M, HaJJ) for which ~ is a Cauchy surface on which the
initial data are induced. Our strategy is towrlte down Einstein's equation for the
metric componentS, g",,,, in a local coordinate system {Y"'} with the time coordinate,
t, chosen so that the t = osurface corresponds to ~ (or, at least, that portion of 1:
covered by the coordinate system). By casting the equations in the form (10.1.21),
we will use theorem 10.1.3 to prove local existence of a solution with the desired
properties. Then we sbaII outline how to "globalize" our local results to obtain the
finaI conclusion, stated as theorem 10.2;2 below.· .

The components of the Einstein tenSor, G"'", can be expressed in tenns of coordi
nate derivatives of the metric tensor components, g",,,, by the methods of section
3.40. Einstein's equation in vacuum, Gab = 0, yields a system of 10 second-order
partial differentiai'equations for the ten unknown metric components. Furthennore,
these equations have a quasilinear fonn; i.e., they are linear in the second derivatives
of the metric. Explicitly, from equations (3.4.5) and (3.1:30) we have

1
R",,, = - '2 ~ gafj{-2ofjo("g",)a + OaOfjg",,, + o",o"gafj} + F",,,(g, ag)

a.fj

and thus

(10.2.25)
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1
G,.." = R,.." - 2g,.."R

1= - 2L ga~{-2o~a("gl')a + aao~g,.." + Ol'o"ga~}
a.~

1 -+2 L gl'"g~gpu{-a~apg(7Q + aaa~gpu} + FI',,(g, ag) (10.2.26)
~~,~a '

where F and Fare nonlinear functions of the metric components ga~ and their first
derivatives. However, the right-hand side of equation (10.2.26) is not of the form
(10.1.21). Indeed, from equation (10.2.26) one may show (problem 5) that the
equations

L G,.."n" = 0

"
(10.2.27)

(where nQ is the unit normal to the t = constant surfaces) contain no second time
derivatives of any of the metric components; Le., these components of Gab = 0 at
t = 0 depend only on the initial data. Thus, the&e equations provide initial value
constraints, in close analogy with equation (10.2.2) in the electromagnetic case. We
can express these equations in coordinate invariant form by using the Gauss-Codacci
equations (10.2.23) and (10.2.24). From equation (10.2.24), we obtain the initial
value constraint,' .

o= hbQ~nc = hbQRbenc = ~KbQ - DQKbb (10.2.28)

In addition, we have

RQbcdhach bd == RQbcd(gac + nQnC)(gbd + nbnd)

= R + 2RacnQ nC

(10.2.29)

Thus, from equation (10.2.23) we obtain the additional constraint,

0= GabnQnb

= 1{(3)R + (KQa)'l - KabKab} (10.2.30)

Thus, equations (10.2.28) and (10.2.30) are~ initial value constraint equations of
general relativity expressed in a form analogousto equation (10.2.3). We shall return
briefly to discuss some ptoperties of these equations at the end of this section.

In~ electromagnetic case, the identity (10.2.6) implied that if the constraint
(10.2.3) is satisfied initially and the spatial components of Maxwell's equations are
satisfied everywhere, then the constraint also is satisfied everywhere. A completely
analogous result applies in general relativity. As a consequence of the Bianchi
identity,

VQGab = 0 (10.2.31)

if the constraints (10.2.28) and (10.2.30) are satisfied initially and the spatial com
ponents of Einstein's equation are satisfied everywhere, then the constraints also are
satisfied. To show this, we note that equation (10.2.31) relates the time derivative



(10.2.33)
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of the components ~ GI-'"n ", to non-time differentiated components of GI-''' and their
spatial derivatives. Having solved the purely spatial components of Einstein's equa
tion and obtained a solution, gl-'''' we may set the spatial components of GI-''' equal to
zero in equation (10.2.31) and view the metric components gl-''' as known functions,
thus making equation (10.2.31) a linear, homogeneous system of four first order
equations for the four unknown components ~ GI-'"n ". It then follows from the theory
of first order partial differential equations (see, e.g., Courant and Hilbert 1962) that
if these components vanish initially, they must vanish everywhere.

Thus, Einstein's equation Gd/J = 0, is an.UJ)derdetermined system of equations for
the metric components gl-'''' We have only six evolution equations (namely, the
purely spatial components of Gab = 0) for 10 unknown metric components. How-
ever, as in the Maxwell case this underdetermination is not physical. It results from
the redundancy in the description of spacetime geometry by metric components, gl-''''
As discussed in appendix C, if 4>:M -'toM is a diffeomorphism, then (M,gd/J) and
(M,4>*gd/J) represent the same physicalspacetillle. Since the coordinate basis com",
ponents of gd/Jand 4>*gab are related by the c:oordipate transformation associated with
4>, any two sOlutions of Einstein's eqmltion. whos.e coordinate basis metric colll
ponents are relat~ by the tensor transformation law (2.3.8) represent the same
physical solution. Since four arbitr~ functions appear in the transformation law,
roughly speaking there should be only six "nongauge" functions in the 10 metric
components gl-'''' Thus! it is plausible that Einstein's equation containsthe correct
number of evolution equations, and that a wen posed initial value formulation exists.
We shall prove that this is the case by introducing-in close analogy.with our
treatment of Maxwell's equations-a convenient choice of "gauge" (i.e., coordi
nates) for which Einstein's equation has the fOrID (10.1.21). .

We shall employ harmonic coordinates, x"", I.e., coordinates which satisfy

HI-' !5 v"vaxI' = 0 00.2.32)

In a given spacetime (M, gM)' we can construct harmonic coordinates in a neigh
borhqod of that portion of ~ covered by our original set of coordinates {yl-'} as
follows. For II. = 0, 1,2, 3 we give {yl-'} and its normal derivative on~ as initial data
for ~tion (10.2.32) (which is of the form [10.1.20] and thus possesses a well
posed initial value formulation). Since the dual vectors {v"yl-'} are linearly indepen
<knt on 1:, th~solutions {x""} wiIlhave {Vaxl-'} linearly independent in a neighborhood
of 1: in M, so {x lL} wjl~ yield a loCal coordinate system. Thus, there is no loss of
genet;A1ity in assuming.local existen~.of harmonic coordinates.

Writing out the coordinate basis expression for equation 00.2.32) using the
formulas of section 3.40, we find that thebarmoniccoordj.pate condition takes the
furm· .

Io = H"" = ~ y:::; Oa[Y=g ga~o~xl-']
t1t.~ g

I=~ Y=g Oa[Y=g gal-']

1=~ [aagal-' + 2gal-' ~ gPUOagpu]
a P.U
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Using equation (10.2.33), we see that most of the second derivative terms in equa
tion (10.2.25) can be reexpressed in terms ofH'" and lower derivative terms, and thus
in harmonic coordinates the vacuum Einstein equation becomes

a

1 "= -"2~ gafjoaOfjg",,, + F",,,(g, og) (10.2.34)
a.fJ

where the superscript H on R:" denotes that this expression for the Ricci tensor is
valid only for harmonic coordinates. Thus, Einstein's equation is equivalent to the
system (10.2.34), together with the harmonic coordinate condition (10.2.32) or
(10.2.33) (Choquet-Bruhat 1962). Equation (10.2.34) is known as the "reduced
Einstein equation." The key point is that it is of the form (10.1.21) for which theorem
10.1.3 applies.

We now are in a position to prove local existence of a solution to Einstein's
equation for initial data sufficiently near that of flat spacetime. Let the Riemannian
metric hob and the symmetric tensor field Kob be given on ~ satisfying the constraint
equations (10.2.28) and (10.2.30). Choose a coordinate system on (a portion of) ~
and let h,.." and K,.." denote the coordinate basis components of hob and Kob. We
prescribe on ~ initial data (g",,,, og",,,!at) such that g",,, = h",,, for 11-, v=: 1,2,3, and
such that the extrinsic curvature computed from these initial data using equation
(10.2.13) is Kob • A particularly simple choice is to take goo = -1, go", = 0 for
II- = 1,2, 3, and og",,,/Ot = K,.." for 11-, v = 1,2, 3. Since ogo,..!Ot for II- = 0, 1,2, 3
is undetermined by these requirements, we may specify ogo",!Ot such that H'" = 0
on ~ (see eq. (l0.2.33D. If this initial data set is sufficiently near that of flat
spacetime, then according to theorem 10.1.3 we can solve equation (10.2.34) in a
neighborhood of the portion of ~ covered by our original coordinates, thereby
prodU£ing a globally hyperbolic spacetime with this portion of~ serving as a Cauchy
surface. This .solution of equation (10.2.34) will be a solution of Einstein's equation
if H'" = 0 in this neighborhood. To prove this is the case, we-note ~t the Einstein
tensor G",,, in arbitrary coordinates can be expressed in terms of R:,,(defined by eq.
[10.2.34]) and HP- (given by eq. [10.2.33]) via

G",,, = R:" - ~ RHg",,, - ~ {galp.o"jHa - ~ g",,,oaHa} . (10.2.35)
a

Since ~G",,,n" = 0 on ~ and H'" = 0 on ~, equation (10.2.35) implies that
aH"'!Ot = 0 on ~ if equation (10.2.34) is satisfied. Furthermore, when equation
(10.2.34) is satisfied, the Bianchi identity yields

1o = L V"'Gp." = - ~ gPl'Vp[galp.o"jHa - "2 g,.."oaHa]
'" p,,,,.a

= - L ~ ga"gPIJ.opo",Ha + {lower order terms linear in Ha} (10.2.36)
p.p..a

Thus, equation (10.2.36) (after multiplication by gAIl and summation over v) takes
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the form (10.1.20) for which a unique solution exists according to theorem 10.1.2.
Since H'" ::;: aH"'jiJt ::;: 0 initially, this proves that H'" ::;: 0 throughout the region
where a solution to equation (10.2.34) exists. Thus, we have established local
existence of a solution of Einstein's equation for initial data sufficiently near that 01
fiat spacetime. Furthermore, theorem 10.1.3 shows that the solution depends con
tinuously on the initial data and has the desired domain of dependence property.

The requirement that the. initial data be "sufficiently near" that of fiat spacetime
can be removed by the following trick which uses the idea that any curved geometry
appears "nearly fiat" when examined on a sufficiently small scale. Suppose initial
data (g",,,. ug",";at) which are not "sufficiently small" are given. By a coordinate
transformation on ~, we may assume that g",,, ::;: diag(-1, 1, 1, 1) at a point p E ~

and thatp lies at the origin of coordinates, x'" ::;: O. Let A E lR. Suppose we scale
the initial data by (g",,,, agp."jat) ~ (A-28",,,, A-2ag",,,/at), and then make the coordi
nate transformation x'"~ x'''' ::;: A-IX'" for II. ::;: 0,1,2,3. From the tensor trans
formation law (2.3.8), we see that under this combined transformation, the initial
data become

g~,,(x') ::;: g",,,(Ax'), a~~" (x') ::;: A a~,,(Ax')'

where x' denotes the new spatial coordinates on ~. As A~ 0, we see that the ~w
initial data and their derivatives becqme arbitrarily close to those of d~ta for fiat
spacetime. 11:ms, there exists Jl (sufficiently small) Ao such that we can obtain a
solution, g~,,(X') to Einstein's equation in a neighborhood ofp for the new initial data
with A ::;: An. The metric g~,,(An1x) then solves Einstein's equation in a ne~ghborhood
of p with.the original initi~data.

~al uniqpeness qfsoluti~s with given initial data (hab ,Kab)can be proven as
follows. Let (ON, i!J,) be the spacetime solution of Einstein's equation constructed
using hannonic coordinates from the ini~ data (i!", ai!"jiJt) in the manner de
scribed above.. I..,et (0, gal!) be another solution of Einstein's equation (not necessarily
in harmonic coordinates) which covers the same portion of~ as (ON, i!J,) and indqces
the saine initial data (hab.Kab) on ~. We wish to find a diffeomorphism 1/1 from a
neighborhood of~ in 0 to a neighborhood of ~ in ON such that 1/1 takes gab into ~,
i.e., f/J*gab ::;: ~. We construct 1/1 as follows. Since gab and i:J, induce the same initial
data on ~, it can be verified that there exists a diffeomorphism </> such that the
coordinate components of </> *gab and its time derivative on ~ agree with the initial
data~, ai!,,/at)of the solution i!J,. (In fact, there are many such diffeomorphisms,
since </>can be arbitrary away from ~.) We then may use </>-1 to bring the coordinates
of ON into O. We use the initial value and time derivative of these coordinates on
~ as initial data for a solution of equatiOn (10.2.32) in 0, thereby constructing
harmonic coordinates in O. Using these harmonic coordinate labels, we define 1/1 to
be the map which takes a point in 0 to the point of ON with the same values of the
harmonic coordinates. (In general, of course, 1/1 will be defined only on a neigh
borhood of ~ in 0 and will map only onto a neighborhood of ~ in ON.) Then, in this
neighborhood in ON the hannonic coOrdinate components of I/I*gal! will satisfy
equation (10.2.34) and will have the same initial data on ~ as i:J,. Hence, by theorem
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10.1.3 we must have",·gab = ~ in a neighborhood of~, which is the desired local
uniqueness result.

We outline, now, how to "globalize" these local existence and uniqueness results.
We proved above that for p E ~ there exists a solution (0, gab) of Einstein's
equation into which a neighborhood of ~ containing p caD be embedded so that the
given initial data set is induced on this portion of~. To show that there is a solution
of Einstein's equation containing all of~, we cover ~ by neighborhoods for which
local solutions exist. Using the paracompactness of ~ (see appendix A), we can
ensure that these neighborhoods have only finite overlap at each point. Using the
local uniqueness result proven above, it follows that for each p. E ~ we can find a
globally hyperbolic spacetime (0, gab) containingp (and with a portion of ~ serving
as a Cauchy surface) which can be isometrically mapped into every local solution in
the above Jamily which-contains p. By using the embeddings of the spacetimes
(0, gab) into the local solutions to make identifications, we can consistently "patch
together" the (0, gab) to construct a spacetime (M, gab) which solves Einstein's
equation, which contains all of ~,and which.induces on ~the given initial data.
Furthermore, this spacetime will be globally hyperbolic with Cauchy surface ~.

The spacetime (M, gab) constructed above clearly is not unique since any proper
open subset ofM containing ~ is another solution of Einstein's equation inducing the
same initial data on ~. However, we can consider the set ;t of all globally hyperbolic
spacetimes modulo diffeomorphisms which are solutions of Einstein's equation and
into which ~ with the given initial data can be embedded as a Cauchy surface. For
two spacetimes (M1, gfd,), (M2 ,tab) in ;t., we say (Ml, g:u,):2: (M2, g~)if (M2, g~}can
be isometrically mapped into (M1

, g:u,) keeping the Cauchy surface fixed. This
relation yields a "partial order" on ;t. [Here, a partial order on an arbitrary set S is
a relatiQtl between elements satisfying, for all a, b, c ES: (i) a ~ a, (ii) a ~ b and
b ~ c implies a ~c, and (iii) a ~. b andb ~ a implies a = b. The word "partial"
refers to the fact that " ... ~ " need not be defined for all pairs of elements.] Now, for
any partially ordered set S, a subset T C S for which the relation ~ is defined
between all pairs of elements is said to be totally ordered. An upper bound for T is
an element b ES such-that b 2: a for all a E T. Zorn's lemma (which is equivalent
to the axiom of choice) asserts that if every totally ordered subset of S has im upper
bound, then S has a maximal element, i.e., an element m E S such that, for all
c E S, the relation c ~ m implies c =m. In our case, given any totally ordered
subset fJ of ;t, we obtain an upper bound by taking the union of all spacetimes
occurring in fJ and then identifying points via the isometric embedding maps. Hence,
by Zorn's1emmathere exists a maximal element of ;t, i.e., a spacetime (Mgab) which
cannot be isometrically mapped into any other spacetime in ;t. In general; Zorn's
lemma implies existence of a maximal element, but not its uniqueness. However, in
our caset ifwe had a spacetime in ;t which could not be isometrically mapped into
(M,gab), then it can be shown (Choquet-Brohat and Geroch 1969) that we could
''patch'' thetwospacetimes together to produce a "larger" solution, in violation of
the maximality of(M, gab). This implies that (M, gab) is the unique spacetime having
the property that every globally hyperbolic spacetime with the given initial data on
the Cauchy surface ~ can be isometrically, mapped into (M,gab)'
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Thus, putting together all the results proven or outlined above, we arrive at the
following theorem.

THEoREM 10.2.2. Let ~ be a three-dimensional Coo manifold, let hab be a smooth
Riemannian metric on ~, and let Kab be a smooth symmetric tensor field on 1:.
Suppose ~ and Kab satisfy the constraint equations (10.2.28) and (10.2.30).
Then there exists a unique Coo spacetime, (M, gab), called the maximal Cauchy
developmentof(~, hab,Kab), satisfying thefollowingfourproperties: (i)(M, gab)
is a solution of Einstein's equation. (ii) (M, gab) is globally hyperbolic with
Cauchy surface ~. (iii) The induced metric and extrinsic curvature of~ are,
respectively, hab and Kab . (iv) Every other spacetime satisfying (i)-(iii) can be
mapped isometrically into a subS6t of (M, gab). Furthermore, (M, gab) satisfies
the desired domain ofdependence property in the following sense. Suppose (~,

hab, Kab) and (~', h:.b, K:v,) are initial data sets with maximal developments
(M, gab) and (M', g:v,). Suppose there is a diffeomorphism between S C ~ and
S' C ~' which carries (hab, Kab) on S into (h:v" K;") on Sf. Then D (S) in the
spacetime (M, gab) is isometric to D (S') in the spacetime (M' ,g:v,). Finally, the
solution gab on M depends continuously on the initial data (~,Kab) on ~. (A
precise definition of the topologies on initial data and solutions which makes
this map continuous is given in Hawking and Ellis 1973.)

Note that it may be possible to extend the "maximal development" (M, gab), Le.,
isometrically map it into a proper subset of another spacetime. Theorem 10.2.2
asserts only that any such extension cannot have:I as a Cauchy surface. It also should
be noted that theorem 10.2.2 gives no infortnation as to the "size" of (M, gab), other
than the fact that it is maximal in the sense of property (iv). Indeed, the singularity
theorems of chapter 9 show that in many cases (M, gab) cannot be geodesically
complete. In particular, theorem 9.5.1 gives a stringent limit on "how large" (M, gob)
can be for initial data with K lA

a 2:: C > O. On the other hand, recently it has been
shown (Christodoulou and O'Murchadha 1981) that for asymptotically flat initial
data (see chapter 11) the maximal development is "large enough" to include all
"boos4Xl"hypersurfaces in the asymptotic region.

Aside from showing that general relativity has the physically desirable property of
possessing a weUpOsed initial value formulation, theorem 10.2.2 also is very useful
in that it puts .globaIly.hyperbolic spacetimes (M, gab) satisfying Einstein's equation
into correspondence with initial data sets (:I, hab,Kab) satisfying the constraint equa
tions. [The association of spacetimes with initial data sets, of course, is not one-to
one; many distinct initial data sets give rise to the same spacetime (M,gab), rotTe

sponding to the freedom of choosing a spacelike Cauchy surface in M.] It usually is
far easier to solve the constraint equations on ~ than to solve Einstein's equation on
M. Thus, for example, in arguments involving existence ofcertain types of solutions
of Einstein's equation~ great simplifications usually can be achieved if.the question
can be posed in terms of initial data sets. Furthermore, a number of issues in general
relativity, such as the positivity of total energy of isolated systems, are formula~

most naturally in terms of initial data sets (see section 11;2).



10.2 Initial Value Formulation of General Relativity 265

,'A relatively simple method exists for generating solutions of the constraint equa
~s with K O

o = 0 (Lichnerowicz 1944; York 1971). Given ~, one prescribes an
flbitrary Riemannian metric, hob, On ~ and solves the relatively simple constraint
~~2.28),

Do Kob = 0 (10.2.37)

'~OJ,' a trace-free (KOo = 0) tensor field Kob. Of course, (hob, Kob) will not, in general,
,;$ltisfy the additional constraint (10.2.30) •. However, we let hob =q,4hob and let Do,"the derivative operator associated with hob. As shown in appendix D, if we define
Kot,= q,-zKaI1, then equation (10.2.37) implies that

DQKob = 0 (10.2.38)

~re, using equation (D.9) ofappendixD, the constraint equation (10.2.30)
fOf (haJ" Kob) can be expressed in tenus of q"hob, and Kob as

1 1
DQDoq, - 8Rq, +8 q,-7 K ob Kob = 0 , (10.2.39)

where the indices here are raised by hob and R is the scalar curvature of hob. Equation
(10.2.39) is a nonlinear elliptic equation for q,. Locally (Le., in sufficiently small
regions), solutions of equation (10.2.39) always exist, although global solutions
(Le., solutions defined over all of~)maynot exist. (Results on the global existence
of solutions of eq. [10.2.39], as well as of the similar equation which results when
K°tJ is a nonzero constant, are reviewed by Choquet-Bruhat and York 1980.) Thus,
in the cases where equation (10.2.39) can be so~ved, an initial data set (~, hilb, Nab)
satisfying the constraint equations (as well as KtJtJ = 0) is generated from the set
('i.,haJ"Kob) satisfying merely equation (10.2.37) together with K°tJ = O.

Aparticularly simplechoiceofKob which satisfies equation 00.2.37) andKoQ = 0
is Kob = O. [IfKob =0 on~, then ~ is referred to as a moment of time symmetry.
It is not difficult to see that the maximal development (M, gob) generated by initial
data with Kob = owill possess a reflection isometry about ~.] Equation (10.2.39)
then becomes a linear equation on q,. If, in addition, we choose haJ, to be flat, then
equation (10.2.39) reduces to Laplace's equation in ordinary three-dimensional
space. The monopole solution q, ::; 1 + M/2r yields initial data for the Schwarzs
child solution. The solution of Laplace's equation obtained by superimposing two
monopole~at di.fferent positions can be interpreted as initial data for two Schwarzs
child black holes (Hahn and Lindquist 1964). Thus, the maximal development
(M, gob) arising from these initial data is a spacetime where two black holes are
initially at rest, and then, presumably, fall together and "collide." A portion of this
spacetime has been obtained by numerical solution of Einstein's equation using
computers by Smarr (1979).

An interesting issue that can be investigated (at least in a crude way) for a theory
possessing an initial value formulation is how many "degrees of freedom" the theory
has, i.e., "how many" distinct solutions. of the equationsex:ist. In particle mechanics,
we defined above the l1UIl1ber of degrees of freedom to be the dimension, n, of the
configuration space. As discussed at the beginniIlg of section 10.1, a proper initial
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data set for such a system consists of the 2n initial positions and velocities. Thus,
an equivalent characterization of the number of degrees of freedom in ordinary
particle mechanics is that it is the number ofquantities that must be specified as initial
data divided by 2. For the Klein-Gordon field, a proper initial data set consists of the
value of the field and the value of its normal derivative on a Cauchy surface ~, Le.,
two arbitrary functions on~. Thus, by analogy with particle mechanics, we may say
that the Klein-Gordon field has "one degree of freedom for each point of space."

How many degrees of freedom does the gravitational field have in general relativ
ity? A proper initial data set for Einstein's equation consists of specifying 12 func
tions on ~: the six independent components of hob, plUs the six independent com
ponents of Kob.· However, the constraint equations (10.2.28) and (10.2.30) impose
fourrelations on these 12 quantities, thus effectively reducing the number of ''freely
specifiable" functions on ~ to eight. Furthennore, many of the spacetimes generated
by the initial data given by these eight ''freely specifiable" functions are physically
equivalent. In particular, if cP:~ -+ ~ is a diffeomorphism, then the data cP·hob and
cP•Kob on ~ generates the same physical spacetime as hob and Kob• Thus, three of the
eight freely specifiable functions correspond to diffeomorphisms on ~ and are not
physically relevant. Furthermore, as mentioned above, initial data sets which cannot
be taken into each other by a diffeomorphism still can correspond to different choices
of Cauchy surface in the same spacetime and thus be physically equivalent. Since,
roughly speaking, one arbitrary function is needed to specify a choice of Cauchy
s~ in a spacetime, the number of nongauge freely specifiable functions on ~ is
reduced to four. Dividing by 2, we conclude that the gravitational field has two
degrees of freedom per point of space. This is the same number of degrees of
freedom as a linear spin-2 field propagating in flat spacetime, to which general
relativity reduces in the weak field limit (see section 4.4b).Note that the above very
crude ''function counting" argument in no way singles out precisely which functions
(Le., wbich of the 12 metric or extrinsic curvature components or functions of them)
can be freely specified, which functions are determined by the constraints, and which
functions correspond to gauge transfonnations. Indeed, one of the major obstacles
to develOping a quantum theory ofgravity (see chapter 14) is the inability to single
out the physical degrees of freedom of the theory.

Finally, we comment briefly on the initial value formulation of Einstein's equation
with matter sources, Tob• First, the initial value constraints for the gravitational field
now take the form

(10.2.40)

(10.2.41)

(10.2.42)

From equations (10.2.28) and (10.2.30) we obtain

Da(Kob - KCc~) = -81TJb

(3)R + (Ka
a)2 - KobKob = 161Tp

where p = Tobnan b and J" = -hbcTcana.
The existence ofa well posed initial value formulation for Einstein's equation with

matter depends critically on the dynamical equations satisfied by the matter as well
as on the formula for the stress-energy tensor in terms of the matter and spacetime
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metric. Ifthe matterconsists of fields q", . . . , q,It satisfying an equation of the fonn
(10.1.21) (with gab the spacetime metric) and if~ depends only on the fields, .the
metric,1 and the first derivatives of the fields and metric, then the combined Einstein-

I

matter field system in harmonic coordinates will be of the fonn (10.1.21), so a well
posed initial value fonnulation will exist. Thus, the Einstein-Klein-Gordon equations
and the Einstein-Maxwell equations have well posed initial value fonnulations. The
existence of a well posed initial value fonnulation for a few systems not satisfying
equations of the fonn (10.1.21) also has been established. In particular, the
Einstein-perfect fluid system for appropriate choices of equation of state, P =: P(P),
is known to possess a well posed initial value fonnulation (see Hawking and Ellis
1973). The existence of a well posed initial value fonnulation does not single out
Einstein's equation from equations which occur in some alternative theories of
gravity. In particular, the Brans-Dicke equations are equivalent to the Einstein
Klein-Gordon equations (see Dicke 1962) and hence possess a well posed initial
value fonnulation. Some ''higher derivative" theories of gravity also have been
shown to have a well posed initial value fonnulation (Noakes 1983). However, it
should be emphasized that the existence of a well posed initial value fonnulation is
far from an automatic feature of most theories. In particular, the natural gener
alization to curved spacetime of the equations for linear fields of spin greater than
1 (see chapter 13) fail to have a well posed initial value fonnulation.

Problems
1. Show that the inequality (10.1.16) holds fOr any subset, A, of R" satisfying the
uniform interior cone condition by the following argument (Cantor 1973; Adams
1975): Let Q denote the solid closed cone in RIt of height H and solid angle, 0, with
vertex at the origin. Let r/I: R -+ R be a C" function with r/I(r) = 1 for r < H/3
and r/I(r) = 0 for r > 2R/3.

a) for any C" function I: Q -+ R, show that for all integers k ~ I, we have,

(-I)" (R(Bo) k-I d k

1(0) = (k _ I)! Jo r drk[r/I(r)f(r, 80)] dr '.

where r is the usual spherical radial coordinate of RIt, 80 denotes any fixed angle
inside the cone, and R(80) is the largest value of r in the cone at angle 80, Le., the
integral is taken over the portion of any ray through the origin lying within the cone.

b) By integrating the result of (a) over all angles inside the cone, show that

1(0) = c, fa r k
-

It ::(r/lI)
where C, is a constant and the proper volume element of Q is understood in the
integral.

c) Using the Schwartz inequality, show that for k > n/2 we have
1/(0)1 S Cll/lk.t and consequently, that equation (10.1.16) holds in the region A.

2. Let (M, gab) be a globa:lly hyperbolic spacetime with spacelike Cauchy surface ~.
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Consider Maxwell's equations (4.3.12) and (4.3.13) in (M,gab) and define Ea andBa
on ~ by equations (4.2.21) and (4.2.22), with va taken to be the unit nonnal, na, to
~. Note thatEana = Bana = O.

a) Show that Maxwell's equations imply that DaEa = 41TP and DaBa = 0 on~,

where p = - jana and Da is the derivative operator on ~. Note that the first relation
implies that Gauss's law holds on ~.

b) Show that the source-free (r = 0) Maxwell's equations have a well posed
initial value formulation in the sense that given Ea and Ba on ~ subject to the
constraints DaEa =DaBa = 0, there exists a unique solution, Fab' of Maxwell's
equations throughout M with these initial data and furthermore that this solution has
the appropriate continuity and domain of dependence properties. To avoid
"patching" arguments, you may assume global existence ofa vector potential Aa•.

3. Let nabe a unit (i.e., nana~1)hypersurface orthogonal vector field. Define
hab by equation (10.2.10). Show that hac~n" = !£"hab.

4. Derive the Gauss-Codacci relation (10.2.24). (Hint: Evaluate the left-hand side
of eq. [10.2.24] by usingfonnulas forKab and Da.)

5. Show explicitly from equation (10.2.26) that the components Gp.vn v contain no
second time derivatives of the metric components.

6. Use "function counting" arguments like those given at the end of this chapter to
conclude that the electromagnetic field has ''two degrees of freedom for each point
of space."
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ASYMPTOTIC FLATNESS

In general relativity one often is interested in studying the properties of isolated
systems. Although no physical system truly can be isolated from the rest of the
universe, it seems reasonable that if we wish to study, say, the structure of a
condensed star, we should be able to ignore the influence of distant matter and
cosmological curvature QIl the star and study the problem as though the star were
situated in a spacetime which becomes flat (Le., has a vanishing gravitational field)
at large distances from it. Thus, asymptotically flat spacetimes represent ideally
isolated systems in general relativity. The purpose of this chapter is to give an
introductiQll to the analysis of these spacetimes.

In electromagnetism in special relativity one, similarly, is interested in the study
of isolated clwge distributions. In this case, one easily can give a precise definition
of "isolated system" by specifying precise asymptotic falloff rates of the inertial
coordinate components of the charge-current density, r, and electromagnetic field
tensor, Fob' For example, one may require thatr vanishes outside a "world tube" of
compact spatial support, that Fp.v = 0(I/r2

) as r -+ 00 at fixed t, and that
Fp.v ::: O(1/r) as r -+ 00 along any null geodesic. Maxwell's equations then say a
great deal about the detailed structure and properties of the electromagnetic field at
large distances. In particular, one has a multipole expansion of the electromagnetic
field, which, in the stationary case, determines the precise asymptotic form of the
electromagnetic field in terms of an infinite set of multipole coefficients which are
related in a simple way to the charge-current distribution. In the dynamic case, one
also haS a multipole expansion which yields simple formulas for the energy radiated
to infinity in terms of the multipole coefficie~. Again, if no incoming radiation is
present, one has a simple relation between the multipole coefficients and the charge
current distribution.

One would like to obtain similar results for isolated systems in general relativity.
However, one immediately encounters a serious obstacle to carrying out even the
first step of such an analysis. It no longer is straightforward to formulate a precise
definition of "isolated system." The problem is that we no longer have a background
flat metric, rw. in terms of which the falloff rates of the curvature of the spacetime
metric, glib, can be specified. Thus, in particular, we have no natural global inertial
coordinate system to define a preferred radial coordinate, r, for use in specifying
falloff rates. One way around this problem is to define a spacetime to be asymp-
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totically flat if there exists any system of coordinates xO, Xl, x 2, x 3 such that the
metric components in these coordinates behave in an appropriate way at large
coordinate values, e.g., gp.v = T'/p.v + O(1/r) as r -+ 00, along either spatial or null
directions, where r = [(X I)2 + (X 2)2 + (X 3)2]1/2. However, although this definition
is adequate in many respects, it is very difficult to work with it since the coordinate
invariance of all statements must be carefully checked. Furthermore, in many situ
ations (such as calculations of the energy flux from the system) one is interested in
going to the limit of large distances, "r -+ 00," but with the above notion of asymp
totic flatness it is very difficult to specify precisely how such limits are to be taken
in a meaningful, coordinate independent manner. In particular, many troublesome
issues arise concerning the interchange of limits and derivatives.

The above difficulties have been solved by a formulation of the notion of asymp
totic flatness which defines a spacetime to be asymptoticaly flat if an appropriate
boundary representing "points at infinity" can be "added in" to the spacetime in a
suitable way. This type of definition is manifestly coordinate independent, and, by
providing definite boundarY points representing infinity. it eliminates most of the
difficUlties associated with taking limits as.one goes to infinity. We shall formulate
this notion of asymptotic flatness in section 11.1.

Given the framework for analyzing isolated systems provided by this definition of
asymptotic flatness, one would like to obtain results similar to those given by the
multipole expansions of electromagnetism. In the stationary case, a satisfactory
definition of multipole moments has been given (Hansen 1974) and it is known that
the gravitational field ou~ide a source· is uniquely detennined bytbese multipole
moments (Deig and Simon 1980; Kundo 1981). However, in the nonstationarycase.
no useful general definition of multipole moments has been given. Furthermore, in
either case one would not expect to obtain a simple relation between the distant
gravitational field and the matter distribution since the nonlinearity of Einstein's
equation effectively allows gravitation to act as its own source.

However, fully satisfactory definitions of the total energy of an isolated system
and the energy carried away from the system by graVitational radiation have been
given. As already mentioned in chapter 4, no notion of the local energy density of
the gtavitational field exists in general relativity. However, for isolated systems, the
behavior of the gravitational field at large distances from the system provides a
notion of "total gravitational mass;" and this can be used to define total energy<and
radiated energy. This issue is discussed in section 11.2.

.The first careful analysis of the energy flux of gravitational radiation was carried
out by Bondi,. vander Burg, and Metzner (1962) and Sachs (l962b), who specified
the asymptotic falloff requirements by means of conditions on the coordinate com
ponentsof the metric. Penrose (1963, 1965b) then introduced the notion of asymp
totic flatness at "null infinity" (i.e;, as one goes to large distances along null geodes
ics) by means of the type of boundary construction described below. A separate,
~dinateindependent, definition of asymptotic flatness at "spatial infinity" in terms
of the "large distance" behavior of initial data on a Cauchy surface was introduced
later (Geroclt 1972b), based on earlier wOrltof Arnowitt, Oeser. and Misner (1962).
These two notions of asymptotic flatness were combined into a single notion by
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Ashtekar and Hansen (1978) and Ashtekar (1980). We shall follow the Ashtekar~

Hansen approach in this chapter.

11.1 Conformal Infinity
As already indicated by the above discussion, we must overcome two problems

in order to have a useful fonnalism for analyzing gravitational radiation and other
aspects of the distant gravitational field of an isolated system. (i) We need a precise
definition of the notion of asymptotic flatness. (ii) We need a meaningful notion of
how to take "limits as one goes to infinity" and a precise framework for describing
the mathematical entities these limits represent. We shall proceed by proposing a
solution to problem (ii) for nongravitational fields in Minkowski spacetime. This
solution then will be used to motivate solutions to problems (i) and (ii) for curved
spacetimes. ,

In spherical coordinates, the metric of Minkowski spacetime takes the fonn

ds 2 = -dt2 + dr 2 + r 2(d(J2 + sin28d4>2) (11.1.1)

Suppose we are interested in describing properties of radiation carried to infinity by
a massless field such as a Klein-Gordon scalar field 4>. Since this entails taking limits
as one goes to infinity along null directions, it is convenient to introduce advanced
and retarded null coordinates defined by

v=t+r

u = t - r

In the coordinates u, v, 8, 4> the Minkowski metric components are

ds 2 = -dudv + !(v- u)2(d82 + sin 28 dcP 2)
4

(11.1.2)

(11.1.3)

(11.1.4)

(11.1.5)

Suppose we are concerned with analyzing, say, outgoing radiation. With u fixed, we
wish to take limits as v~ 00 of our physical field 4> and extract infonnation about
the radiation from the way this field approaches zero. In particular, the energy carried
to infinity by the field is detennined by the "l/v piece" of 4> in this limit. However,
the taking of these limits is a rather awkward procedure which does not generalize
easily to curved spacetime. It would mak:ethe analysis much easier if infinity were
a "definite place" and one simply had to evaluate the fields and/or their derivatives
at this "place."

A naive approach toward achieving this goal would be to introduce a new coordi
nate V = I/v, so that "infinity" along outgoing Dull geodesics would correspond to
the finite value, V =_0, of the new spacetime coordinate. However, the spacetime
metric components in the new coordinates u, V, 8, 4> are

1 1(1)2ds 2 = 2dudV + - - - U (d82 + sin 28 d4>2)
V 4 V

These components are singular at V = 0, so we cannot extend the spacetime metric
there. Thus, we cannot do tensor analysis as V = °as though it were an ordinary
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''place.'' Of course, all we have done is introduce a bad coordinate whose behavior
is much like the first example considered above in section 6.4.

However, suppose we consider a new, unphysical metric gab obtained by multi
plying the Minkowski metric, Tlab' by V 2 = l/v2

, i.e., gab is related to Tlab by a
conformal transfonnation with conformal factor 0 == V (see appendix D). Then, in
the coordinates u, V, 8, </J the componentS of gab are

(11.1.6)

and these components are well behaved at V = O. Thus, let us extend the Minkowski
manifold by "adding in" the points represented by V = O. As seen above, the
original flat nietric, Tlab' cannot be smoothly extended to V = Q....-Minkowski space
time (1Jl4, Tlab), of course, is inextendible as a spacetime-but the new, unphysical
metric gab can be smoothly extended to V = O. Hence, we may do ordinary tensor
analysis at "infinity" (or, more precisely, at that portion of "infinity" represented by
v -+ 00 at constant u) as a "place." In effect, we have brought in infinity to a finite
distance by a conformal transfonnation. We now simply may evaluate fields and
their covariant derivatives with respect to gab at infinity and thus avoid dealing with
limits in the original physical spacetime.

In fact, our particular choice of gab is not ideal since our conformal factor V = 1/v
needlessly blows up at the events v = 0 of the original spacetime. Furthermore,
although we have extended gab to "future null infinity" (Le., the limit v -+ 00 at fixed
u), we cannot similarly extend gab to "past null infinity" (u -+ -00 at fixed v) or
"spatial infinity" (r -+ 00 at fixed t). However, all of these drawbacks can be reme
died by a more judicious choice of conformal factor. Let

gab = 02T1ab (ILL7)

with

(11.1.9)

(11.1.10)R = tan-Iv - tan-Iu

Then T and R have ranges restricted by the inequalities

0 2 = 4(1 + V2)-I(1 + U2)-1 (11.1.8)

Then gab is a smooth .metric on the original Minkowski manifold and (1R4
, gab) can

.be smoothly extended to a "larger" spacetime such that the boundary of the. Min
kowski region in this larger spacetime;gives us a precise representation of "infinity."
To see this, we define new coordinates r. R for Minkowski spacetime by

T = tan-Iv + tan-Iu

-11' < T + R < 1T' ,

-11' < T - R < 1T' ,

O~R

(11.1.11)

(11.1.12)

(11.1.13)
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Fig. 11.1. A spacetime diagram of the Einstein static universe. As d~scribed in the
text, Minkowski spacetime is confonnally isometric to the region
o = r (i-) n r W) of this spacetime. The boundary of O-consisting of the points
i-, i+, and iO and the null hypersurfaces .1- and .1+-defines a precise notion of
"infinity" for Minkowski spacetime. '

The components of gab in the coordinates T,R, (J, </J are given by

d§2 = _tfF2 + dR 2 + sin 2R(d(J2 + sin 2(J d</J2) (11.1.14)

Remarkably, this is precisely the natural Lorentz metric on S3 x JR, known as the
Einstein static universe (see eq. [5.1.11Jand problem 3 ofchapter 5) except that the
coordinate ranges are restl'icted by equations (11.1.11) and (11.1.12). Thus, we have
obtained the 'following result: There exists a conformal isometry' of Minkowski
spacetime (R4, "lab) into the open region 0 of the Ei~tein static universe
(S3 X JR,gab) given by the coordinate restrictions (1l.1.11j dnd (11.1.12).

This result allows us to ,give a precise definition of infinity for Minkowski space
time: We define the conformal infinity ofMinkowski spacetime to be the boundary,
0, of 0 in the Einstein static universe. As illustrated in Figure 11.1, this boundary
can be naturally divided into five parts: (1) The "bottom vertex point" r, calledpast
timeUke infinity, given by coordinates R = 0, T = -'IT. (2) The three-dimensional
null surfaceji-, called past null infinity, given by T = -'IT + R forO < R < 'IT. (3)
The point i O at R == 'IT, T = 0, called spatial infinity. (4) The three-dimensional null
surface ji+, calle4future null infinity, given by T = 'IT - R for°< R < 'IT. (5) The
"top verte.)( point" i+ at R = 0, T :;: 'IT, called future timelike infinity. Note that all
timelike g~esicsQf Minkowski spacetime begin at i~ .and end at i+, all spacelike
geodesics begin and end at i O, while all null geodesics begin at ji- and end at ji+.
Since it is difficult to draw complicated spacetime diagrams on 0 in Figure 11.1 and

1. As defined in appendix C, a confonnal isometry of (M, gab) into (M', g:W) is a diffeomorphism
!/I: M -+ M' such that (!/I"g)ab = n2g:W.
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.+
I

Fig. 11.2. The region (5 of the Einstein static u'!iverse represented as two null
cones joined at their base. This representation of0 is misleading since it shows iO as
a 2-sphere rather than a point, but it often is much more convenient to use this
representation for drawing spacetime diagrams than that of Figure 11. I .

since two spatial dimensions are suppressed in this diagram (i.e., S3 is represented
as Sl), one often represents 0 as two null cones joined at their base, as illustrated
in Figure 11.2. However, it should be noted that this diagram inaccurately represents
spatial infinity, i O

, as a sphere rather than as a point.
This definition of conformal infinity of Minkowski spacetime allows us to formu

late precise asymptotic conditions on physical fields representing the exterior field of
and/or the radiation resulting from an isolated source as follows: Depending on the
physical field and the stringency of the asymptotic conditions we wish to impose, we
require that a suitable power of {}-I times the field can be extended to conformal
infinity, 0, in a sufficiently well beha~ manner. With these conditions imposed,
quantities which used to be represented in Minkowski spacetime as limits as r -+ 00
or v -+ 00 now can be represented as ordinary tensor fields on O. This provides a
highly satisfactory solution to problem (ii) for Minkowski spacetime.

We shall illustrate the power and utility of the conformal infinity construction for
Minkowski spacetime by using it to give a remarkably simple proof of the following
result.

PROPOsmON 11.1.1 Let q, be a solution of the massless Klein-Gordon equation
(4.2.19) in Minkowski spacetime with smooth data cPo, 4>0 of compact support
at t;:: O. Then <P = 0 (l /.\) as .\ -+ 00 along every null geodesic and
q, = 0(1/1'2) as T -+ 00 along every timelike geodesic, where.\ and T denote,
respectively, affine parameter along the null geodesic and proper time along the
timelike geodesic.

Proof According to appendix D, if q, satisfies the Klein-Gordon equation in
Minkowski spacetime, then 4> ;:: {}-Iq, satisfies the equation

(11.1.15)
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in the region 0 of the ~Einstein static universe where v.. and Rare the derivative
operator and scalar curvature of glib. Consider now, the initial data for equation
(11.1.15) on the Cauchy surface T = 0 of the Einstein static universe obtained by
extending 4>0. 4>0.~ "spatial infinity" by setting these quantities equal to zero at the
point ;0. Since-equation (11.1.15) is of thef~ for which theorem 10.1.2 applies,
it follows that lhere exists a smooth solution ." throughout the entire Einstein static
universe of equation (11.1.15) with the given initial data. By ~ uniqueness and
domain of dependence properties of theorem 10.1.2. this solution'" must agree with
;;; in O. Thus, we have proven that;j, ~an be smoothly extended to D. The conclu
sions of the proposition follow immediately by translating this result back to state
ments about asymptotic limits in Minkowski spacetime. Indeed, the hypothesis of the
~m can be weakened significantly-all that is needed is that the data induced
by t/J at T = 0 can be smoothly extended to ;°-and stronger conclusions than those
stated in the theorem can be drawn from the fact that ;j, can be smoothly extended
to D. 0

We turn, now, to the issue of defining the notion of asymptotically fiat curved
spacetimes. The key idea is that-as will be seen below-our ability to perfonn the
above constructi~ of mapping Minkowski spacetime via a confonnal isometry into
a bounded regidaofthe Einstein static universe crucially depended upon the structure
of Minkowski spacetime "at infinity." This suggests that we define a spacetime to be
asymptotically fiat if a similar construction~ be perfonned, i.e., if the physical
spacetime can be mapped into a new, "unphysical" spacetime via a confonnal
isometry with properties similar to that of the Minkowski case. In this way we solve
both problems (i) and (ii) mentioned at the beginning of this section, sin~ we have
a 11}anifestly coordinate independent fonnulation of the notion of asymptotic fiatness,
and, as in the Minkowski case, the boundary in the unphysical spacetime of the
image of the physical spacetime under the conformal isometry gives a precise
framework for describing infinity.

However, there are two important properties of the construction of confonnal
infinity for Minkowski spacetime which do not carry over to curved spacetimes.
First, we wish to consider spacetlmes which become fiat as one goes to "large
distances in spacelike or null directions." However, we do not wish to require the
spacetimes to become fiat "at a fixed position at early or late times," since we may
wish to describe spacetimes representing isolated bodies which may remain present
at early and late times. Therefore, we cannot expect the conformal infinity of curved
spacetime to be similar to that of Minkowski spacetime at past and future timelike
infinity, r and ;+. For this reason, for curved spacetimes we do not impose any
requirements on the structure of conformal infinity corresponding to the presence of
these two points. Second, although the metric is required to become fiat at spatial
infinity. for the reasons discussed below, smoothness or even differentiability of the
confonnally rescaled metric gob at spatial infinity is too strong a requirement. Thus,
although confoI'lllal infinity of curved spacetime is required to contain a point ;0
representing spatial infinity, the smoothness properties which hold for Minkowski
spacetime must be weakened significantly.
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Our task, now, is to define asymptotic flatness by extracting features of the
construction of conformal infinity of Minkowski spacetime-modulo the above
modifications-which are strong enough that they can be implemented only for
spacetimes which physically represent isolated systems but are not overly stringent
to the extent that physically reasonable examples are excluded. The motivation for
the particular choice of features given below comes from a study of some examples,
from the stability of the properties under linear perturbations (see Geroch and
Xanthopoulos 1978), and from the fact that it provides an appropriate framework for
defitiing total energy and radiated energy (see section 11.2). Further discussion of the
motivation is given by Geroch (1977). We1itate, now, the rather technical conditions
of the definition of asymptoticJlatness given by Ashtekar (1980) and then discuss the
meaning of these conditions.

A vacuum spacetime (M, glib) is c~ed to be asymptotically flat at null and spatial
infinity if there exists a spacetime (M, gllb)-withgllb Coo everywhere except possibly
at a point i O wh~re it is C>o (defined below)-and a conformal isometry
t/I:M -+ tf1[M] eM with conformal factor 0 (so that gab = 02t/1.gu in I/I[M])
satisfying the following conditions:

(1) r(ib) u r(ib) =M - M. [Here~ is the closure of the causal future,
r(i~, of if) (see chapter 8), and for notational simplicity we write M rather than
I/I[M] here and ~ the following.] Thus, iOis spacelike related to all~ts in M and
the boundary, M, of M consists of the union of iO, !j+ 55 J+(i~ - if) and
!r 5i! j-(i~ - iO.

(2) There exists an open neigbborhood, V, of M= i O U j+ U j- such that the
spacetime (V, glib) is strongly causal.

(3) 0 can be extended to a f~tion on all ofMwhich is C2 at i Oand Coo elsewhere.
(4) (a)Onj+ and j- we have 0 = 0 and VaO :# O. (Here Va is the derivative

operator asSOciated with glib, although, clearly, this condition is indePendent of
choice of derivative operator.) (b) We have O(i~ :::f: 0, limiG Van = 0, and
lim;o v..VbO = 2gllb(i~. (We~e limits at iO since 8M need not be C I there, and thus
Va need not be defined at iO.)

(5) (a) The map of null directions at iO into the space of integral curves of
n" 55 gGbV"Oon j+ and j- is a diffeomorphism. (b) For a smooth function, w, on
M - if) with W > 0 on M U j+ U j- which satisfies Va (W4n cl

) = 0 on j+ U j-,
the vector field w-In a is complete on j+ U j-.

We begin our discussion of this definition by explaining the meaning of the
condition C>o imposed on gGb at iO.A basic problem with the construction of
conformal infinity is>that all of spatial infinity is represented by only a single point.
As oDe goes along curves in the physical spacetime which go to spatial infinity along
different angular directions (or along directions differing by a boost), then physically
the curves become farther and farther apart. However, in the unphysical spacetime,
the different curves all terminate at the same point iO. Therefore, while it is entirely
reasonable to require that certain physical tensor fields (times suitable powers of 0)
have well defined limits along appropriate curves that go to spatial infinity, it is
unreasonable to demand that these limits along curves going to infinity in different
directions define the same limiting tensor at the point iO. Because of the homogeneity
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. and isotropy of Minkowski spacetime, it was possible in that case to define a
confonnal @mpletion so that the unphysical metric and conformal factor were
smooth at iO. However, when one considers physical fields on Minkowski spacetime,
one soon encounters this direction dependent phenomenon at iO. For example, one
easily may verify that for the Coulomb solution of Maxwell's equation, the tensor
OF. approaches a well defined, finite limit as one approaches iO along any spacelike
geodesic, but the tensor it defines at i O depends upon the choice of spacelike ge0
desic. (Roughly speaking, the "electric lines of force" of Fob point radially inward at
iO.) The behavior of the spacetime metric at "large distances" in curved spacetimes
such as the Schwarzschild solution is analogous to this behavior of the Coulomb field
solution in flat spacetime. Therefore, it is unreasonable to demand that the un
physical metric, gm" be smooth at iO.

lt appears that an appropriate condition on glib is that it be C>o at iO. By c'>O at to,
We mean that gob is continuous (C~ at iO and, in addition, that its first derivatives
have direction-dependent limits at i O which are smooth in their angular dependence.
This latter notion can be made precise as follows. Let Xl£ be a smooth coordinate
system with origin at iO. Define the "radial function" p by

4

p2 == ~ (XI£)2
1£=1

and define the angular functions 811 (a == II, 2, 3) in terms of the XI£ by the same
fmmulas as used to define the 3-sphere coordinates in four-dimeASional Euclidean
space. We may use the coordinates 8 11 to characterize each tangent direction at iO.
A functionj is said to have a regular direction-dependent limit at to if the following
three properties are satisfied: (i) For each C 1 curve yending at iO

, the limit ofjalong
yexists at [0. Furthermore, the value of this limit depends only on the tangent
direction to ,. at iO. We define F (8' = limiG j, where the limit is taken along a curve
whose tangent direction at to is characterized by 811~ (ii) F is a smooth function ort
the 3-spbei'e. (iii) Along every C 1 curve ending at 100 , we have for all n ~ 1,

. a"j o"F . . o"j
l~ 08" == 08" and l~~ p" Up" = 0

(Here a"I 08" denotes any nth order partial derivative with respect to the 8 11
, with it

understood that the same partial derivative occurs on both sides of the equation.)
Thus, a precise statement of the condition that gab is C>O at i O is that-in addition
to glib being connnuous-all the first partial derivatives of the components of gab in
a smooth chart covering iOhave regular direction dependent limits at iO. It follows
immediately that in a chart with {V"XI£} orthonormal at [0, the components of glib take
the form 81£"== fJl£" + pl~,,(811) + o(P) as p -+ O. Further diSCussion of the c>O
condition is given by Ashtekar and Hansen (1978) and Ashtekar (1980). Since the
metric is onlyC>O at i O

, it is natural also to weaken the assumptions concerning
differential structure of the manifoldit at i Oto what Ashtekar and Hansen (1978) call
C>I differential structure. (Otherwise, one wOuld be able to define many inequiv
alent differential structures on it at 1>0 compatible with all the above conditions.) We
refer the reader to that reference for the definition of this term.
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Note that we have defined asymptotic ftatness only for the case of vacuum space
times, Rob:::: O. However, since only properties of the spacetime "near infinity" will
play any role in our analysis, we need only require RlIb :::: 0 "near infinity," e.g., in
the intersection of M and the neighborhood Vof condition (2). Indeed, one may
weaken this requirement further to allow nonvanishing TlIb in V which goes to zero
at infinity suitably rapidly-more precisely; such that 0-2TlIb is smooth on '+ and
,- and has appropriate limiting behavior at iO;

According to equation (0.8) ofappendix 0 (with the roles of glib and glib teversed);
the physical Ricci tensOr,RlIb, is related to the unphysical Ricci tensor.RlIb , by

RlIb :::: ,RlIb + 2O- IV4 VbO + gllbgcd(h~I~VdO -30'-2v...OVdO) (11.1.16)

Thus, the vanishing of the right-hand side of equation (11.1.16) is the vacuum
Einstein field equation exPres~.in terms of thel!Dl!hysical variables. Note that we
have written, for example, gcdv...VdO rather than VCVc!l in order to avoid confusion
over whether the'physical or unphysical metric is used to raise and lower indices.'

It should be emphasiZed th~ there is considerable arbitrariness in the association
of an unphysi~ spacetime (M, 8l1b)with an asymptotically ftat physical spacetime
(M, glib)' If (M, glib) is an unphysical spacetime satisfying the properties of the
definition with conformal factor 0; then so is (M, W 2gllb) with conformal factor wO,
provided only that the function w is strictly positive"is smooth everywhere except
possibly atiO, is c>O at ;0, and satisfieS w(;~:::: 1. Thus, there isconsiderabl, gau$
freedomintl1echQice of the unphysical metric.

Let us now discuss the meaning of the five conditiops appearing in,~ definitiop
of asymptotic .ftatness.The first three conditions require in a fairly straightforward
manner that (M ,8i1b)possesssome oftl1e basic;:Jeatures of the qmfonnalcompletion
of MinJ<:oWski spacelime. TheJirst, in effect, stateS that iOrepresents spati~ infinity~

the second~teS~at no c;ausalpathologiesoccUflletp" infinity; and the thirdstatfs
that Ois wellbei)aved near infinity. The key·-conditioninthe definitioniscCPndition
(4). The requirement thl:lt h.vanish at'~+, ~-, and ,on implies that at these pl.aces·aq
"infinite amount ofsttetching" is involved in going from the unphysical metric glib
to the physical metric glib· This shows that ~+, '-, and i°trtlly represent "infinity"
of the physical spa~time. Furthennore, the requirements on the derivatives of 0 at
,+; ~-, andio spepified in conditions 4(a) and 4(lJ) iIllply that the physical metric,
glib, becomesftat (and approaches ftatnes~,at the appropriate rate) as one g~Jo
infinity.

,To see thi~ innwredetail, we derive ,a coordinate fonn of the condition on the
asympto* ~viorofthe physical metric as <me approaches future null infinity,'+ •
(A similar analysis applies,<of co~,to!J- .) By mUltiplying the vacuum Einstein
field ~n(eq.[11.1.t6] withR.. ~ .0) byO an<!Ulk!ng the limit at '+, we find
(since gab, Rab.and !laresmooth there)thatU-Igcdv.,Ov.,O must be smooth at'+'
i.e., more })J:eCisely (since {} :::;lOat '+ and thus 0-1 is not defined there) that this
quantity can be smoothly extendedto'+. ,In particular, this impliestbat
n4

:::: gllb~O is null at'+. a result which also follows from theJa<:t that n4 must be
nonnal to'+ (since 0 is constant on,'+) and,+ :::: [J+(i~ - iO] is anull surface.
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We show now that by using~ ':,gauge freedom" in the conformal factor mentioned
above, we can make 0 --.1gcd~nVdO vanish at j +. Namely, under the transformation
.0 .... 0' = ~O, gab .... g~b= co2gilb. we have

(O')-I(g')cdV:O'VJO' =
~-3gcd[OVt'(i)VdW + 2wV"OVdw + W

20- IV"OVdO]

Therefore, by choosing w to satisfy

~ 1 --nav. In co = - -O-lg-cdV..Ov. 0
a 2 c· d

on !J:, we find a new unphysical metric and conformal factor which satisfies the
desired relation. (Since eq. [11.1.18] is merely an ordinary differential equation
along each in~gralcurv~ of n a

, solutions always maybe obtained.2
) Thus, without

loss of generality, we may assume that we have chosen the conformal factor and
unphysical metric so thl;lt O-lgCd~OVdO = 0 on !J+. The vacuum Einstein field
equation then yields .

_._. -cd - - . +
2v.. Vb!} + gabg ~VdO = 0 on !J

which, in turn, implies

(11.1.19)

Va VbO = 0 on !J+ (11.1.20)

It follows trivially from equation (11.1.20) that the null tangent na = gabVbO to!J+
satisfies the ,affinely parameterized geodesic equation on !J+ with respect to the
unphysical metric, . .

naV,.n b = 0 (11.1.21)

Furthermore, since B b
a = Van b = 0 on !J+, we see that in the gauge (11.1.20), the

expansion, shear, and twist of the null geodesic generators of !J+ all vanish (see
section 9.2).

The gauge choice (11.1.18) on co which led to the gauge condition (11.1.20) still
permits the additional freedom of choosing co arbitrarily on any given cross section
of !J+', i.e., on a two-dimensional surface, :/, in !J+ which intersects each null
geodesic generator of!J+ at precisely one point. It follows from condition 5(a) that
!J+ has topology $2 x R"and thus, topologicallYJ :/ must be a 2-sphere. The
unphysical metric gab induces a Riemannian metric hab on :/. However, using argu
ments along the lines of problem 2 of chapter 3, it can be seen that every Riemannian
metric on a two..ffimensiona] sphere isequa} ~ a conformal, factor times the natural
metric on the sphere, i.e., hab is Qfthe form hab =j2hab, with(:/,hab)isometrlc to
the unit sphere in R3. H~nce, we shall use the remaining freedOm in the choice of

2. Note that solutions, w, of equati9n (11.1.18) on , + cannot have the, co~ct limiting behavior at
iO. Thus, equation (11.1. i8) really can be imposed only outside an (arbitrarily small) neighborhood of
jO. However, this need not concern us here since we presently deal only with the asymptotic fonn of the
physical metric on '+.
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w to make ~ a metric sphere of unit radius. Since in the gauge (11.1.20) the
expansion and shear ofthe null geodesic generators of ~+ vanish, it follows that in
this gauge, the induced metric on every cross section of ~+ is that of a unitsphere~

Having made the above gauge choices, we introduce coo~ates in a neigh
borhood of ~+ in the unphysical spacetime as follows. Since VaO :;: 0 on ~+, we
may use 0 itself as one of the coordinates. We introduce the natural spherical
coordinates (8, e/» on the spherical cross section, ~, and "carry" these coordinates
to other points of ~+ along the null geodesic generators of ~+. We define the
coordinate u on ~+ to be the affine parameter (measured from ~ along the null
geodesic generators of ~+ with u scaled so that naVou = 1. Finally, we extend
(u, 8, e/» off of ~+ by holding their values fixed along each null geodesic of the
family (other than that which generates ~+) orthogonal to the 2-spheres of constant
u on ~+.

It follows from the above that in these coordinates, the unphysical metric gob takes
on ~+ the form

dS21,+ = 2dOdu + d82 + sin28 de/>2 . (11.1.22)

Furthermore, the gauge con4ition (11,1.20) on 0 implies that g.... , g"" and g". all are
o ({}2) as 0 -+ 0 (see problem 1)~ Thus, in a neighborhood of ~+, the components
of the physical metric, gob = 0-2gob, take the fonn

lIs2 = 2O-2dOdu + 0-2(d82 + sin28 de/>2)

+ terms 0(1) in du2, dud8, dud</>

+ terms 0(0-1
) in d82, d8de/>, de/>2, dOdu, d02, dOd8, dOde/> •

(11.1.23)

We make, now, the coordinate transfonnation v = 2/0. In the coordinates
u, v, (J, e/>, the physical metric takes the form as v -+ 00,

ds2 = -dvdu + !v2(d82 + sin28 de/>2)
4

+ terms 0(1) in du2, dud8, dude/>

+ tenus O(v) in d82, d8de/>, de/>2

+ tenns o (1/v) in dvdu, dvd8, dvde/>

+ 0(1/v3
) dv2 .

By making a further .coordinate transformation v -+ v + f(u, 8, e/» the tenus of0 (1)
in du2 can be eliminated at only the expense of introducing tenus of 0 (1) in dv d8
and dtJdq,. Having dOne this, we transfonn to "asymptotically Cartesian coordi
nates" defined by t = !(u + v), x = !(v - u)sin8cose/>,y = !(v - u) sin 8sine/>,
z =1(v -cu) Cos 8. Then it is easily verified that the components of the physical
metric in these coordinates differ from diag (:-1, 1, 1, 1) only by terms at most of
order l/v as v -+ 00. Thus, condition 4(a) together with Einstein's equation
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(11.1.16) indeed requires the physical spacetime to become asymptotically Min
kowskian as one goes toward null infinity. By judiciously imposing further coordi
nate conditions (Tamburino and Winicour 1966) one can further simplify the asymp
totic formula 'for the metric to the type of expression originally postulated in the
axisymmetric case by Bondi, van der Burg, and Metzner (1962).

Similarly, condition 4(b) together with the differentiability requirements on 0 and
gab at iO imply that the metric is asymptotically Minkowskian as one approaches
spatial infinity. A precise coordinate form of this statement is given by Ashtekar and
Hansen (1978) (see eq~ [C21)of that reference). Ashtekar and Hansen also have
proven that any three-dimensional spacelike submanifold of the unphysical space
time which passes through iO and is sufficiently well behaved (namely, C>I, Le., its
intrinsic metrichab and unit normal iia are C>~ at iO and smooth els~where yields·an
asymptotically fiat initial data surface in the following sense (Geroch 1972b): An
initial data set (I. hab• Kab) consisting of a three-dimensional manifold, ~. a Rie
mannian metric, hab , ant! a symmetric tensor K ab is said to ~ asymptotically flat if
there exists a manifold ~such that (i) there is a point A E ~ (called "the point at
infinity") such that there exists a conformal isometry l/I:~ -+ [t - A] with
h,." = 0 2 t/J·hab on ~ - A; 9i) 0 is C2 at A and C«> elsewhere on ~, while hab is C >0

at A and C"elsewhere on~; (iii}Osatisfi~conditions at A an&!o~ous to copdition
4(b) above, namely, O(A) = 0 and limADaO = 0 while ,o-I(ADbO - 2hab) ap
proaches a finite, direction-dependent limit at A, whereDa is the derivative operator
associated with hab; and (iv) the unphysical Ricci tensor (3)Rab 'and ,,/K/ib have
appropriate limiting behavior at A, namely 0 1/ 2 (3)Rab and Ot/J·Kab approach finite,
direction-dependent limits at A. For an asymptotically fiat initial data set, one can
construct an asymptotically Euclidean coordinate system on the physical initial data
surface ~ such that the components of the physical metric differ from diag (I, I, 1)
only by terms O(I/r) as r -+ 00 and the first derivatives of these components are

,0(I/r2) (see problem 2). Furthermore, the components of the extrinsic curvature,
Kab• and the physical Ricci curvature tensor, (3)Rilb, are, respectively, 00/r2

) and
00/r3

). Conditions for asymptotic flatness on an initial data surface formulated in
this coordinate component manner were previously given by Arnowitt, Deser, and
Misner (1962). .

Finally, condition (5) of our above definition of asymptotic fiatness is a technical
condition which, roUghly speaking, states that.1+ and .1- have the right size. First,
condition S(a) states that all the null geodesic generators of.1+ and.1- emanate from
iO in the appropriate way. In particular. this implies that .1+ and .1- have topOlogy
8 1 X IR. If gab were smooth at iO, the null tangents at iO automatically would be
diffeomorphic to the nun geodesic generators of .1+ and .1- if all· these generators
had endpoints at iO, but since gab is only C>{) at iO, this property must be imposed
separately. Condition 5(b) requ~ "all of .1+ and .1- to be present" in the con
formally completed spacetime. It is equivalent to the statement that in the gauge
(11.1.20) the null geodesic generators of..1+ and .1- are complete. [The relation
v,,(w4n") == 0 is equivalent to equation (11.1.18) above.] The completeness of the
null geodesic generators of j+ is equivalent in tum to the statement that in our
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coordinate system (u, v, 8, cP) constructed above, the retarded time, u, ranges from
-00 to +00. Witbouu condition of the form 5(b), Geroch and Horowitz (1978) have
shown that asymptotic ftatness could cease to hold at a finite retarded time.

Note that our conditions (1)-(5) above define asymptotic flatness at both spatial
and null infinity. However, for many purposes one requires only the notion of
asymptotic flatness at spatial infinity alone or at null infinity alone, so it is useful to
define these notions separately. These notions can be fQrmulated by eliminating the
irrelevant parts of our definition above. More precisely, a spacetime (M, glib) (not
necessarily satisfying the vacuum fielg equation) is said to be asymptotically flat at
spatial inji.nity if there is a spacetime (M, glib) with glib COO everywhe~ except possibly
at a point iO where it is c>O and a confQrma1 isometry of Minto M with conformal
factor n such tltat conditions 1,3, and 4(b) are satisfied. A vacuum spacetime
(M, gab) is said to be asymptoticallyflat at null inji.nity if there exists a manifold with
boundary (see appendix. B), M, with smooth metric glib and a confQrma1 isometry of
M onto the interior of M with conformal factor n such that appropriate versions of
conditions 1,2,3, 4(a), and 5 hold. More precisely, we define !J to be the boundary
ofM, and in place of 1 we require that !J can be written as the disjoint union of two
pieces, j+ and.j-, such that!J+ n r[int(M)] = st and!J- n r[int(M)] = st. We
again require the unphysical spacetime to be strongly causal in a neighborhood of !J
(condition 2), that n have a COO extension to all of M (condition 3), and that
conditions 4(a) and 5(b) hold on j. Finally we replace 5(a) by the requirement that
j+ and j- eacb have the topology S2 x IR.

The above definition of asymptotic ftatness at null infinity differs from the original
formulation given by Penrose (1963, 1965b). Penrose defined a spacetime to be
asymptotically simple if in place of the above versions of conditions I, 2, 3, 4(a) , and
5,we require that n have a COO extension to all of M, that condition 4(a) hold, and
that every maximally extended (in both directions) null geodesic passing through any
point of int(Mj has past and future endpoints on !J. This last condition is a very strong
global condition on the physical spacetime, involving much more than asymptotic
behavior at infinity. However, it can be modified to become an asymptotic
condition-thereby defining the notion of a weakly asymptotically simple.
spacetime~y requiring that a neighborhood of j in (M, glib) for the given spacetime
(M, glib) be isometric to a neighborhood of j for some asymptotically simple space
time. Weak asymptotic simplicity then was taken as the criterion for asymptotic
flatness at null infinity. Although this formulation is indirect and differs significantly
in form from the one given above, it follows that a weakly asymptotically simple
spacetime satisfies all the conditions of our definition except for 5(b); see Geroch and
Horowitz (1978) for a demonstration that condition 5(b) need not be satisfied and
see, e.g., Hawking and Ellis (1973) for the theorems needed to show that the otbe.r
conditiOns are satisfied.

We conclude this section by mentioning two important properties of asymp
totically ·flat spacetimes. The first has to do with the notion of asymptotic sym
metrie". MinkQWski spacetime (1R4

, 71l1b) has ~ lQ-parameter group of isometries, the
Poincare group. This isometry group plays an important role in the analysis of the
behavior of physical fields on Minkowski spacetime, in particular in the proof of
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conservation laws. In a general, curved spacetime one would not expect any exact
isometries to be present. However, in an asymptotically flat spacetime, since the
metric becomes flat as one approaches infinity, one might expect that it would be
possible to define the notion of an asymptotic symmetry. It turns out that a natural
notion of an asymptotic symmetry does indeed exist for asymptotically flat space
times, but the group of asymptotic symmetries is not the poincare group. Rather, it
is a much larger group, containing an infinite-dimensional subgroup of "angle de-
peJident translations" called supertranslations. -

We shall give a brief discussion, here, of the nature of asymptotic symmetries at
null infinity, referring the reader to Sachs (1962c) and Geroch (1977) for further
disCussion and details. Basically, we want an infinitesimal asymptotic symmetry at,
say, future null infinity to be represented by a vector field ga-or, more precisely,
an equivalence class of vector fields-in the physical spacetime such that Killing's
equation £tgab = 0 is satisfied to "as good an approximation as possible" as one goes
to '+. The appropriate requirement for the rate of approach of £tgab to zero can be
detennined by examining the general form of a metric of an asymptotically flat
spacetime and imposing the strongest condition which generally admits solutions.
We may fOFDlulate the resulting requirement as follows. First, we require that ga,
viewed ~ a vector field in the unphysical spacetime (i.e., .,,*gfl), have a smooth
extension to'+. Then we require in addition that the tensor field o.2£tgab also have
a smooth extension to'+ which vanishes on '+. Furthermore, two vector fields ga
and fa on the physical spacetime satisfying these conditions are considered to
generate the same infinitesimal asymptotic symmetry if their extensions to , + are
equal there.

The asymptotic symmetry group thus defined is universal in the sense that one gets
the same ~tract group for all asymptotically flat spacetimes. It is initially sur
prising, however, that this group is not the 100parameter poincare group but rather
an infinite dimensional group known as the Bondi-Metzner-Sachs (BMS) group.
Insight intO the origin of these "extra" asymptotic symmetries can be obtained by
verifying that in Minkowski spacetime in the coordinates of equation (11.1.4), for
an arbitrary functionl=: /(8, c/» of the angular variables, the vector field

ga = /(ajtJu)a + 2:2 ~ (ajiJ8t + 2r2 :in28 Z(ajac/»a (11.1.25)

is nonvanishing at '+ but o.2£t71ab vanishes at a+. Now, in a nonflat but asymp
totiCally flat spacetime, one cannot, in general, find any vector field which satisfies
Killing's equation near infinity to a better approximation than this. Hence, in a
general -curved spacetime an -. infinite·· dimensional family of "angle dependent
translations" of the above type come just as close to satisfying Killing's equation as
any other transformations.

We have introduced the BMS group here in terms of approximate symmetries in
the physical spacetime as one approaches'+. However, the asymptotic symmetry
transformations of- the physical spacetime extend to transformations of , + in the
unphysical spacetime, and it turDs out that one c~ give an equivalent character-
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ization of the BMS group in tenns of mappings of ~+ into itself. In the unphysical
spacetime, the unphysical metric glib induces a degenerate metric htJb on the null
hypersurface ~+. Furthermore, since the vector field na = gtJbVb {} is tangent to ~+,
na may be yiewed as a vector field_on ~+_. Under !' change of conformal gauge
{}~ wO, h""and n a transform as htJb~ h:u, = w2htJb,n

a~ (n,)a = w- I na. The
manifoldJi+ together with ~ and n a modulo conformal gauge are universal, Le.,
they are ..the same" for all asymptotically flat s~times in the following se~: Let
(~t, (hl)tJb, (nit) be the future null infinity, induced degenerate metric, and induced
vector field-associated with the asymptotically flat (physical) spacetime (Mil (glkb)
and let (~t, (h2)tJb, (n2f) be the corresponding structure for the asymptotically flat
spacetime (M2,(g2)tJb). Then there e~ist choices of conformal gauge in the two
unphysical seacetimes such that there is a diffeomorphism .,,: ~t ~ ~i satisfying
"'*(hi)tJb = (hi)ab.; "'*(nDa = (n2)". [Proof. We showed above that for any ~+ there
exists a conformal gauge and a choice of coordinates (u, 8, 4» such that
htJb =, (d8Md8)b + sm28(d4>Mdt/J)b and na = (a/au)a. Let ." be the map which
associates with each point on ~ t the point on ~t with the same value of these
coordinates.] The BMS group may be characterized as the group ofdiffeomorpbisms
of ~+ which preserves this universal struetm:e; Le., the BMS group ~sists of the
diffeomorphisms.,,:~;t" ~ ~+ such !bat .".haI, and l/J*"a differ from htJband n Q at
most by a rescaling associ~.with a change of conformal gauge.

In terms·of this characterization of the BMS group, the (infinitesimal) super
translations are defined as the vector fields on ~+ of the fOl'Q1ga = an a where a is

"constant on each generat()r of !;+ (Le., n4V..a = 0) but otherwise is an arbitl'arY
function. Thus, the "angle dependent translations" of Minkowski spacetimeconsid
ered above give rise to BMS supertranslations. The supertranslations comprise an
infinite-dimensional abelian normal subgroup of the BMS group, and the factor
group obtainedby quotienting the BMS group by the. supertranslations is isomorphic
to the Lorentz group.

Although for th~ reasons discussed above, the BMS gt'Qup properly comprises the
asymptotic symmetry group of.an asymPtotically ~t ~pacetime, one still may ask if
there is some natural procedure for "recovering" the Poincare group by imposing
extra conditions on the asymptotic symmetries. It turns out that one can partially
succeed in doing this as follows. There. exists a unique four-dimensional subgroup
of the supertranslations which is a normal subgroup of the BMS group. In the case
of Minkowski spacetime, this four-dimensional subgroup of the BMS group consists
precisely of the asymptotic symmetries associated with the exact translational sym
metries of Minkowski spacetime.Theref~, we.. may define the asymptotic trans
lations of ~ general asymptotically flat spacetime as the BMS elements belonging to
this subgroup; (On ~+ in the gauge [11.1.20] with metric spherical <;ross sections,
the infiWtesimal translations are precisely the supertranslations of the form ga = (VI"

with a a linear combination of I =0 and l = 1 spherical harmonics.) However, a
similar procedurefor the rotations and boosts fails. There exists no normal subgroup
of the BMS groUp which is isomorphic to the Poincare gro1,lp.. Thus. unless one
makes use ofmorestrueture than the behavior of asymptotic symmemes on ~+ (such
as, e.g., the behavior of the asymptotic symmetries at iO) or imposes stronger
conditions on spacetimes than those given in our definition of asymptotic flatness,
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there exists no natural way of picking out a preferred Poincare sUbgroup of asymp
totic symmetries.- The notion of a "pure translation" makes sense for a general
asymptotically Kat spacetime, but the notion of a "pure rotation" or ''pure boost" (as
opposed to a «rotation plus supertranslation" or "boost plus supertranslation") does
not.

The group of asymptotic symmetries at spatial infinity-known as the Spi group
can be defined in a manner closely analogous to the BMS group. The structure of this
group is very similar to that of the BMS group. We refer the reader to Ashtekar and
Hansen (1978) and Asbtekar (1980) for a discussion of its properties. Interestingly,
by restricting consideration to spacetimes which satisfy astronger asymptotic falloff
condition on the Weyl tensor at spatial infinity than that implied by our definition of
asymptotic flatness, it is possible to pick out a preferred Poincare subgroup of the Spi
group (see Ashtekar 1980). A mathematically analogous condition on the Weyl
tensor at null infinity also would allow one to obtain a preferred poincare subgroup
of the BMS group. However, although this additional condition at spatial infinity
appears to be physically reasonable, the analogous condition at null infinity excludes
the possibility of gravitational radiation, and thus is much too stringent a condition
to impose upon general isolated systems.

Finally· we mention an important consequence of our definition of asymptotic
flatness concerning the asymptotic behavior of the curvature as one goes to null
infinity. The physical Ricci tensor vanishes near infinity sothe physical Weyl tensor,
C.d, contains all theinfonnation about the physical curvature. Since the Weyl
tensor is conformally invariant (see appendix D), we have C.d = C.dooM, where
C.dis the unphysical ~eyl tensor. However, it is possible to show (see theorem 11
of Gerocb 1977) that C.d must vanish at j+. Now, let 'Y be any null geodesic in
it from a point p in the physical spacetime to a point q on j +. Let A be a (physical)
affine parameter on~ that q is represented as the limit as Agoes to infinity......and
let k!' denote the tangent to 'Y in this parameterization. The unphysical Weylcurvature
on yneed not satisfy any special property except that it must vanish at q. However,
in going from the unphysical to the physical spacetime, an infinite amount of
"stretching" in thedireetion of kG takes place. It turns out that this causes the physical
Weyl tensor to display the following peeling property: As A -+ 00, we have

CJJk, C~ C~ C~ ( 1 )
Cabcd = T + "'"AT + Ai"" + AT + 0 AS (11.1.26)

where each C!Sk bas bounded components in an asymptotically Minkowskian basis,
and, in the algebraic classification of section 7.3, CJJk, is type IV, CJ£d is type ill,
C~ is type II (or type ll-ll), all with repeated principal null vector kG, while C~
is type I with k4 also being one of its principal null directions. For further discussion
and a proof of this peeling property, we refer the reader to Penrose (I96Sb) and
Geroch (1977).

11.2 Energy
The notiOn of energy and the law of conservation of energy playa key role in all

physical theories. Already in the Newtonian theory of particle motion one bas a
notion of particle energy. In physical theories of broader scope and greater sophis-
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tication, the framework of the physical laws is markedly changed from Newtonian
particle mechanics, but a notion of energy always has remain~ present. Thus, for
example, as discussed in chapter 4, for the theory of a classical field On spacetime
in special relativity. a stress-energy tensor, Tab, is associated with the field. The total
energy of the field associated with a time-translation Killing field ta on a spacelike
Cauchy hypersurface ~ is defined as E = f};Tabnatb

, wherena denotc:s .the unit
normal to~. The condition aa Tab =0 then guarantees that total energy:is conserved,
i.e., is independent of the choice of ~.

In general relativity, the energy properties of matter are, again, represented by a
stress-energy tensor Tab' Thus,. the local energy den~ity of matter as measured by a
given observer remains well defined. However, altbough the condition vatb = 0
may be interpreted as expressing lOCal conservation of theenergy,..Q:lOmentum of
matter (see chapt.er4), this condition does not, in general, lead to a global conser
vation law,3 i.~., a law which stales that the total energy (expressed as an integral
involving Tab over a spacelike hypersurface)is conserved. On physical grounds, this
is not. surprising since. Tab represents only the energy content of mlitter whereas
~gravitatiopal field energy" should make a< contribution to total energy and thus
should appear in any conservation law. However, as already mentioned io<chapter
4, there is no kn0W'nmeaningful notiooof the energy densityoftl,ie gravitational field
in general relativitx. In Newtonian gravity, the energy. density of the gravitational
fielcJ:4 is -(81T)-JIVcPI2. Since in the Newtonian limit, cPcorresponds to a metric
component{see section 4.4a), the most likely candidate for the energy density of the
gravitational field in general relativity would be an expression quadratic. in the first
derivativesofthemetric~ However, since no tensor other than Sabitself can be
construoted locally from only the coordinate basis components of sim and their first
derivatives, a meaningful expression quadratic in first derivatives of the metric can
be obtained only if one has additional structure on spacetime, such asa.preferred
coordinate system or a decomposition of the spaceti~ metric into a "background
part" and a "dynamical part" (so that, say,.< one Could take derivatives of the
"dynamical part"of the metric with respect to the derivative operator associated with
the background part). Such additional structure would be completely counter to the
spirit of general relativity,which views the spacetime metric as fully describing all
aspects of spacetime structure and the gravitational field. While it remains con
ceivable that one could construct the needed extra structure nonlocally out of the
spacetime metric, it seems highly unlikely that a generally applicable prescription
existsfor Obtaining a physicallymeaningfullooal expression for gravitational energy
density analogous te the Newtonian formula. No other reasonable candidates for a
local expression for gravitational field energy density have been found.1n particular,
a local tensor expression involving the spacetime curvature in higher than.linear

3. An exception occurs if a Killing vector field t" is present in the spacetime. In that case
V"(T""t~ = (V"T.,.)t· +. T""V"t b = 0, so fIoXu,t·n" is conserved, i.e., independent ofchoice of Cauchy
surface I.

4. Newtonill)1 gravity. can be fonni!lated in a manner when: no preferred Galilean frames exist
(Ti'autmim 1965). When· this is done, VI:/> becomes gauge dependent and the Newtonian (onnula for
graVitational eriergy density suffers from many of the same·difficUlties as occur in genCral relativity.
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order-such as the Bel-RQbinson tensor (problem 6 of chapter 4).-does not even
have the dimensions of energy density [Le., (length)-2 in units with G = c = 1], so
one would need to introduce constants of nature other than G and c into such an
~xpression if it were to represent gravitational field energy.

However, despite the absence of a.notion of. energy density of the gravitational
field, there does exist a useful and meaningful notion of the total energy of an
isplated system, i.e., more precisely, the total energy-momentum 4-vector present
in an asymptotically flat spacetime. The first step toward obtaining such a notion is
to view an isolated system in general relativity as being analogous>t9 a particle in
special rel!lPvity. In special relativity. a particle is assigned an energy-momentum
4-vector pa. The energy of the particle is taken to be the time component of this
vector, Le., with respect .to II time translation Killing field ~a, we have E = - Pa~a.

Furthermore, the mass oCthe particle is given by M = (-Pap~I/2, so if the particle
is "at rest" with respect to ~a, we have E =.M. Thus, a knowledge of tile "rest.frame"
Killing field ~a together with the mass, M, of the particle determines its 4-momentum
pa. Our strategy for determining the.4-momentum of an isolated system in general
relativity will be to begin with static spacetimes where a natural "rest frame" Killing
field is given to us. Then we shall define the total mass of a static asymptotically flat
spacetime by examining the influence ofthe gravitational field on distant test bodies.
Indeed, we have done this already for the Schwarzschildspacetime in chapter 6.
From the results of section 6.3, it follows that test bodies in the Schwarzschild
spacetime in orbits with r » M behave just like test bodies in the gravitational field
of a body of mass At in Newtonian gravity. Thus, in chapter 6 we identified the
parameter M of the Schwarzschild metric as representing the total mass of the
spacetime. We now shall generidize this result.

We begin by recalling that in the Newtonian theory of gravity, the Newtonian
potential q, satisfies Laplace's eqJ,lation in the exterior, vacuum region,

V241 = 0 (11.2.1)

(11.2.2)

Therefore, one has a multipole expansion for 41, and the mass, M, of an isolated
system may be defined as minus the coefficient of the leading order term (Le., the
monopole, 1/r, term) of this multipole expansion. An equivalent, but more physical,
characterization of total mass--:which also refers only to the asymptotic properties
of the gravitational field-is given by the "Gauss's law" formula

1 L- AM =- V41· N dA
417' s

Here the integral is taken over any topological2-sphere, S, which encloses all the
sources and II is the unit outward normal to S. The integral is independent of choice
of S because of equation (l1.2.1),-fnd it is easily seen to agree with the multipole
expansion definition of M. Since V41 is the force that must be exerted on a unit
test mass to "hold itih place," w~ see from equation (11.2.2) that 41TM is just the
total outward force that must be applied to hold in place test matter with unit surface
mass density distributed over S.
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Consider, now, a static, asymptotically fiat spacetime which is vacuum in a
neighborhood of infinity and whose timelike Killing vector field €a is normalized so
that the "redshift factor," V • (-€a~")1/2, approaches I at infinity. In a static
spacetime the notion of "staying in place" is well defined; it means following an orbit
of the Killing field €a. The acceleration of such an orbit is

ab == (f'/V)Va(€b/V) = ~2~a~€b (11.2.3)

Thus, the local force which must be exerted on a unit test mass to hold it in place
is given by equation (11.2.3). However~ if we choose to calculate the force which
must be applied by a distant observer at infinity (e.g., by means of a long string),
we find that this force .differs from the local force by a factor of V (see problem 4
ofchapter 6). Consider a topological2-sphere S lying in the hypersurface orthogonal
to f'. The quantity

(11.2.4)

may be interpreted as the total outward force that must be exerted by a distant
observer to keep in place~unit surface mass density distributed over S. Here we use
the natural volume element on S induced by the spacetime metric, and Na is the unit
"outward pointing" normal to S which is orthogonal·to €a. Using Killing's equation
~€b = \tag], we may rewrite equation (11.2.4) as

F =~ Is NabVa€bdA =-i Is eabcdVc~d , (11.2.5)

where, in the first line, Nab = 2v- l g[aNb] is the normal "bi-vector" to S, and; in the
second line eabcd is the volume element on spacetime associated with the spacetime
metric and the integrand is viewed as two-form, a, to be integrated over the two
dimensional submanifold S (see appendix B). (The orientation of Eabcd is chosen so
that Eabcd = -6N(abEcd], where Ecd is the volume element on S.) However, this inte
grand satisfies

E efab\}[€abedvc€d] = EefabEabcd\}vc~d
= -4\}v[e€,]

=4\}Vf€e

= -4ReJ€! '. (11.2.6)

where equation (B.2.13) was used in the second line and equation (C.3.9) was used
in the last line. Hence, by multiplying equation (11.2.6) by Edmn and contracting over
e, we find

(11.2.7)
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which vanishes in the vacuum region, Rab = O. Thus, in the vacuum region, the
differential form am, = Eabcd Vc~d satisfies

dOt = 0 (11.2.8)

Consequently, applying Stokes's theorem (theorem B.2.1) to the volume bounded by
any two spheres 5 and 5' in the exterior vacuum region, we see that the integral on
the right-hand side 'Of equation (11.2.5) is independent of choice of S, just as the
integniI in equation (11.2.2) was independent of5 in the Newtonian case. Since both
integrals represent the same physical quantity, it is natural to identify the left-hand
sides of these equations as well. Thus, we are led to the following definition of the
total mass of,a static, asymptotically flat spacetime which is vacuum in the exterior
region,

M = ...; 8~ Is Eabcdvc~d (11.2.9)

Note that the independence of the right-hand side of equation (11.2.9) on the choice
of S depends only 'On the fact that ~G is a Killing field. Thus, we also may adopt
equation (11 .2.9) as the definition of total mass in all stationary asymptotically flat
spacetimes which are vacuum near infinity.· (If Tab "* 0 near infinity but approaches
zero sufficiently rapidly for the spacetime to be asymptotically flat, eq. [11.2.9] may
still be used to define M provided that the limit as the 2-sphere 5 "goes to infinity"
is taken.) The definition (l1.2.9)-first given by Komar (l959)-provides a fully
satisfactory notion of the total mass in stationary, asymptotically flat spacetimes.
Note, in addition, that it has the desirable feature of expressing M in stationary
spacetimes as a conServed quantity associated with the time translation symmetry.

If the 2-sphere S is the boundary of a spacelike hypersurface I such that I U 5
is a compact manifold With boundary (see appendix B), then we may apply Stokes's
theorem to convert equation (11.2.9) to a volume integral over I,

M = -8~LOt= - 8~ II dOt

= "'T 8~1~AEab]cdVC~d}

= - _1_ f Rdf~E.ab
47T .h:

= ..!.. f RabnG~b dV
47T JI

= 21(Tab .... kTg.)n G~b dV

Here in the 1:bir.4line equation (11..2.7) was used, in the fourth line nG is the unit
future pointing oonna! toI (so that Eec·•. :::::ndEtiabc is. the natural volume element on
Ii represented by dV), and EPtstein's equation was used to get the final expression.
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For a comparison of this formula with formulas holding in linearized gravity and in
the static, spherically symmetric case, see problems 4 and 5.

We turn, now, to the definition of energy-momentum in the general, non
stationary, asymptotically fiat case. Since there now is no notion of "holding a test
mass in place" and thus no notion of "gravitational force," it is not obvious that a
well-defined notion of mass or energy-momentum exists. Furthennore, it is far from
clear to what vector space an "energy-momentum vector" of the spacetime should
belong. However, we shall see that the properties of asymptotically fiat spacetimes
give just enough structure to define the energy-momentum vector, Pa, in terms of an
asymptotic limit as one "goes to infinity" and that the properties of infinity provide
an appropriate vector space structure for Pa. From general considerations, we expect
that two types of limits as one goes to infinity should be of interest for the definition
of energy-momentum: (1) One could try to obtain a notion of the total energy
momentum at a given "time" at spatial infinity by considering an asymptotically fiat
spacelike hypersurface I-i.e., a spacelike hypersurface which is C>I at ;o-and
defining the total energy, E, and total molllentum p,. on I in a manner analogous to
the definition ofM in a stationary spacetime. For this definition to lead to a meaning
ful notion of energy-momentum at spatial infinity, E and Pa should depend only on
the'asymptotic behavior of I, should be conserved (Le., be unchanged if I under
goes a "time translation" near infinity), and should transform as a 4-vector if I
undergoes a "Lorentz boost" near infinity. If these properties are satisfied, we may
define the total energy-momentum, Pa, at spatial infinity as a vector in the cotangent
space at ;0 such that total energy associated withany spacelike hypersurface I which
is C>I at;O is given by E = -Pan a, where na is the unit normal to I at ;0, while the
projection of Pa into I would yield the total momentufil pa at the "time" represented
by I. (2) One could try to obtain a notion of the energy-momentum at a fixed
"retarded tillle" by considering the behavior of the spacetime geometry as one goes
to null infinity on an asYDlPtotically null surface, I, such as the surfaces II or I 2
shown in Figure 4.3 of chapter 4. This would enable one to study the energy and
momentum carried away by gravitational radiation. Again, the total energy and
momentum associated with I should depend only on the asymptotic properties of I.
However, unlike the situation at ;0, a null or asymptotically null hypersurface is not
naturally associated with any preferred "time direction," so we should have to
specify an "asymptotic time translation" as additional input in order to obtain a value
for the total energy E. Fortunately, as mendoned at the end of the previous section,
the asymptotic symmetry group of null infinity has a preferred four-parameter sub
group of translations, so the notion of an "asymptotic time translation" is well
defined. Again, E should transform as the time component of a vector under a change
of the choice of asymptotic time translation. Thus, we seek a definition of energy
momentum such that associated with every cross section, £I, of!J+ (or of !J-), there
should be a linear map from the four-dimensional vector space of BMS translations
into R. In other words, the energy-momentum of each cross section £I at null infinity
should be a vector, Po, in the dual vector-space of the BMS translations. The value
of Po applied to agiven time translation then would be interpreted as the total energy
associated with this time direction at the "retarded time" defined by £I, while its value
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for a spatial translation would be interpreted as the component of momentum in that
spatial direction.

As mentioned above, both of these notions of energy-momentum exist for asymp
totically flat spacetimes. We shall present the definition of energy-momentum at null
infinity and discuss some of its properties, and then merely quote formulas for the
energy-momentum at spatial infinity. The basic idea at null infinity is the following.
As discussed above, in the case of a spacetime with an exact time translation
symmetry, equation (11.2.9) provides a satisfactory definition of mass, and the
integral in that formula is independent of the choice of 2-sphere S. Therefore, in the
general, nonstationary case one might attempt to employ a formula like equation
(11.2.9) to define energy, where ~" now is the generator of an asymptotic time
translation symmetry, or more precisely, a vector field on the physical spacetime
which is a member of the equivalence class associated with a BMS time translation.
The integral now, of course, will depend on the choice of topologically spherical
surface S. However, since Killing's equation is satisfied by~" to a better and better
approximation as one goes to infinity, one might expect that the dependence on S
would become sufficiently weak that the limit as S "goes to infinity" would exist.
More precisely, let {Sa} be a one-parameter family of spheres which, in the un
physical spacetime, approaches the cross section ;;t of '+. We propose defining the
energy, E, associated with the asymptotic time translation ~" by

1
E = -lim - f EflIJedvc€d (11.2.11)

sa....~ 817' Js..

It turns out that the limit on the right-band side of equation (11.2.11) always exists
and is independent of the details of bow Sa approaches ;;t. Indeed, this limit exi.sts
even when ~" is an arbitrary asymptotic symmetry; see Gerocb and Winicour (1981)
for a sketcb of a proof of this result. Furthermore, E bas the desired linear de
pendence on €4. However, it. turns out that E is not invariant under a change of..
choice of representative t' in the equivalence class associated with the given BMS
time transl~on. Thus, E is not "gauge· invariant" in this sense, and equation
(11.2.11), as it stands, fails to define a satisfactory notion of energy at null infinity.

However, this deficiency can be· remedied by itnposing an additional condition on
the representative vector field, ~. As shoWn by Gerocb and Winicour (1981), if one
cbooses e' to satisfy .

Va~ =0 (11.2.12)

in a neighborhood of .,+,then the formula for E becomes well defined, i.e., independent
of the choice of e' within the equivalence class satisfying condition (11.2.12). (Note
that this gauge condition on~ holds automatically when e' is a Killing field.) We adopt
this as our definition of energy at null infmity. The 4-momentum, P", is defined by
allowingtbe linear map defined by the rigbt-bandside of equation (11.2.11) (with gauge
condition [11.2.12) to act on arbitrary BMS translations.
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The definition (11.2.11) of energy at null infinity agrees with the definition given
in coordinate form, prior to the geometric formulation of the notion of asymptotic
flatness, by Bondi, van der Burg, and Metzner (1962), and is refem:d to as the Bondi
energy. It was reformulated in terms of the behavior at9+ of the Weyl curvature and
the shear of the "outgQing" congruence ofnullgeodesics orthogonal to ff in the gauge
(11.1.20) with metric spherical cross sections by Penrose (1963). The type of
"linkage" formulation given above .was introduced by Tamburino and Winicour
(1966) and Winicour (1968), and a demonstration of equivalence with the Penrose
formulation is given byWinicour (1968).

It is of great interest to examine how E changes with time, i.e., how the value of
E associated with a given asymptotic time translation on a cross section ff) differs
from the value ofE associated with the Same asymptotic time translation on a~'later"

cross section ff2• It turns out thatone can express the difference between E[ff2]and
E[ff1] as an integral of a function,f, over the region, V, of 9+ between ff) and f/2'

(11.2.13)

Hence, we may interpret f as the flux of energy carried away to infinity by grav
itational radiation. Remarkably, as originally found by Bondi, van der Burg, and
Metzner (1962) and reformulated in the conformal infinity framework by many
authors (e.g., Penrose 1965b; Winicour 1968; Geroch 1977; Geroch and Winicour
1981),f1s manifestly nonnegative,f ~ O~ Thus, we find thatE decreases with time,
i.e., gravitational radiation always carries positive energy away from a radiating
system.

In our discussion of linearized gravity in section 4.4b, we computed the energy
canied away by gravitational radiatiODc to the low~t nonvanishing approximation by
using the second order Einstein tensor as an effective stress-energy tensor, tab, for the
linearizedgi-avitatiopal field. How does this notion of energy flux in the approxi
mation of section 4.4b compare with the lowest nonvanisDing contribution to the
energy flux calculated from the exact theory described ltbove? First, the energy flux
vector -tao we used in line~gr~vityis llot gauge invariant nor does it give a
manifestly positive enCI¥Y flux at',+. so it cannot agree withj. However, the total
energy flux between stationary periods computed from -tao is gauge invariant and
can be demonstrated to agree with the lowest nonvanishing approximation to the total
radiated energy computed from f as follows: It has been shown (persides and

. Papadopoulos 1919) that in the exact theory, the energy fluxfagrees with the energy
Bux computed from the pseudotensor of Landau and Lifshitz (1962) with an appro
priately chosen flat background metric. (Here a pseudotensorfield is a tensor field
whicbrequires foritsetefiriition additional structure on spacetime, such asa preferred
coordinate system ora preferred background metric.) However, we already re
marked in section4.4b that our tab differs from the lowest nonvanishing (i.e.,
quadratic in 'Yab) approximation to the Landau-Lifshitzpseudotensor by only a term
that makes no contribution to the total energy flux between stationary periods. Thus,
our calculation of the total energy radiated to infinity in the linearized approximation
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by systems which radiate only for a finite period of time is in accord with the general
notion of the energy ftux of gravitational radiation described here.

With regard to the definition of energy-momentum at spatial infinity, a notion of
total energy and momentum on a hypersurface I was given in coordinate form by
Amowitt, Deser. and Misner (1962), motivated by the Hamiltonian formulation of
general relativity. It was reformulated more geometrically in terms of spatial infinity
by Geroch (l972b, 1977), Ashtekar and Hansen (1978), and Ashtekar (1980). We
refer the reader to these references for these reformulations, and merely present here
the formulas for energy and momentum in the original form given by Arnowitt,
Deser, and Misner (ADM). Further discussion of the motivation for these formulas
is given at the end of appendix E. Let (M, gab) be an asymptotically ftat spacetime,
and let I be a spacelike hypersurface which is C>I at iO so that (I, hab, Kab) is an
asymptotically ftat initial data set as defined in section 11.1. Let Xl, X 2, X 3 be asymp
totically Euclidean coordinates for I in the sense of problem 2. We define the total
energy, E, and the coordinate components of total spatial momentum P~ associated
with I by

E= _1_ lim ~ f (iJhe~ - iJhp.p.)N~ cIA .
1617' r__ £J iJxp. ox~

p.•.-I

1 3 fP~ = 817'~ ~ (Kp.~P. - KP.p.N~)dA
p.=1

Here ,2 =[(X 1)2 + (X 2)2 + (X3)2)]J/2, the integrals are taken over a sphere of con
stant r, and Nil is the unit outward normal to this sphere. Note that E does not depend
explicitly on Kab , although it should be remembered that hab and Kab are related by
the constraint equations (10.2.41) and (10.2.42). Equations (11.2.14) and (11.2.15)
can be interpreted as yielding a number, E, and a vector, pll, tangent to I at iO, both
of which can be shown to be independent of the choice of asymptotically Euclidean
coordinates on I. Although it is notobvious from formula (11.2.14); in the station
ary case if we choose I to be asymptotically orthogonal to the timelike Killing field,
then this definition agrees with equation (11.2.9) (see Ashtekar and Magnon
Ashtekar 1979a). Furthermore, the Einstein evolution equations imply that (E, Pll)
"transform" properly under changes of I, Le., that the4-vector Po at iO defined by

Po = -Enll + Pil (11.2.16)

is independent of I, where nil is the future-ditected unit normal to I at ;0. Thus, we
obtain a notion of energy-momentum at spatial infinity-known as the ADM energy
momentum--which satisfies all the desired properties mentione<\ above.

Given the above two notions of energy momentum, a number of interesting issues
arise. One concerns the relation betw~ntheBondi and ADM energies. From the
above definitions, it is natural to interpret the ADM energy as the total energy
available in the spacetime, and the Bondi energy as the energy remaining in the
spacetime at the "retarded time" given by the cross section £f, after emission of
gravitational radiation. If this is so, the Bondi energy should differ from the ADM
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energy by precisely the integral of the energy flux, I, over the portion of 9>+ to the
causal past of ~. However, it is far from obvious from the definitions that this
relation holds. Indeed the Bondi and ADM energy~momentum yectors are defined in
different vector spaces, so it is not even obvious that a comparison can be made.
However,it turns out that each BMS translation at 9>+ (or 9>-) can be naturally
associated with a tangent vector atiO,so a meaningful comparison is possible.
Ashtekar and Magnon-Ashtekar (l979b) have shown that when the integrated energy
flux to the past of ~ is finite, then the Bondi and ADM energies differ by precisely
this amount. Thus, the expected relation between the Bondi and ADM energies does
indeed hold.

An even more fundamental issue concerns the positivity of the Bondi and ADM
energies. As mentioned above, the Bondi energy flux always is positive~ i.e., the
Bondi energy always decreases with time. However, we made no claim above that
the value ofthe Bondi energy itself must be positive, Le., that, even if it started out
positive, it could not pass through zero and become negative, Nor did we assert that
the ADM total energy could never be negative (so that, in view of the above result;
the Bondi energy would start out negative). This raises the following two important
physical issues: (i) Can an isolated system ever have negative total energy content?
(ii) Even if the total energy content always is positive, is the total energy radiated
away by the system bounded by its total ellergy content? In other words: (i) Is the
ADM energy always positive? and (ii)Is the Bondi energy always positive?

In formulating these questions, one should keep in mind that the positivity of
energy can be expected !P hold in general poly·if the spacetime is opnsingular and
conditions are imposed on the matter distributWn. For example, the Schwarzschild
solution'with a negative value of M is an asymptotically flat solution of Einstein's
equation with negative ADM and Bondi energies. However, the negative mass
Schwarzschild spacetime has a. singularity at "r = 0" and, Ulllike the Schwarzschild
soilltion with positive M, it fails to be globally hyperbolic. Furthermore there is no
obvious way of "coveting.up" this<.singularity with physically reasonable matter to
produce a nonsingular interior solution which •. matches on to the negative mass
Schwarzschild exterior. Indeed, equation. (6.2. 10) establishes that any static, spher
ically symmetrlcfluid interior solution for the negative mass Schwarzschild sob-ltion
must have a negative energy. density of matter. Thus, the example of the negative
mass Schwarzschild solution appears to require either singularities or negative en
ergy matter to produce a negative ADM or Bondi energy. Since the physical rele
vance of either of thtr~ possibilities is highly questionable, the issue remain~: In a
nonsingular, asymptotically flat spacetime with locally nonnegative matter energy
density-Leo ,more precisely, with ~satisfying the dominant energy condition (see
chapter9)-canthe ADM or Bondi energy be.negative? This issue is of great
physical significance because if the energy ofan isolated system need not be positive
(or, at least, 1.lounded from below') it is unlikely that any isolated system could be

5. Under a scale transforrnatiOD glib -+ A2g11b with A constant, the energy scales as E -+ AE. Thus,
if E can be negative. no lower bound for E exists.
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absolutely stable, Le., every isolated system eventually should decay to configura
tions of lower and lower energy.

It has proven remarkably difficult to establish the positivity of the ADM and Bondi
energies in general relativity. Numerous authors have obtained proofs of the posi
tivity of ADM energy in special cases or have given general arguments in favor of
the conjecture which, however, fall short of providing a satisfactory, complete proof.
Finally, Schoen and Yau (1981) succeeded in giving a complete proof of the posi
tivity of the ADM energy. Shortly thereafter, a ~greatly simplified proof was given
by Witten (1981) (see also Ashtekar and Horowitz 1982; Taubes and Parker 1982;
and Reula 1982), who used aspinor field to express E as an integral over I of a
manifestly nonnegative quantity: This proofof the positivity of the ADM energy has
been extended to establish the positivity of Bondi energy (Horowitz and Perry 1982;
Schoen and Yau 1982; Ludvigsen and Vickers 1982; Reula and Tod 1984). Thus,
in general relativity the total energy of an isolated system is nonnegative, and this
energy bounds the amount of energy that can be radiated away in the form of
gravitational radiation.

Problems
I. Write out the coordinate components of the gauge condition Va Vb 0 = 0 on j +

in the coordinates (0, U, 8, cfJ) introduced in the text. Show that these relations imply
that glUl' gutl, and gut/> .are all 0 (02) as 0 -+ O.

2. Let (I, hob, Kob) be an asymptotically flat initial data set. Introduce coordinates
X, Y, Z in a neighborhood of A such that the gradients of these functions are
orthonormal at A.Show that the condition that hob is C>o at A implies that in these
coordinates,the unphysical metric components are diag(l, 1,1)' + O(R) as R ~ 0,
where R = (X 2 + y 2 + Z2)1/2, and that the first derivatives of the metric com
ponents are 0(1) as R -+ O. Show further that condition (iii) of the definition of
asymptotically flat initial data set implies 0 = R 2[I + O(R)]. Introduce the coordi
nates x = X/R 2,y = Y/R 2

, Z = Z/R 2 in the physical spacetime and show that the
physical metric components take the form diag( I , I, I ,) + 00/r) as r -+ 00 where
r =(x2 + y2· + Z2)1/2. Show further that the first coordinate derivatives of the,se
components are O(l/r2) asR -+ 00. Finally,'show that condition (iv) implies that the
components of Kob and the physical Ricci tensor (3)Rob in this asymptotically Eu
clidean coordinate system are, respectively, 00/r2

) and 0(I/r3
).

3. a) Show that the Schwarzschild solution is asymptotically flat at future null
infinity.

b) Show that every t = constant hypersurface in the Schwarzschild solution is an
asymptotically flat initial data set.

(In fact, the Schwarzschild spacetime satisfies all the conditions of our definition
of asymptotic flatness at spatial and nuU infinity, not just the above separate proper
ties. For a proof, see Ashtekar and Hansen 1978.)
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4. Consider a stationary solution with stress-energy Tab in the context of linearized
gravity (see section 4.4). Choose a global inertial coordinate system for the flat
metric 1J4b $0 that the "time direction" (a/ iJt)a of this coordinate system agrees with
the stationary Killing field to zeroth order.

a) Show that the conservation equation, aaTab ;: 0, implies I fp."d 3x ;: 0, where
the integral is taken over at::;;•. constant slice and p, and v take any values except
p, = v;: 0 (where XO = t).

b) Show, therefore, that to first order in deviation from flatness, the general
formula (l 1.2.10)forM in a stationary spacetime reduces toM = I Tood 3x, i.e., we
obtain the usu8I formula of special relativity. Note, however, that the Komar integral
(11.2.9) taken over a finite sphere lying within the matter distribution does not, in
general, equal the mass contained within that sphere.

S. a) Calculate the right side of equation (11.2.9) for the Schwarzschild solution
and show that we get the Schwarzschild mass parameter M. Thus, for a static,
spherically symmetric fluid star we have two formulas for M, namely equation
(6.2.10) and equation (11.2.10).

b) Show that the equality of the two formulas (6.2.10) and (11.2.10) for M yields
the relation

(
2m (T»)1/2II.(p + 3p)e· dV = II. P 1 - --;- dV,

where the integral is taken over a hypersurface I orthogonal to the static Killing field
~a, dV denotes the natural volume element on I, and q, !iii!! ~ In(_~~a) is the general
relativistic analog of the Newtonian grayitational potential (see section 6.2).

c) Put in. the G's and c's in the formula of part (b) and examine the Newtonian
limit, C -+ 00. In this limit both sides of tile above equation reduce to the rest mass
of the tJuid. Show that to the next nonvanishing approximation in 1/c, the equation
of part (b) yields

E, = -2K ,

where E, is given by the usual Newtonian formula for gravitational potential energy,
and K iii ! II. P dV, S() that in the case of a monatomic ideal gas, K is just the total
th4mnal energy. Thus, the equation of part (b) may be viewed as the general relativ
istic version of the Newtonian virial theorem.

6. In an axisymmetric, asymptotically flat spacetime with axial Killing field 1/1', we
may define the total angular momentum, J, by

J = 2- [ Eabctl VCtit' ,
161T Js

where the integral is taken over a sphere, S, in the asymptotic region where tJJ is
assumed to vl,lllish. (Note the factor of -2 difference between this formula and the
formula [11.2.9] for M.)
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a) Parallel the arguments given in section 11.2 for M to show that J is independent
of S and that J is given by

J = - LTabnat/i dV ,

where the hypersurface I is chosen so that t/J" is tangent to I. Note that the fact that
J is independent of S can be interpreted as saying that in an axisymmetric spacetime
angular mo~tum cannot be radiated away by gravitational radiation.

b) Show that J = 0 in any static, axisymmetric spacetime, i.e., a spacetime
which possesses a hypersurface orthogonal timelike Killing field ~a with ~"t/Ja = O.

c) Calculate J for the charged Kerr metric (eq. [12.3.1] of chapter 12) and show
thatJ = Ma.

(For discussions of the definition of angular momentum in nonaxisymmetric
asymptotically flat spacetimes, see Ashtekar 1980, Ashte~ and Streubel 1981;
Geroch and Wiili.cour 1981, and Ashtekar and Winicour 1982.)



TWELVE

BLAGKHOLES

In chapter 6, we found that a sufficiently massive, cold, spherical fluid body cann<>t
exist in hydrostatic equilibrium and, hence, must undergo complete gravitational
collapse. The resulting spacetime structure was depicted in Figure 6.11. The most
striking feature of this spacetime is that a black hole-i.e., a "region of no
escape"-is produced. Any observer or light ray that enters region n of Figure 6.11
never will be able to escape from this region and, indeed, will end his existence in
the spacetime singularity labeled by the coordinate value r = O. Furthermore, this
spacetime singularity at r = 0 produced by spherical collapse is contained within the
black hole and, thus, cannot be "seen" by any observer who remains outside the
black hole.

The purpose of this chapter is to generalize these ideas to the nonspherical case.
Our analysis of spherical gravitational collapse was greatly aided by the fact that the
only spherically symmetric, vacuum solution of Einstein's equation is the Schwarzs
child solution, and thus ~e Schwarzschild metric must describe the spacetime
geometry exterior to any spherical collapsing body. However, no such simplication
occurs in the nonspherical case, and, indeed, the details of nonspherical collapse
have been studied only for linear perturbations of spherical collapse (Price 1972a, b)
and in numerical investigations. Nevertheless, there are reasons for believing that the
basic picture of collapse ~ill remain the same as in the spherical case, namely, that .
a black bole will form and the spacetime singularity resulting from the gravitational
collapse will be bidden within the black hole. This issue is discussed in section 12.1.
A precise definition of a black hole is given there. Some basic properties of black
holes, including the law of area increase, then are proven in section 12.2.

Stationary black holes are of considerable physical interest since one would expect
any black hole formed by gravitational collapse to "settle down" to a stationary final
state. Remarkably, it bas been possible to show that the two-parameter family of
solutions-characterized by total mass, M, and total angular momentum, J-found
by Kerr (1963) are the only vacuum solutions of Einstein's equation describing
stationary black holes. The Kerr metric and its charged generalization are discussed
in section 12.3, and the stationary black hole uniqueness results are summarized at
the end of that section.

A surprising development in the theory of black holes was the discovery that
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energy can be extracted from a "rotating" black hole, Le., a Kerr black hole with
J '* O. Although nothing can escape from a black hole, it is possible to make a black
hole "swallow" a particle or wave with negative total energy. We describe how this
can be done in section 12.4 and also discuss the limitations on energy extraction
imposed by the law of area increase.

'Finally, one of the most intriguing aspects of the theory of black holes is the
analogy between the laws of black hole physics and the ordinary laws of thermo
dynamics. At first sight, it would appear that the nature of these laws hardly could
be more different. The laws of black hole physics are rigorous theorems in differ
ential geometry, while the laws of thermodynamics are only macroscopic approxi
mations to complicated, exact microscopic laws of physics. Nevertheless, a remark
ably close mathematical analogy exists between these laws, highlighted by the
analogy between the law of area in~ for black holes and the law of entropy
increase for thermodynamic systems. This analogy is developed in section 12.5.
Further developments resulting from investigations of quantum effects near black
holes are discussed in chapter 14.

11.1 Blaek Holes and the Cosmic Censor Conjecture
Our first task in the investigation of nonspherical collapse is to formulate a precise

notion of a black hole. Basically, we wish to define a black hole as a "region of no
escape" like region n of Figure 6.11, Le., in physical terms a region of spacetime
where gravity is so strong that any particle or light ray entering that region never can
escape from it. However, this notion is not properly captured by defining a black hole
in a spacetime (M, gab) to be simply a subset A C M such that for any pointpEA
we haver (p) C A. With that definition the causal future of any set in any spacetime
would be called a black hole. Thus, we must take much greater care to specify what
portion of spacetime the impossibility of"escaping to" should be considered grounds
for calling a region a black hole.

For asymptotically flat spacetimes, the impossibility of escaping to future null
infinity, .1+, provides an appropriate characterization of a black hole. The crucial
property of region n of Figure 6.11 which distinguishes it from, say, the causal
future of a point in Minkowski spacetime is that all of region n is confined to "small
r," i.e., region ndoes not extend "out to infinity." This is illustrated by examination
of a conformal diagram of the spherical collapse spacetime (M, gab) of Figure 6.11,
that is, a spacetime diagram of the unphysical spacetime (M, gab) associated wit9
(M, gab) (see chapter 11). This is shown in Figure 12.1. Another representation of M
is given in Figure 12.2. As illustrated by these diagrams, the causal past of future
null infinity, r(!J+), is nonsmgular, but it does not include the entire physical
spacetime; region n is not contained inr(!J+). In contrast, for Minkowski spacetime
r(!J+) includes the entire physical spacetime;

The idea that r(!J+) be "well behaved" but not include the entire spacetime leads
to the following definition of a black hole. Let (M, gab) be an asymptotically flat
spacetime with associated unphysical spacetime (M, gab). We say that (M, ~ab) is
strongly asymptotically predictable if in the unphysical spacetime there is Mopen
region V C M with M n r(!J+) C V such that (V,gab) is globally hyperbolic.
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Fig. 12.1. A confonnal diagram of the same spacetime as shown in Figures 6.11
and 6.12. From this confonnaI diaJl'8l11. it is apparent that' region·n of the physical
spacetime lies outsideofT(.1+). In contrast, in Figure 11.1. T(.1+) includes the
entire physical spacetime.

Event Horizon" -------'"~

.0
I

12-2

Fig. 12.2. Another representation of the closure ,Ai. of the physical spacetime
depicted in Figure 12.1. As in Figure 12.1, the angular dimensions are suppressed so
each point in this diagram (ex~ptthoseat r = 0 and the point iO) represents a
2-sphere.

[Here, the closure of M n r(~+) is taken in the unphysical spacetime it, so, in
particular, iO,e= V. ()w'de.~nition,ot strong asymptotic predictability differs,slightly
from that given byHawkiJlg<aQd Ellis 1973 since, iItparticular, we use a different
formulation of the notion of asymptotic flatness.] A stro~gly asymptotically predict
able spacetime is said to contain a black hole if M is not contained in F(!J+),. The
bltlckholer(tgi()~l,l1, ()fsuch a,s~timeJs definedw beB = [M - r(!J+)}. and
the b()\ludary of Bin M, H =j-(~+) n¥, is called the event horizon.

It s&ould be noted that the requirementtlia!tV, gab) be a globally hyperbolic region

1. The white hole region of a strongly asymptOtically "retrodictable" spacetime is defined similarly
by replacing T(~+) with r(.1-).
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of the unphysical spacetime implies that (M n V, gab) is a globally hyperbolic region
of the physical spacetime. Namely, according to property (1) of the definition of
asymptotic flatness given in chapter 11, we have M = M- []+(i~ u r(i~].
Hence, a Cauchy surface for (v, gab) which passes through iOwill be a Cauchy surface
for (M n v,g,;,,). However, since gab and gab = nZgab have the same causal sttue
ture, this implies that (M n V, gab) is globally hyperbolic.

By theorem 8.3.14, we can foliate M n V with Cauchy surfaces I,. For all
q EM n Vandall I, with q E ]+(I,), every past directed inextendible causal
curve from q intersects I,. This can be interpreted as saying that-apart from a
possible "initial singularity" such as the white hole singularity of Figure 6.9-no
singularities are "visible" to any observer in [M n V] ::> [M nr(~+)]. In other
words, in a stronglyasymprotically predictable spacetime, all observers outside the
black hole or on the event horizon cannof"see" any singularities develop at a finite
"time." In contrast, an asymptotically flat spaeetimewhkh fails to be strongly
asymptotically predictable is said to possess a naked singularity. Note that in a
strongly asymptotically predictable spacetime it still is possible for the event horizon
to be singular in the sense that there may exist incomplete causal geodesics (with
respect to the physical metric, gab) in M n r(~+) which are inextendible in M. In
particular, strong asymptotic>predictability does not exclude the possibility that the
null geodesic generators of the event horizon may be future incomplete. It is usually
assumed in discussionaofblack holes that the event horizon is nonsingular, but since
we shall not need any conditions beyond strong asymptotic predictability for the
theorems proven beJow, we shall not impose any such further conditions here. J,

Note also that we have defined the notion of a black hole onl~ for strongly
asymptotically predictable spacetimes. The abovedefinitioll could be given without
modification for asymptoticallyftat spacetimes which are not strongly asymptotically
predictable, but we choose not to do so since this case is not believed to be physically
relevant (see below) and virtually all properties of black hOles derived below require
strong asymptotic predictability. The notion of a black hole also could be defined for
some non-asymptotically flat spacetimes where a suitable notion'of "infinity" can be
introduced, such as spacetimes which asymptotically approach an "open"
(k = 0, .... 1) Robertson-Walker universe. On the other hand, there appears to be no
natural notion ora black hole in a ~closed" (k = +1) Robertson-Walker universe
which recollapses to a final singularity, since there· is no natural region to which
"escape" can be attempted. Of course, an approximate notion of a black hole still
exists for any region of a closed Robertson-Walker universe that can be treated as
an isolated system.

Now that we have given a precise definition of ablack hole in a strongly asymp
totically predictable spacetime, we may inquire as to the physical relevance of this
definition. In the spherical case discussed in section 6.4 above, we have seen that
gravitational collapse results in a strongly asymptotically predictable spacetime
possessing a singularity contained within a black hOle. What type of spacetime
results from nonspherical collapse? First, we may invoke the singularity theorems to
conclude thm..:-at·least for sufficiently small deviations from spherical synunetry-a
spacetime singularity must occur in gravitational collapse; i.e., the occurrence of a
singularity is not merely an artifact of the assumption of exact spherical symmetry.
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To see this. we argue as follows: Starting from initial data (I. h,u" Kab) for spherical
collapse. we find that trapped surfaces form in D+(I) since all the spheres with
r < 2M in the exterior Schwarzschild region are trapped sutfaces contained within
D+(I). It then follows from theorem 10.2.2 that for all initial data sufficiently~
(I.hab.Kab). trapped surfaces also must (}¢Cur in the m~.imal Cauchy development
of these data. (Even if departures from spherical. symmetry are large, Schoen and
Yau 1983 baveproven that trapped surfaces always must occur when enough matter
is condensed ina small region.) We then may appeal to theorem 9.5.3 or theorem
9.s.4 to establish the cccurrence of a spacetime singularity.

However. the existence of a spacetime singularity does not establish the existence
of a black bole. s'ince the singularity could be.naked. Le.• the spacetime could fail
to be .stronglyasymptotically predictable. Thestrongest<1irect evidenc~ that naked
singularities do not occur~ from a study of linear perturbations of the Schwarzs
child spacetime. SinceJbemeuj~ peJ1urbation~uatiQIlS (see section 7.5) are of the
form to which theorem 10.1 ..2 applies, we know that an initially well behaved
perturbation on a Cauchy suttllCe f~ the globally hyperbolic region (V n M, gab) will
evolve to a nonsingular solution in V n M, However, if there exists a s~lutionofthe

linear perturbation ~uations which "blows up" -i.e., is unbounded in V n M--tbis
~ould indicate that the full, nonlinear equations might yield a naked singularity in
V n M even for data arbitrarily close to that for Schwarzschild. On the other band,
if all solutions of the linear perturbation ~uations are bounded in Vn M by an
appropriate norm of the initial data, this would suggest that the solutions of the full.
nonlinear equations would benonsingular in V.n Mfor initial data sufficiently close
to that for Schwarzscbild. Studies of the behavior of soiutions of the perturbation
equations have sbown that tbe\solutions are bounded..in V n M .(see Wald 19790).
This suggests that gravitational collapse with sU,fflciently small departures from
spherical symmetry will PJ'Qduce a black hole rather than a naked singularity. In
addition, numerical studies of linear perturbations ofthe Kerr black bole (see .section
12;3) have indicated that it also is stable (Press and Teukolsky 1973).

Further supportJor the conclusion that gravitational collapse always produces a
black hole.rather than a naked singularity comes from the fact that a number of
theoretical attempts to construct.¥OWlterexamples. all have failed in such a way as to
suggest a conspiracy ofnature against producing naked singularities{see. e.g.• WAId
19740; Jang and Wald 1977; Gibbons et ai. 1983). In addition. although argu~nts

based on aesthetic appeal always should be viewed with suspicion, as we sball
attempt to illustrate in this chapter and in chapter 14, the study of the properties of
black holes bas led to so many remarkable theoretical developments. that it is very
difficult tQ.believe tbatblaek boles. are Pot relevant pllysically.

Thus, the above ~nsiderations have led to the con~ture that nature "censors"
naked singularities. We may state tbis conjeeture in physical terms as follows:

COSMIC CENSOR. CoNJECTURE (version 1; physicalfiJrmulation). The complete grav
itational collapse Qfa bodY always results in a black h()le rather than a naked
singularity; i.e., all smgularities of gravitational collapse are "hidden" within black
boles, where they cannot be "seen" by distant observers.
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The above fonnulation of the cosmic censor conjecture is imprecise because,
among other reasons, we have not specified what conditions the matter fields must
satisfy. Clearly, the conjecture is false without any conditions imposed on the matter
fields, since one could write down any spacetime with a naked singularity and call
it a solution of Einstein's equation by defining the stress-energy, Tab, to be
(1/8'77')Oal>. Two natural conditions to impose on the matter sources are that (1) Tab
satisfy an energy condition (e.g., the dominant energy condition) and that (2) the
coupled Einstein-matter field equations admit a well posed initial value fonnulation.
However, perfect fluids satisfy both of these conditions, but violations of the cosmic
censor conjecture with perfect fluid matter can be achieved. This can be understood
from the fact that even in Minkowski spacetime the dynamical evolution of a perfect
fluid can result in singularities such as those caused by "shell crossings" or the
formation of shocks. In the coupled Einstein-perfect fluid system these types of
singularities still may occur, and, indeed, because of Einstein's equation, the singu
larities in Tab imply singularities· of the spacetime curvature as well. Thus, naked
singularities can occur in the gravitational collapse ofa perfect fluid (Yodzis, Seifert,
and Miiller zom Hagen 1973, 1974). However, a perfect fluid is really a macroscopic
approximation to the stnlcture of matter rather than a fundamental description of it.
Thus, the appearance of singularities in· the dynamical evolution of a fluid
particularly the relatively ."mild" types of singularities produced by shell crossings
or shocks-may be viewed as representing simply the breakdown of our macroscopic
approximation rather than the occurrence of a tnle, physical singularity of grav
itational collapse like the r ::: o singularity of the Schwarzschild solution. This
suggests that for a precise fonnulation ofthe cosmic censor conjecture we should
require the matter·tields to be "fundamental." ·We shall·take this to mean that the
coupled Einstein-matter field equations c.an be put in the form of a second order f

qual!ilinear, diagonal, hyperbolic system (see section 10.1), since the fundamental
classical fields which are known to accurately describe nature-namely, gravity and
electromagnetism---are of this fonn. Thus, we are led to the following as one version
of a mathematically precise fonnulation of the cosmic censor conjecture.

COSMIC CENSOR CONJECTt.JIW (version 1.. precisefonnulation).Let (I, hab,Kab) be.an
asymptotically flat ~tial data set (see chapter 11) for Einstein's equation with
(I, hab) a complete Riemannianmanifold. Let the mattersoul'ces be such that Tab
satisfies the dominant energy condition and. the coupled Einstein-matter field equa
tions are of the form (10.1.21). In addition .let the ~tial data for the matter fields
on I satisfy appropriate asymptotic falloff conditions at spatial infinity. Then the
maximal Cauchy evolution ()f these initial data (see section 10.2) is an asymptotic~ly

flat, strongly asymptotically predictable spacetime.

The issue of whether the cosmic censor conjecture is correct remains the key
unresolved issue in the theory of grayWitional ~llapse. The physical relevance of
black holes depends in large measure on the validity of this conjecture.

If the above version of the cosmic censOr conjecture is correct, it is interesting to
inquire as to whether its validity, in essence, stems from a more general, funda-
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mental property of Einstein's equation. Penrose (1979) has suggested that this may
be the case. He has conjectured what is, in essence, a stronger version of the cosmic
censor conjecture which may be stated in physical terms as follows:

CosMIC CENSOR CoNJECTURE (version 2; physicalformulation). AU physically rea
sonable spacetimes are globally hyperbolic, Le., apart from a possible initial singu
larity (such as the "big bang" singularity) no singularity is ever "visible" to any
observer.

This version of the cosmic censor conjecture is stronger than version 1 in that it
applies to any observer in any spacetime, not just to distant observers in asymp
totically flat spacetimes. Howev«, version 2 does not imply version 1, since, if,
starting from asymptotically flat initial data, a singularity is formed which propagates
out to null infinity and destroys asymptotic flatness while preserving glot>al hyper
bolicity, this would .violate version 1 but not version 2.

The meaning of the second version of the cosmic censor conjecture may be
reformulated more precisely asfoIlows. First, it certainly is not ttue that every
inextendible solution of Einstein's equation is globally hyperbolic. By cutting holes
in Minkowski spacetime and then making topological identifications so that not all
of the missing points can be restored, we easily may produce an inextendible,
non-globally hyperbolic spacetime. To avoid the possibility of making
"unnecessary" and ..artificial" singularities of this sort, we may give a precise
formulation of the notion that all reasonable spacetimes are globally hyperbolic as
meaning that the maximal Cauchy development of nonsingular initial data(satisfying
appropriate asymptotic conditions) always yields an inextendible spacetime. How
ever, this property of solutions of Einstein's equation also is known to be false. In
particular, the maximal Cauchy developments of initial data for the Taub universe
(Misner 1967;Hawking andEUis 1973) and the Ket1'solution (see section 12.3) are
known to be extendible. However, in the Taub case, the extension violates strong
causality on· the Gauchy horizoQ, and there is good reason to believe that if one
slightly perturbs the initial data for the Taub universe in a suitable way, one would
convert the Cauchy. horizon to a singularity, thereby making the maximal ~uchy
development inextendiPle. In the Kerr case, as discussed below, any observer on the
Cauchy horizon of the extended spacetime can "see" the entire, noncompact initial
data surface. One would expect that a suitably chosen smaIl perturbation of the initial
data which extends out to infinity (but does not violate asymptotic flatness) should
produce an "infinite blueshift" singularity on the Cauchy horizon. Indeed, such
behavior has been explicitly deJno~ted to occur in the Reissner-Noidstrom space
time (Chandrasekhar and Hartle 1982), whose properties are closely analqgousto
those of Kerr. 'Thus, although some violations of global hyperbolicity are known to
occur, it appears that in these cases small perturbations may destroy the extendibility
of the maximal Cauchy development, so that perhaps no "generic" violations are
possible. Since it is difficult to give a precise definition of the term "generic," we
formulate a precise statement of the second version of the cosmic censor conjecture
as follows (Geroch and Horowitz 1979; Penrose 1979):
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COSMIC CENSOR CONJECTIJRE(version 2; precise formulation). Let (I, hob, Kob) be an
initial data set for Einstein's equation, with (1, hob) a complete Riemannian manifold
and with the Einstein-matter equations of the form (10.1.21) with Tob satisfying the
dominant energy condition. Then, if the maximal Cauchy development of this initial
data is extendible, for each p E H+(1) in any extension, either strong causality is
violated at p or 1 (p) n I is noncompact.

Apart from the absence of known counterexamples, there is virtually no evidence
for or against the validity of this second version of the cosmic censor conjecture.
Indeed, except for the singularity theorems (seech~ter 9), very little is known about
the general. global properties of solutions of Einstein's equation.
. Let us return. now, to the subject of gravitational collapse and black holes. We

shallassume the Validity of the first version ·of the cosmic censor conjecture and shall
briefly discuss three processes by which gravitational collapse to a black hole plau
sibly may occur in nature. The first process is the gravitational collapse of a star. The
evolutionary history of a star was outlined briefly in section 6.2, where it was
concluded that if a spherical star has mass greater than about 2 solar masses, it
ultimately must undergo gravitational collapse, unless, ofcourse, it can shed enough
mass during the. course of its evolution to drop below this upper mass limit. Rotation
of the star may raise the upper mass limit, but since only one pulsar (i.e;, neutron
star) has been observed to be rotating rapidly enough to possibly affect its equi
librium structure significantly (Backer et al. 1982), it appears reasonable to take the
spherical upper mass limit as generally applicable. Since many stars in our galaxy
are observed to have. mass greater than.. 2 solar masses and since the evolutionary
lifetime of massive stars is much less than the age of our Galaxy, it would be very
difficult to avQid the conclusion that many black holes have been produced in our
Galaxy by this process. However, since there are great uncertainties as to the mass
loss of stars-occurring either gradually during their evolution (particularly in the
red giant pltase) or violently in a supernova explosion at the ,endpoint of their
evolution--there are no reliable estimates as to precisely how many such black holes
should have been produced. Perhaps the best guess can be obtained from the obser- .
vational estimate that supernovae occur in our Galaxy at the rate of several per
century. Thus at least about 108 supernovae should have occurredl;iuring the lifetime
of our Galaxy, so perhaps ....., 108 black holes may have fotJined. Of course, this
estimate may be far too high since many supernovae may result in neutron stars rather
than black holes, or it may be far too low since gravitational collapse to a black hole
without the violent blowing off of the outer layers of a star may occur more fre
quently than supernovae. It should be noted that black holes formed by stellar
collapse must lie in the relatively narrow mass range 2 M0 ::5 M ::5 100 M0 since
stars with M ::5 2 M 0 should not collapse, while ordinary stars with M ~ 100 M0
do not exist on accountof pulsational instabilities.

A second process by which black holes may be formed in nature involves the
gravitational collapse of the entire central core of a dense cluster of stars. During the
dynamical evolution of a star cluster, gravitational encounters occasionally will
result in a large transfer of energy to a single star, which then will "evaporate" from
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the cluster. The remaining stars thereby lose energy and become more tightly grav
itationally bound. Thus, the central portion of a star cluster tends to become more
and more dense as the cluster evolves. Eventually a stage will be reached where the
core becomes so dense that tidal disruption of the stars will take place. It is difficult
to predict precisely what will bappen after this point, but many scenarios lead to the
formation of a massive black hole (Rees 1978). (Massive black holes at the center
of star clusters also could be produced by the direct collapse of part of the gas cloud
out of which the star cluster originally formed, or by the coalescence and growth of
black holes produced by stellar collapse.) The nuclei of galaxies provide the most
likely sites for the formation of massive black holes by this process. However,l1gain
there are no reliable estimates as to how many galactic nuclei or cores of star clusters
in other regions of a galaxy should contain a massive black hole. The mass of black
holes fonned by this process could range up to a sizable fraction of the mass of the
star cluster, Le., up to -101oM0 for a black hole in the nucleus of a large galaxy.

A third, much more speculative, process by which black holes may have been
produced is by the gravitational collapse of regions of enhanced density in/the early
universe. As discussed in chllPter 5, the universe /lPPCar8 to be homogeneous and
isotropic to an excellent llPproximation on large distance scales. However, the matter
distribution we observe in the present universe certainly is not exactly homogeneous,
so some initial inhomogeneities must have been present in the early universe. Some
infonnation about the initial spectrum of density inhomogeneities on galactic mass
scales can be obtained by .statistical studies of the present clustering behavior of
gal~s (Peebles 1980), but very little is known about initial inhomogeneities on
smaller scales. However, if sufficiently large inhomogeneities in the density were
present in the early universe, the regions of enhanced density could COnl1P8e directly
to a black hole rather than expand with the rest of the universe. Thus, large numbers
of "primordial black holes" could have been produced in this way. Again, however,
there are no reliable predictions of how many-if any-primordial black holes exist
in our universe. Indeed, the best limits on the density inhomogeneities on small mass
scales come from the requirement that they not overproduce small black holes.

An important feature of primordial black holes is that they could have been
produced at any mass scale, including masses much smaller than a solar mass. No
process in: the present universe could produce such small black holes. For example,
a Schwarzschild black hole of mass equal to that of the Earth, ME = 6 X 1027 g, has
rs = WME/C 2 - tcm. Thus, to convert the Earth into a black hole, we would,
presumably, have to compress it by nongravitational forces down to a radius of order
rs (and thus a density -Ion g/cm-3) before se1f..gravitation would result in its
co1lllPse to a black hole. On the other hand, at 7" ..:..,.10-11 s after the big bang, the
density, p, of the universe was -1()27 g/em-3• A density fluctuation with 8p -... p
over a scale of I em at this time could have resulted in the fonnation of a primordial
black hole with mass ME' Thus, very soon after the big bang, black hQles of small
mass may have been produced.

How might black holes produced by the above three processes be detected? An
important point to recognize is that black holes are extremely small objects. A black
hole of one solar mass has a Schwarzschildradius of only 3 km; even a black hole
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lljt 1010M0 in the nucleus of a large galaxy would have rs -- 3 X 1010 km .....
:I'x 10-3 light.years. When added to the fact that black holes are "black" (see
~em 1), it is clCar that direct detection of a black hole would be extremely
,\lifficult. The most promising possibility for indirect detection of a black hole comes
~ the fact that matter which aecretes onto it will heat up and emit electromagnetic
iljdiation before entering the black hole. For black holes formed by stellar collapse,
the best opportunity for such accretion occurs if the black hole is in a close binary
'OIbit with a star, so that matter can flow from the star toward the black hole. In this
ease, the matter would be expected to slowly spiral into the black hole, thereby
f«mning an accretion disk around the black hole. Viscous heating in the accretion
disk could result in the production of X-rays. A number of X-ray sources with an
ordinary (Le., uncollapsed) star in close binary orbit around an unseen (at optical
frequencieS) companion have been discovered, butac~on onto a neutron star (and
possibly even a white dwarf) also could produce such X-rays, so one cannot con
clude that these systems must contain ablack hole. However, in the case of Cygnus
X-I, the properties of the binary orbit yield a rather firm lower mass limit for the
unseen companion of -9 M0 (Paczynski 1974). This is far aboVe the upper mass
limit for neutron stars and white dwarfs, so there is very strong reason to believe that
the unseen companion of the Cygnus X-I system is a black hole. Very recently, the
X·raysource LMC X-3 also has been determined to consist of a binary system, with
the mass of the unseen companion well above the white dwarf and neutron star limits
(Cowley et al. 1983; Paczynski 1983). ~)

A massive black hole at the center of a star cluster or galactic nucleus could
produce an observable effect by altering the equilibrium distribution of stars in the
central portion of the cluster, causing more stars to be "drawn in" toward the center.
Thus, if a massive black hole were present in a star cluster, one would expect to see
a small brightness enhancement very near the center,ofthe cluster. In addition, one
would expect to see an increase in the average velocity of stars very near the center.
Exactly such a brightness enhancement and increased "velocity dispersion" have
been observed at the center of the galaxy M87 (Young et al. 1978; Sargent et al.
1978), thus providing strong evidence for, the presence there of a black hole of mass
-5 x 109 M0' Furthermore, the-galaxy M87 is well known for the existence of a
jet of highly energetic particles emanating from the center of the galaxy. Thus, there
is a strong suggestion that a massive black hole may be involved in the mechanism
which produces this jet, although at present .there is no fully satisfactory theory of
exactly how a black hole (orany other object) could produce such a jet. Since similar
jets occur in other active gataxies.and in quasars, massiv.e black holes may be present
in these bodies as well. Indeed, as already mentioned at the beginning of this book,
the discovery of quasars in the early 19608 and the inability to explain their energy
source without tile presence of strong gravitational fields provided a great stimulus
to the development of the theory of gravitational collapse and black holes.

Finally, we mention a possible means of detecting primordial black holes of very
low mass. Classically such black holes would produce virtually no observable effects
unless they were sufficiently numerous to provide a cosmologically significant con
tribution to the mass density of the universe or unless one of them happened to strike
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the Earth. However, as we shall see in chapter 14, particle creation occurs near black
holes and is appreciable for black holes of very small mass. The effects ofnumerous
primordial black holes with M ~i lOIS g could significantly contribute to the 'Y-ray
background (Page and Hawking 1976). However, no such contribution is seen, so
one only may place anupperlimit on the number of such small black holes by this
means.

12.2 General Properties of Blaek Holes
In this section we shalluse tbeglobal methods developed in chapters 8 and 9 to

establish some general.resu!tsin the theory.of blacktwles. Most of these results are
due to Hawking. Our discussion will differ slightly from that of Hawking and Ellis
(1973) in that we shall not impose tppological restrictions on the Cauchy surfaces for
M n V. ana some ofour definiti9l1~ (such as that ofan·outer trapped surface)arenot
identical to theirs.

First, we note that for any asymptotically.ftat spacetime (M,gob) with associated
unphysical spacetime (M"g-ab), ifqE 9+ andpE Mr1 F(q), then any point
rE 9+ lying beyond q on the future directed null geodesic generator of 9+ passing
through q, satisfies p E 1--(r).(This follows from the corollary to theorem 8.L2,
sincep and r cpbe joined by acausal curve which is not an unbroken null geodesic~)
Hence, we have M () F(9 t ) = M r11'-(9+), so F(9+)is open inM. ,Thus:. the
blackhole region, B= M.c.... F(9+) is closedinM. In particular this means·tbatthe
event horizon H is contained in 11.

We define, now.~ notion:ofa,black hole at a given instant of time; Let (M,8ob)
be a strongly asymptotically ~etable spacetime, with globally hyperbolic region
V:J M n F(9c"") in'theunphysicalspacetime. LetB= M -- F(9+) be the black
hole region of the spacetime; If·~··is a Caucbyswfllcc for V, we shall refer to ~. flB
as the total blackhol.c regi<>n at~time~, Each connected component; ~., of ~() B
will be called 'a hlack hole at time I. The number of black holes present in (M, gob)
may vary with ''time'' (i.e. , choice ofCaoohysurface I), since new black<holesmay
form and black holes present <at one time may later coalesce. However,our first
theorem may be interpreted as stating,that a61ack hole may never disappear normay
it ''bifurcate,'' i.e., split into more than one black hole at a later time.

THEoREM 12.2.1. Let (M,gilb) be a strongly asyrriptotically predictable spacetime
and let II and ~be Cauchyesurfaces for V with I 2 C r(It). Let 9i1 be a
nonemptyconnectetlcompcnent ofBn II, i.e' j ~ is a black hole at time II.
Thenr(~) n I 2 :1= ~and is contained within a single connected component
ofB n I z.

Proof. That J+(~I)' n I 2 :1= ~ follows 'immediately from the fact,·that ~ is a
Cauchy surface lyihg .to.the future of Ii. Clearlyr(~I) C B, so r(9it) n I 2 is
contained within .BnI 2• Therefore; to complete the proof of the theorem, it
suffices to show thatr(~) nI2 is connected. SuppOse this were not the case. Then
we could fiild disjoint open sets 0;0' CI2 with on r(9it) :I=~, o'n
P(9it) "1= _, and 0 U 0' :J r(~I)n I 2• Then we would have 9i1 n r(O) "1= ~,

~I n reO') '*~' and 9it c: [7(0) Ur(O').However, no point, p, of 9i1 can lie
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in both r(O) and r(O'), for then we could divide the future directed timelike
geodesics froIll p according to whether they intersected 12 in 0 or 0' and thereby
divide the tilnelike vectors at p into nonempty, disjoint open sets. (This would
contradict the fact that the interior of the future light cone of l't. is connected.) Thus,
r(O) n II and r(O') n II must be disjoint open subsets of 110 each of which
intersects ~I 8J!dwhose union contains \?AI' However, this contradicts the hypothesis
that ~ is coJ!lteCted. 0

One of the difficulties commonly encountered in working with the definition of a
black hole is that one needs to know the entire future development of a spacetime
in order to determine if a black hole is present. However, it may happen that one is
given only initial data (I, hab, Kab) for a spacetime and cannot explicitly solve the
evolution equations. In that case, the general definition of a black hole is of little use
for directly detennining whether B :1= ~ in the spacetime determined by these data
and, if B :1= _, where on I the black hole region ~ := B n I may lie. Therefore,
it is useful to develop criteria for the existence and location of a black hole without
requiring knowledge of the global time development of the spacetime. The next three
results give us such criteria.

In chapter 9, we proved that if a trapped surface is present in a spacetime,
appropriate energy conditions are satisfied by matter, and a number of further
hypotheses hold, then a singularity must occur (see theorems 9.5.3 and 9.5.4). Thus,
trapped surfaces are associated with spacetime singularities. Our first result giving
criteria for existence of a black bole states that in a strongly asymptotically predict
able spacetime it is not only true that no singularities can be "seen" from null infinity,
but it also is true that no trapped surfaces are visible from null infinity. In other
words, aU trapped. surfaces must be entirely contained within black holes.

PRorosmoN 12.2.2; Let(M,gab) be a strongly asymptotically predictable spacetime
for which RabkQ k b ~ 0 for all null k Q

, as will be the case if Einstein's equation
holds with the weak or strong energy condition satisfied by matter. Suppose M
contains a trapped surface, T. Then T C B, where B denotes the black hole
region of the spacetime.

Proof. Suppose T.were not entirely contained within B. Then in the unphysical
spacetime, we would have r(T) n j+ :;: 9. However, spatial infinity, iO, is not to
the causal future of any point in M, so clearly iO ~ J+(T). Furthermore, since the
region Vof the unphysical spacetime is globally hy~lic and T is compact, it
follows from theorem 8.3.11 that r(T) is closed in V. Therefore there is an open
neighborhood of iO which fails to intersect J+(T), and, thus, an open region of j+
does not intersect r(T). Since j + is connected, this implies that there exists a point
q E j+ such that q E J+(T). Hence, according to theorem 9.3.11, in the un
physical spacetime there is'a null geodesic 'Y from p E Tto q which is orthogonal
to Tandhas no conjugate point between T and q. With respect to the physical metric,
gab, 'Y also is a null geodesic (see appendix D) orthogonal to T with no conjugate
point, but now 'Yis future complete. However, this is impossible, because according
to theorem 9.3.-6, in the physical spacetime 'Y must have a conjugate point within
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affine parameter 2/180 1from p, where 80 < 0 is the expansion at p of the orthogonal
null geodesic congruence from T to which 'Y belongs. 0

In fact, by a somewhat different argument, we can slightly generalize propOsition
12.2.2 to apply to a marginally trapped surface, i.e., a compact, spacelike two
dimensional submanifold for whicbthe expansion of both families of orthogonal
geodesics is required only to be nonpositive, 8 s 0, rather than strictly negative,
o< O. We have

PRpPOsmON 12.2.3. Let T be a marginally trapped surface in a strongly asymp
totically predictable spacetime for which Rabkakb ~ 0 for all null ka. Then
T CB.

Proof. As in the proof of the previous proposition, we know from theorem 9.3.11
that j+(T) is generated by the null geodesics orthogonal to T. The expansion, 8, of
these null geodesics in the physical spacetime is nonpositive initially. Therefore, we
have 8 s 0 everywhere on J+(T);since d8/dA s 0 according to equation (9.2.32)
and (J cannot become positive on j+(T) by passing through -'-00 because that would
imply existence of a conjugate point. Suppose, now, thatT n r(,+) =f: ~. Then,
as in the proof of the previous proposition, in the unphysical spacetime there would
exist a point q E '+ with q E J+(T). Furthertnore, all the points lying to thecausal
future 'ofq along the null geodesic generator of , + passing through q must lie in
r(T), since they can be joined to T by a causal curve which is not an unbroken null
geodesic. Since f+(T) is open, all generators of '+ sufficiently near the one passing
through q DlUstenter reT) = intereT»~. On the other hand, all generators of j+
have past eoop<>ints, at i O and thus leave r(T) = J+(T). Therefore, not only q but
also an entire local cross section, fI,of j+ must lie on reT). Furthermore, the null
geodesic generators of j+(T) must strike g' orthogonally in order that there not exist
any timelike curvesfromTto g'. However, in the physical spacetime, the expansion
of the null geodesic congruence orthogonal to any cross section of'+ is positive near
'+. This contradicts the ~vious result that the geneiators of j +(T) have nonpositive
expansion<everywhere. U

Note that the only properties of T needed in the proofs of propositions 12.2.2 and
12.2.3 are that reT) is closed, thalio f$. r(T), and that the expansion of the null
geodesic generators of j+(T) is initially nonpositive. Another important example of
a set having these pr~perties is the following.. Let I be any asymptotically fiat
Cauchy surfaee··for V, so that I passes through i O and is spacelike there. Let
C C I OM beaclosed subset of I which forms a three-dimensional manifold with .
boundary (see appendix B) and suppose the two-dimensional boundary S = Cof C
has the property that the expanSion, 0, of the outgoing family of null geodesics
orthogonal to S is everywhere nonpositive,8 S O. (Here, the outgoing family is
defined to be the family of null geodesics orthogonal to SsatisfyingkQNa ~ 0, wbere
k a denotes a geodesic tangent and.N° is the normal to S in I whicb points outward
from C.) A surface S satisfying these properties is called an outer marginally trapped
surface, and C is called a trapped region. (Note that C need not be connected or
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compact. Note also that a trapped surface need not be outer trapped since it need not
be the boundary of a three-dimensional volume.) Then C can be seen to satisfy the
above desired properties as follows: By problemS of chapter 8, r(C) is closed.
Clearly, we have i O ft r(C). Finally, each of the nuU,geodesic generators of
}+(C) C J+(C) must have a past endpoint on C but cannot meet C in int(Cl, cannot
meet S = Cnonorthogonally, and cannot be an ingoing geodesic at S, since in any
of these cases it would enter r(C). Thus, 8 :::5 0 initially for the null geodesic
generators ofJ+(C). Hence, a repetition of the proof of proposition 12.2.3 yields the
following result.

PRoPOSmON 12.2.4. Let (M, gab) be a strongly asymptotically predictable spacetime
for Which RabkQkb 2: 0 for all null ka. Let I be an asymptotically flat Cauchy
surface for V, and let eel be a trapped region. Then C C B n I.

We define the total trappedregion, <!T, of a Cauchy surface, I, to be the ~losure

of the union of all trapped regions, C, on .1. We call the boundary, :A = <!T, of <!T
the apparent horizon on I. It follows immediately from proposition 12.2.4 that in
a strongly asymptotically predictable spacetime with Rabkakb 2: 0 for all null ka• we
have <!T C B n I, so the apparent horizon always lies inside of (or coincides with)
the true event horizon, H n I, on I. The apparent horizon, :A,satisfies the fol1ow~

ing property.

THEoREM 12.2.S.1f the total trapped region, <!J, on a Cauchy surface I has the
structure of a manifold with boundary, then the apparent horizon, :A, is an
outer marginally trapped surface with vanishing expansion, 8= 0.·

Proof. Clearly'<!T is closed and we also have2 i O ft <!T, so <!T satisfies the first two
requirements for being a trapped region. To show that 8 = 0 on:A, we note that if
8 >0 at P E sf, then we could find a neighborhood, U, of p such that every
surface, S, passing through U with 8:::5 0 everywhere on S must leave <!T. Hence, we
could not have outer trapped surfaces passing>arbitrarilyclose top but stayingwitbin
Iff as required by the fact tbatp is on the boundary of 5'. On the other hand, given
that 8 ~ 0 everywhere on:A, if we had 8 < 0 at q E :A, we could defonn :A
outward in a neighborhood of q, preserving 8 s; 0 everywhere. In this way, we
would produce a trapped region C larger ·than··Iff, which·is impossible. 0

The final result we shall prove in this sectioo concerns the evolution of the event
horizon. Since the horizon; H, is the boundaty of the past of j+, by theorem 8.1.3
it is an acbronal, three-dimensional, embedded CO (in fact, C 1

-) submanifold,
Furtbennm'e, bytheoremS.l.6, H is generated by fututeinextendible null geodesics,

2. To see thi5 we note that in an asymptotically Euclidean coordinate system on I (see problem 2 of
chapter 11) then: exists a radius R such that allcoordilUlte spheres with r > R have everywhere positive
expansion of the OIltgoing null geodesics. Hence no Qut.er trapped surface. S, can enter the region r > R,
since the ex~ionQfthe outgoing nuq~ec:)(iesJc~ from S would have to be at least as great as that from
the coordinate spbeie at the point where r takes its maximum value on S. Thus, ~ cannot enter the region
r >R. ....
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since no null geodesic generator of H can have a future endpoint on '+. Thus, if the
intersection ~ = H n I of the horizon with a spacelike Cauchy surface, I, for V
is nonempty, it comprises a two--dimensional submanifold of I. The next theorem
states that the area of~ never decreases with time. As we shall see in sections 12.5
and 14.4, this result underlies what appears to be a profound relationship between
black holes, thennodynamics, and quantum physics.

THEoREM 12.2.6 (black hole area theorem; Hawking 1971). Let (M;gab) be a
strongly asymptotically predictable spacetime satisfying RabkQkb ~ 0 for all
null k

Q
. Let It and I z be spacelike Cauchy surfaces for the globally hyperbolic

region Vwith Iz C /+(11) and let ~I = H n Ilt ~z :;::: H n I z, where H
denotes the event horizon, i.e., the boundary of the black hole region of
(M,gab)' Then tbe area of~z is greater than or equal to the area of~I'

Proof. We establish, first, that the expansion, 8 of the null geodesic generators of
H is everywhere nonn¢gative, f! ;a: O. Suppose 8 < Oatp e H. Let I be a space
like Cauchy surface for V passing .through p and consider the two-surface
~ = H n I. Since 8 < 0 at p, we can deform ~ outward in a neighborhood. ofp
to obtain a surface ~' on I which ¢nters F(j+) and has 8 < oeverywhere in
F(j+). However, by the same type of argument as given in proposition 12.2.2, this
leads to a contradiction.as follows. Let K C I be the closed region lying between
~ and ~/, and let q E j+ with q e J+(K). Then the null geodesic generator of

j+(K) on which q lies must meet ~' orthogonally. However, this is impossible,
since 8 < 0 on ~/, and thus this generator will have a conjugate point before
reaching q.Thus, 8~O everywhere on H.

Now, as mentioned above, each p e ~I lies on a future inextendible null geo
desic, '}I, contained inH. SinceIzis a Cauchy surface, '}I must intersect Izatapoint
q e ~. Thus, we obtain a natutalmap from ~I into (a portion of) ~z. Since 8~.O,
the areaofthe portion of ~2 given bythe image of ~I under this map must be at least
asJarge as the area of~I' In addition, since the map need not be onto-e.g., new
black holeslll8Y form between.Il and Ir-the area of.~z may be even larger. Thus,
the area'of~z cannot be smaller than that of ~I' 0 .

12.3 The Cbarpd Kerr BJKk Holes
Consider a body which undergoes complete gravitational collapseand-in accord

with the first cosmic censor conjecture of section 12. I-forms a black hole. In the
spherically symmetric case, the spacenme outside the body always is ~ribed by
the Schwar,zschild solution, and the final·stateof gravitational collapse will be a
Schwarzschild black hole. However, in thcnonspherical case. the spacetime geom
etryou~ the collapsing body should vary with time and depend greatly on the
details of the collapse. In particular. no gravitational radiation can be produced in a
spherically symmetric spacetime, whereas large amounts of energy may be radiated
away in nonspherical collapse. Nevertheless,· one would expect on physical grounds
that at sufficiently "late times," the spacetime geometry should "settle down" to a
stationary final $tate. FurthermOre, one would expect all the matter present to be
rapidly "swallowed up" by the black hole, so the final state should be vacuum except,



12.3 The Charged Kerr Black Holes 313

,.
possibly, for the presence of electromagnetic fields associated with the black bole.
(Even in cases-such as in the binary X-ray sources-where one has a steady flow
of matter into the black hole, this matter nonnally would produce only a small
pertUrbation on the structure of the black bole.) Thus, one expectS that the final state
of graVllational collapse will be a stationary, electrovac (i.e., vacuum except for
electromagnetic fields) black bole. Therefore, it is of ~at interest to find all solu
tions of the Einstein-Maxwell equations which describe stationary black boles.

We have already discussed in detail the spherically symmetric, static black hole
solution discovered by Scbwarzschild (19100). Shortly thereafter~ a chargedgener
alization of the Schwarzschild solution was discovered independently by Reissner
(1916) and Nordstrom (1918) (see problem 3 of chapter 6). However, it was not until
1963 that another family of stationary, vacuum black hole solution& was discovered
by Kerr. A charged g~nera1ization of the Kerr family was obtained shortly thereafter
by Newman et aI. (1965). These charged Kerr solutions fonn a three-parameter
family, whose spacetime metric and electromagnetic vector potential are given by

ds2 = _(:\ - a~Sin28) dt2 _ 2tl Sin28(r~+ a
2

- 4) dtd4>

+ [(r
2

+ a
2
)2 ; 40

2
Sin

2

8] sin 28 d4>2 + ~ dr2 + I d82 (12.3.1)

(12.3.2)

I = r 2 + 0
2 cos28 ,

4 = ;-2 +a 2 + e2 .....; 2Mr ,

(12,,3.3)

(12.3.4)

(12.3.6)

(12.3.5)

and e, a., and M are the~ paran)eters of the family. When e =0, we haveA,. =0
and the. spacetime metriQredu~sto the,vacuum Kerr. familY of solutions... When
a =9, we recover the Reissner-Nordstrom solutions, and when e = a = 0, equa
tion (12. ,3.1) reduces to the Schvvarzschild solution. Thus, all known stationary black
hole solutions are encompassed by the three-parameter family (12.3.1), (12.3.2). As
we.shall see at the end of this section~ no other stationary b1ac:k hole solutionsexis~.

The charged Kerrmetrics all are stationary and axisymmetric (see section 7,1),
with Killingfields~Q .=n(a/IJt'f and"'Q = (a!atP)f. They are-asymptotically flat, as
canbe seen crudely from the fact that the metric components (12.3.1) approach those
of the Minkowski metric in spherical polar coordin~s as r -+ 00, and has been
demonstrated in detail by Ashtekar and liansen (1978). In the algebraic classification
of section 7.3, they are type ll-U solutions, with repeated principal null vectors,

," .'

(
r

2 + a
2

) IiIs:::" 4' (a/at'f +4(a/a4»Q + (a/iJr)(J ,

r2 + a 2 a A
nQ= (a/at'f + -·(a/a4»(J - -(a/iJr)(J

2I 21: 2I
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(Here Is and naare nonnalized by a convenient choice due to Kinnersley 1969, with
lana = -1.)

The three parameters e, a, and M appearing in the solutions all have a direct
physical interpretation. For any 2-sphere, S, in the asymptotic region, we have

1. f EobcdFcd = 41Te (12.3.7)
2 )s

so, by problem 2 of chapter 4, we may interpret e as the total electric charge of the
spacetime. Furthermore, we have

- 8~ Is ~dvc~d = M , (12.3.8)

so, according to equation (ll:2.9),M is the total mass. Finally, we have

1~1r L€abcdvcqrt == Ma (12.3.9)

so, according to problem 6 of chapter 11, we have a = JIM, where J is the total
angular momentum of the spacetime.

It should be noted that, in geometrized units, the charge to mass ratio of a proton
is q1m - 1018

, and for an electron we have qIm - 1021
• Since the ratio of electro

magnetic to gravitational force produced on a test body of charge q and mass m by
a body of charge e and mass M is -qelmM, it would be very difficult for any
astrophysical body to achieve and/or maintain a charge to mass ratio of greater than
.....10-18, since a body with larger charge to mass ratio would selectively attqlct
particles of opposite charge.3 Hence, in astrophysically reasonable situations it
appears that e « M, so we may neglect the effects of the electromagnetic field on
the spacetime geometry and consider only the Kerr family of black holes.

The coordinate basis components of the charged Kerr metrics, equation (12.3.1)
are nonsingular and define a nondegenerare metric everyWhere except where I == 0
and where 4 = O. Evaluation of curvature invariants such as RabcdRlIbcd shows that
the singularity at

(12.3.10)

is a true, curvature singularity when M :;: O. If one were to interpret r, 8. and 4> as
representing spherical polar coordinates, the fact that· there is a "singularity at the
origin, r = 0, only for the angular value 8·= 1r/2 would appear rather puzzling. In
particular, if we interpret the singularity in this way-i.e., if we define the charged
Kerr metrics on·the manifold R4·.with the origin r = 0 removed-we then would
have incomplete geodesics (such as those on the axis, sin 8 =0) which terminate at
r = 0 but along whi(:h the curvature remains finite. In fact, this spacetime would be
extendible. This provides a good illustration of the impropriety of making a choice
of the manifold structure on the basis of a naive interpretation of the coordinate

3. one mechanism to obtain a net charge on an astrophysical body which. in principle. could
overcome this limit is to have a rotating body placed in a magnetic field. However. for a Kerr black hole,
this mechanism .also would lead to a negligible charge buildup in asttophysically reasonable situations
(Wald 1974b).
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system in which the metric is given. Some insight into the true nature of the
singularity of the charged Kerr metrics at I = 0 can be obtained by consideration
of the case e =M =0, a :;:. O. In that case, the Kerr metric (12.3.1) actually is
nothing more than the metric of Minlcowski spacetime expressed in spheroidal
eoordinates. Here the singularity at I = 0 is, of COUl'ie, merely a coordinate singu
larity, and it is located on the ring of radius a in the plane z = O. This suggests that
when M :;:. 0 and a :;:. 0 we interpret the true singularity at I = 0 as a ring singu
larity, i.e., that we define the charged Kerr metrics on a manifold whose structure
in a neighborhood of this singularity has the topology of R4 with the set
SI x R-that is, a ring, Sl, cross ''time,'' R-removed. This can be implemented
explicitly by transforming to the quasi-Cartesian coordinates given by Kerr and
Schild (1965), where I = 0 takes the coordinate form of a ring. However, a problem
still remains in that when M :;:. 0 the metric components fail to be smooth across the
coordinate disk enclosed by the ring singularity in the z = 0 plane. This problem can
be remedied by defining the charged Kerr metrics on a manifold with the following
relatively complicated topology in a neighborhood of the singularity at I = O. We
take two copies, M I and Mz, of jR4 with the "ring" z = 0, x Z + yZ = aZ, removed.
We then attach M I to Mz by identifying the "top side" of the disk z = 0,
xZ+ yZ < a Z, of M I with the "bottom side" of the corresponding disk of Mz, and,
similarly, identify the "bottom side" of the disk ofM I with the "top side" of the disk
ofMz. The charged Kerr metrics with M :;:. 0, a :;:. 0 then may be smoothly defiRed
on this manifold in such a way that the curvature scalar RabcdRIlIIat blows up along
every incomplete geodesic, thereby guanmteeing that the spacetime is inextendible.
Details of this construction can be found in Hawking and Ellis (1973).

It should be noted that when one passes "through the ring" in going from M I to
Mzin this spacetime, thiscortesponds in the original coordinates to passing through
r == Ointo negative values of r. However, for negative values of r of sufficiently
small magnitude and for 8 sufficiently close to 1T/2 we have t/Jat/Ja = g.. < 0 (see
eq. [12.3.1]). Thus, ~ == (0/ iJt!»a becomes timelike near the ring singularity.
However, the orbits of"" must bec10sed (i.e., the coordinate t!> must be periodically
identified With period 21T) in order that the charged Kerr spacetime be asymptotically
ftat as r -+ 00. Thus, closed timelike curves exist in a neighborhood of the ring
singularity.

When eZ + aZ > M Z, there are no solutions of the equation 4 = 0 so the true
singularity at I == 0 is the only singularity of the coordinate components (12.3.1).
In this case, the ring singularity is "naked," i.e., the charged Kerr metrics fail to be
strongly asymptotically predictable, and thus they do not describe black holes.
Furthermore, one may make use of the causality violation occurring near the ring
singularity to go "backwards in time".by an arbitrarily large amount as measured by
the t coordinate of (12.3.1) and thereby produce closed timelike curves passing
through any point in the spacetime.

In the case .

eZ + a~ ~ M Z

4 vanishes at the r-coordinate values
r% =M ± (MZ - a Z - eZ)I/z

(12.3.11)

(12.3.12)
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As shown by Boyer and Lindquist (1967) and Carter (1968a), the singularities in the
metric components at r = r+ and (fora =1= 0 or e *0) at r = r- are coordinate
singularities of the same nature as the singularity at r = 2M in the Schwarzschild
spacetime. Thus, we may extend the spacetime through these coordinate singulaiities
much as in the Schwarzschild case. When these extensions are patched together, a
remarkable global structure of the extended charged Kerr spacetimes is obtained. A
conformal diagram of the extended Schwarzschild spacetime is shown in Figure
12.3, and a conformal diagram: of the extended charged Kerr spacetime with a *0
is shown in Figure 12.4 for the "non-extreme" case a2 + e2 < M 2• Region I of
Figure 12.4 is the asymptotically flat region covered in a.nonsingular fashion by the
original coordinates (12.3.1) with r > r+. By extending through the coordinate
singularity at r = r+, we obtain region llrepresenting a black hole, region ill
representing. a white hole, and region IV representing another asymptotically.flat
region, just as in the Schwarzschild case, Figures 6.9 and 12;3. However, unlike the
Schwarzschild case, instead of encountering.a true singularity at the "top boundary"
of region n and "bottomooundary".of region 1lI, we encounter merely another
coordinate singularity at r·= r-. Thus, we can extend region II through r·= r_ ~
obtain regions V and VI. These regions contain the ring singularity at I = 0 and,
as described above, one cat:l·pass through the. ring singularity to obtain another
asymptotically ftatregion with r -+ -00. (In this asymptoticallyftat region the ring
singularity is a naked singularity of negative mass,. With respect to the original
asymptotically flat region I, the ring singJ,llarity, of course, lies within a black hole.)
One may thencon~ to extend the charged.Ke(f spacetime "upward" ad infinitum
to obtain a region Vll, identical in stmeture to region ill, and obtain regions Villand
IX, identical in structure to regions IV andI, ete.Similarly,one may extend the
charged Kerr solutions "downWard" ad infinitum. The structure of the extended
Reissner-Nordstrom spacetime (a =0, e *O)isvery similar except that the true
singularity at I == Ono longer hils a ring structure, and one cannot extend to negative
values of r. The globill s~ture of the "extreme" charged Kerr case e 2 + a2 = M 2

(where r+ = r_ =M) differs from Figure 12.4 but bas a similar structure consisting
of "blocn" with r > M andr <M patched together in an infinite chain.

Thus, an observer starting in region I of the extended charged Kerr spacetime of
Figure 12.4 may cross the event horizon at r = r+.and enter the black hole region
ll. However, instead of inevitably falling into a singularity within a finite proper time
as occurs in the Schwarzschildspacetime, the observer may pass through the "inner

Fig. 12.3. A conformal diagram of the extended Schwarzschild spacetime (see Fig.
6.9), represented in the same manner as used in Figure 12.2. Note that since the
extended Schwarzschild spacetime has two distinct asymptotically flat regions. two
distinct conformal boundaries are llhown.
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5

Fig. 12.4. A conformal diagram of the extended charged Kerr spacetime in the
case a of: 0,12 2 + e2 < MZ.

horizon" r = r- (which is Ii Cauchy horizon for the hypersunace S shown in Fig.
12.4). thereby entering region V or VI. From, there, he may end his e~istence in the
ring singularity but he also may pass through the ring singularity to a new asymp
totically fiat region" or he may enter the "white hole region" vn and frc>m there enter
the new asymptotically flat region VIll or IX. From there be may enter the new black
hole associated.vvith these. asymptotic regions. and continue his journey.

How much of this .extended charged Kerr spacetime should .be taken seriously?
What PQJ#on of this spacetime would be produced by a physically realistic grav
itational 'collapse, starting from "oon-exotic" iDitj.al data. i.e.. from an asymp
totically flat initial data surface S with topology R3? Unlike the Schwarzscbild case.
we have no reason to believe that the exteri()r gravitational field of ,any physically
reasonable collapsiIlg body will be described by the Kerr metric. since. as mentioned
above. in the nonspbericalcase,we would. in general. expect a complicated dynam
ical evolution whiCh only "settles down"to a stationary geometry at late times in
r(j+). nius, we are not in a position to follow the dynamical ~volution of the
gravitational collapse of. a body which f'Orms a KelT black hole and thereby determine
the detailed spacetime geometry inside the black hole. However. in the case of
spherical collapse of a charged body (e :f:: 0). the spacetime geometry exterior to the
matter is described by the Reissner-~ordstrom solution since Birkboff's theorem can
be generalized to show that the Reissner-Nordstrom spacetime is theuniq~ spherical
electrovac solution. The dynamical evolution of a simple system like a charged.
spherical shellofdust can be obtained explicitly. In ~s case. spacetime is flat inside
the shell, and the fiat interior of the shell entirely "covers up" regions ill and IV of
Figure 12.4. Part or all of regions n and V (including. in all cases. the singularity
at r = 0 in region V) also are covered up. The behavior of the shell for the various
choices of total mass M. total charge e. and total rest mass At are chronicled in detail
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Fig. 12.5. A confonnal diagram of a spacetime in which a charged spherical shell
with M > At > Ie Iundergoes gravitational collapse. The dashed lines refer to the
extended Reissner-Nordstrom spacetime.

by Boulware (1973). We show the resulting spacetime for the case M > At > Ie I
in Figure 12.5. As shown there, the shell crosses the surface r = r_, which is a
Cauchy horizon for J::egion I. The spacetime is extendible acr()ss.r_, but the extension
is not determined byEinstein'sequationsin.ce it is outside the dOmain of dependence
of the initial data surface. However, ifone assumes that the extension is spherically
symmetric, the extension is uniquely given by the Reissnet-Nordstrom geometrY,
and we.find that the .shell crashes irit() the ~ingularity at r = 0{which formed dutside
the shell) in region VI, as shown in Figure 12.5. For other choices ofthe parameters
M, At, ande;the shell may reex.pand intO region vn of the Reissnet-Nordstrom
geometry (Boulware 1973). Thus, one may Obtain spacetimes from the collapse of
a cIlarged bOdy which have features differing greatly from that of FigUre~.lL
However, .as already l1le1ltioned in out. ~iscussion of cosmic censorship 111 section
12.1, it has been shown that ~eCauchy' horizon ofFigure 12.5 is unstable (Chan
drasekhar and Hartle 1982). Linear perturbations of the initial data fOr the Einstein
Maxwell equationson a Cauchy surface for region I of Figure 12.5 become singular
at r = r_. The basic reason for this is that an observer crossing r:= r_in Figure 12.5
"sees" all of region I. Oscillations in the gravitational and electromagnetic field
which occut at finite frequency in' regiOn I are "seeri" to occur at infinite frequency
by an Observercrossmgr_; i.e., theteisan "infinite blueshift" effect; which makes
the perturbation singular there. Thus, there is good reason to believe that in a
physicallyrealistic case where the shellis notexactly spherical, the Cauchy horizon
r = r_ in Figure 12.5 Will become atIUe, physical singularity, thereby producing an
"all encompaSsing" singularity inside thcfblack hole formed by the collapse of the
shell. It is believed that similar pheno~na will occur for any physically realistic
collapse to a charged KetT black'hole. Thus, the spacetime produced by physically
realistic collapse is expected to<bequalitatively similar to the spherical case, Figure
6.11, rather than that suggested by the extended charged Kerr SOlutions, Figure 12.4.

Another feature of the charged Kerr spacetime worthy of note is that the norm of
the timelike Killing field,
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a2 sin28 - 4
ga€a = gtt = I

becomes positive in the region where

r 2 + a 2cos 28 + e2 - ?Mr < 0

(12.3.13)

(12.3.14)

part of which lies outside the black hole if a :;:. O. Thus, in the region

r+ < r < M + (M2 - e2 - a2cos28)1/2 (12.3.15)

called the ergosphere and depicted in Figure 12.6, the asymptotic time translation
Killing field ga = (a/att becomes spacelike. Hence, an observer in the ergosphere
would have to "go faster than light" to follow an orbit of ga; Le., he cannot remain
stationary, even though ·he is outside the black hole. The nature of this non
stationarity can be seen from the equation

(12.3.16)

(12.3.18)

satisfied by the components of the tangent vector, ua, to any timeHke curve. Inside
the ergosphere, all terms on the left-hand side of equation (12.3.16) are manifestly
positive except the term 2gt.utu· = 2gt• (dt/dT) (dt/>/dT), where Tdenotes proper
time along the curve. Since Va.t is past directed timelike in the ergosphere, we have
dt/dT = uaVat > O. Thus, since gil/> < 0 in the ergosphere, we must have

dt/>/dT > 0 (12.3.17)

for all timelike curves in the ergosphere. In other words, ali observers in the
ergosphere are forced to rotate in the direction of rotation of the black hole. This may
be viewed as an ex~e case of the "dragging of inertial frames" effect, thereby
providing a dramatic example of how sOpleaspects of Mach's principle are incorpo-
rated into general relativity. .

The closest analog to a family of static observers outside the black hole in the
charged Kerr geometry are the "locally nonrotating observers" (see problem 3 of
chapter 7) whose 4-velocity is given by ua = -Vat/[-VbtVbt]1/2. These observers
rotate with coordinate angular velocity

n = dt/> = _~ = a(r
2 + a

2
- 4)

dt gf/JI/J (r2 + a2)2 - 4a2 sin28

(0 )
Fig. 12.6. A sketch showing (a) a "side view" and (b) a ''top view" of the
ergosphere of a Kerr black hole.
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In the limit as one approaches the black hole event horizon, r -+ r+, this coordinate
angular velocity becomes

(12.3.19)

(12.3.21)

This is closely related to the fact that it is the Killing field

. Xa = (a/att + OH(a/ac/J)a (12.3.20)

[rather than (a/ att] which is tangent to the null geodesic generators of the horizon
of the cl¥uled Kerr black hole. Equation (12.3.20) can be interpreted as saying that
the event horizon of the charged Kerr black hole rotates with angular velocity OH.

We tum, now, to a brief discussion of geodesiC; motion. For simplicity, we sh1l11
consider only the Kerr geometry, e = O. (See problem 2 for the case e :;: 0.) Min
the Schwarzschild case, the timelike Killing field ~a and the axial Killing field I/Ja
yield via proposition C.3.1 a conserved energy, E, and angular momentum, L, per
unit rest mass for geodesics,

E - al: - (1 2Mr). + 2Marsin28..i.- -u !>a - - T t I '1"

2Mar sin 28 . (r 2 + a2)2 - /i,a2 sin 28 .
L = uaI/Ja = - I t + .. I· sin 28 c/J , (12.3.22)

where ilL = dx IL/ dT. In addition, we have

8abUaUb = -I( , (12.3.23)

where I( = 1 for timelike geodesics and I( = 0 for null geodesics. One may use
equations (12.3.21) and (12.3.22) to eliminate i and <bin terms of E and L, and the
result IWly be substituted into equation (12.3.23). In the case ofequatorial geodesics,
8 = ,"/2, one obtains

i;2 + V(E,L,r) = 0 , (12.3.24)

(12.3.25)

Thus, as in the Schwarzschlld case, the problem of obtaining the timelike and null
geodesics in the equatorial plane of the Kerr spacetime reduces to solving a problem
of ordinary nonrelativistic, one-dUnensional motion in an effective potential, with
the only significant additional complication here being the fact that V now depends
nontrivially on E as well as on L. Thus, we may find the behavior of freely falling
test bodies and light rays by methods similar to those of section 6.3. In particular,
the circular orbits are given by the simultaneous solutions of V =0 and dV/ dr = O.
Their properties are discussed by Bardeen, Press,andTeukolsky (1972). It is
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noteworthy that binding energies significantly higher than in the Schwarzschild case
can be achieved for circular orbits around a Kerr black hole. For a Kerr black hole
with a = M, the last stable circular orbit (with positive L) has E = 1/V3. Thus.• if
a test body with positive L spirals in to the last stable circular orbit as a result of
energy loss via gravitational radiation, it will have radiated away 1 - 1/V3 """ 42%
of its original rest energy, as opposed to only .. - 6% in the Schwarzschild case,
equation (6.3.23).

The constants of motion E and L, equations (12}.21) and ,(12.3.22), do not
provide a sufficient number of first integrals to determine nonequatorial motion.
Therefore, in that case we might .expect to have to return to the geodesic equation,
uo~Ub = 0, and solve a coupled set of second order nonlinear ordinary differential
equations to obtain r('7") agd 8('7"). Remarkably, how~ver, it turns out that this is not
necessary. The Kerr metric possesses the Killing tensor,

Kab = 2Il(anb) + r2
gab (12.3.26)

(Walker and Penrose 1970), where }Oand n° are given by equations (12.3.5) and
(12.3.6). Thus, an additional constant of the motion \

(12.3.27)

is obtained, as disc~ssed at the end·of appendix C. This allows one to integrate the
geodesic equation explicitly, as was.first done by Carter (l%8a), who used.the
separability of the Hamilton-Jacob.i equation for geodesics rather than the existence
of KaJ, to obtain this additional constant of motion. In adttition, the Kerr metric-as
well as all other type n~II vacuum spacetimes-possesses a "coAforrnal Killing
spinor" (see Walker and Penrose 1970) which enables one to determine the parallel
propagation of "polarization vectors" along null geodesics in a simple manner.

A rema.r:kablesimplificationalso occurs when one studies the propagation of a
Klein-Gordon scalar test field, equation (4.3.9), in the Kerr spacetimes. One can take
advantage of the stationary /lIldaxial Killing. fields .of Kerr to expand the scalar field
in a Fourier series in the angular cpordinate ~ and a Fourier integral ove~. the time
coordinate t. This eff~vely~u~theKlein-GordOn equatic;m to a partial differ
ential equation in the t.w0 remainingvarjab~, r and 8. However, it turns out that
this equation can be solved by seplilration ofvarjables (Carter 1968b), so the probI.em
of deteJ'lIlining the behavior of Klein-Gordon test fields in the Kerr sPacetimes is
reduced to solving ordinary differential equations.

Even more remarkable simplifications occur ~en one studies Maxwell's equa
tions and the linearized Einstein equati()nin the Kerr background. Here, after making
use of the symmetries in q, and t,. one would rxpect to be left with a Complicated,
coupled system of partial differential •• eqt,ultioll$. in r and 8 for, respectively, the
components of the electromagneticyectorpotential, Ap., and the components of the
metric pel'tllrbation, 'Yp.~' Indeed,.this is what happens wllen OI).e writes dpwn the
equations for Ap. or 'Yp..., even when simplifying gauge choices such as the Lorentz
gauge for4~or the transverse tracele;ss gauge for 'Yp.p (see section 7.S) are made.
However, one may write 40wn the e.quationsin the Newman-Penrose (1962) for
malism (see section 3.4b), using the repeated principal null vectors of the Kerr metric
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lQ and nQ, equations (12.3.5) and (12.3.6), as the real null vectors and

mQ= 21/ 2( . 1. (J) [ia sin 8(a/at)" + (a/ aO)Q + -!-(J(a/at/J)Q] (12.3.28)
r+U2COS c - sm

as the complex null vector of the Newman-Penrose basis. Then, as discovered by
Teukolsky (1972), a decoupled equation can be derived for

«Po = FlIblQm b (12.3.29)
in the Maxwell c~se, and for

'1'0 = -Cl/bcdl"mblcmd (12.3.30)

in the linearized Einstein case. (Decoupled equations similarly may be obtained for
«P2 = FlIbm"n" and '\}f4 = -Cabcdn<t'ffl"ncmd.) Furthermore, Teukolsky showed that
these equations also may be solved by separation of variables. In addition, a knowl
edge of «Po (or «P2) determines a Maxwell perturbation modulo the trivial "change in
charge"solution obtained by linearizing equation (12.3.2) off the Kerr background,
while a knowledge of '\}f0 (or '1'4) determines a gravitational perturbation modulo the
trivial perturbations obtained by variation oftbe Kerr parameters M, a (Wald 1973).
Finally, the complete vector potential, A., and metric perturbation, 'YlIb, associated,
respectively, with «Po and '1'0, can be obtained explicitly (Cohen and Kegeles 1974;
Wald 1978a; Chandrasekhar 1983). Thus, the problem ofdetermining the behavior
of electromagnetic and gravitational perturbations of a Kerr black hole also reduces
to solving ordin~ differential equations, thereby making tractable many problems
of interest. SimilarsimpIifications of the coupled linearized Einstein-Maxwell sys
tem occur in the Reissner-Nordsttom case, a == 0, e :;: 0 (Moncrief 1975; Chan
drasekhar 1979). However, it appears that no such simplifications occur in the
general charged Kerr case, a =1= 0, e '* O. For a complete discus~ionof the electro
magnetic and gravitational perturbations of aKerr black hole, we refer the reader to
Chandrasekhar (1983).

Thus, as sumniarized above, a great deal is known about the properties of the Kerr
black holes. These are the only known station~ vacuum black hole solutions of
Einstein's equation: However, since they comprise only a two-parameter family, oDe
might expect that many more station~ vacuum black hole solutions should exist.
After all, as mentioned in the introduction to chapter 11, the exterior gravitational
field of a station~ body is characterized by an infinite set of multipole coefficients.
Why should all the higher multipole moments of a statio~ black hole be related
in a unique way to its mass and angular momentum? Remarkably, as a result of
theorems of Israel, Carter, Hawking, and Robinson obtained between 1967 and
1975, a virtually complete proof has been given that the Kerr black holes are the only
possible stationary vacuum black holes. Thus, if the first cosmic censor conjecture
is correct and if the spacetime resulting from gravitational collapse always "settles
down" to a station~, vacuum final state, the end product of collapse must always
be aKerr black hole. The complete graVitational collapse of two bodies differing
greatly from each other. in composition,··shape, and structure will produce indistin
guishable final states provided only that their end products have the same total mass
and total angular momentum.
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Since we are far from having the general stationary vacuum solution of Einstein's
equation in explicit form,4 the proof of the uniqueness of the Kerr black holes has
proceeded py a relatively long chain of arguments. Logically, the first step
although, historically, one of the last steps-in this chain is the proof by Hawking
that the two-dimensional surface fonned by the intersection of the horizon of a
stationary black hole with a Cauchy surface must have topology S2. This is estab
lished by showing that if it had any other topology, it would be possible to deform
it outward into r(j+) such that the expansion, 8, of the outgoing null geodesics
satisfies 8 s 0 everywhere. 'Ibis would contradict proposition 12.2.4. Details of the
proof can be found in Hawking and Ellis (1973). (See also Gannon 1976 for some
results in the nonstationary case.)

The next step in the uniqueness proof, also due to Hawking, is the demonstration
that a stationary vacuum black hole must be static or axisymmetric. First, we note
that in a stationary spacetime containing a black hole, the time translation isometry
must leave the horizon invariant. Hence, the Killing field ~a must lie tangent to the
horizon and, hence, always must be spacelike or null on the horizon. Now, one of
the following three possibilities must hold: (i) No ergosphere is present in the
spacetime, i.e., the stationary Killing field ~a is everywhere timelike or null outside
the black hole. In this case, ~a must be null on the horizon. (ii) An ergosphere is
present but is disjoint from the horizon, and ~a is null on the horizon. (iii) An
ergosphere is present and intersects the horizon, as happens for a Kerr black hole.
In this case, ~a is spacelike on (a portion of) the horizon. In case (i), a generalization
of a theorem of Lichnerowicz (1955) establishes that the spacetime must be·static
(Hawking and Ellis 1973). Under some additional assumptions, results of Hajicelc.
(1973) show that the outer boundary of the ergosphere in a stationary vacuum
spacetime always must intersect the horizon. Thus, it appears that case (ii) cannot
occur. Plausibility arguments. against case (ii) also are given in Hawking and Ellis
(1973). Finally, in case (iii), using the properties of the horizon in a stationary
spacetime and using. the analyticity of stationary vacuum solutions (MUller zorn
Hagen 1970), Hawking proved existence of a one-parameter group of isometries
which commute with· the· stationary isometries and whose orbits on the horizon
coincide with the null geodesic generators of the horizon. 'l11u$, one obtains a Killing
field Xa distinct from ~a, and by taking a linear combination of Xa and ~a, one obtains
a Killing field til' whose orbits are closed, i.e., an axial Killing field.' Again, details
of this proof are given in Hawking and Ellis (1973).

4. Indeed, until the early 19108 the Kerr $Olutions were virtually the only known stationary. nonstatic,
asymptotically ftat vacuum $Olutions. /U discussed in sections 7.1 and 7.4, great progress has been made
in obtaining the Seneral stationary, axisymmetric Vaeuutn solution, but even so we are far from having
the $Olutions in sufficiently explicit fonn to detennine if they represent black holes.

S. The proof that a stationary, nonstaticblack hole must be axisymmetric continues to hold in the case
where a distribution of matter is placed outside a rotating black hole. This leads to an apparent paradox
since one would expect it to be possible to "hold in place" a nonaxisymmetric distribution of matter far
from the black hole. thereby producing a statiomiry nonaxisymmetric spacetime. The fC$Olution of this
paradox is that such a matter distribution will produce an effective ''tidal friction" causing the black hole
to "spin down" and thus be nonstationary until it reaches a final static state. A discussion of this process
is given by Hawking and Hartle (1972).
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The case of a static,vacuum, topologically spherical black hole was analyzed by
Israel (1967), who proved that the only such black holes are the'Schwarzschild
solutions. Some additional assumptions were made in the proof, but the most notable
of them-that all the surfaces of constant ~"~Q are topologically spheres-has been
eliminated by Miiller zum Hagen, Robinson, and Seifert (1973) and Robinson
(1977).

Finally the case of a stationary, axisymmetric, vacuum topologically spherical
black hole was analyzed by Carter (1971) and Robinson (1975) using the methods
described in section 7.1 to cast Einstein's equation and the black hole boundary
conditions into a relatively simple form. They succeeded in proving that all station
ary axisymmetric black holes are uniquely characterized by two parameters which
appear in the boundary conditions. Since the Kerr solutions exhaust all possible
values of these parameters, it follows that they are the only possible stationary
axisymmetric black holes.

The above results have been generalized to the electrovac case. Hawking's the
orem on the spherical ropology of a stationary black hole still applies since it requires

.,only that the dominant energy condition be satisfied by matter. The proof that a
stationary black hole with no ergosphere must be static generalizes to the electrovac
case (Carter 1973), ,and the proof of existence of an axial Killing field if ~Q is
spacelikeon the horizon depends only on the general form, (10.1.21), of the equa
tions and thus also applies to the electrovac case. Israel's theorem has been gener
alized to show that the only possible static, eltetrovac black holes are the Reissner
Nordstrom solutions (Israel 1968). Finally, Mazur (1982) and Bunting (unpublished)
have generalized the Carter-Robinson proof of uniqueness of Kerr to show that'the
charged Kerr solutions (together with their generalizations possessing magnetic
charge, .whi.ch are obtained by:applying a duality rotation to the charged Kerr
electromagnetic field)·are the only stationary, axisymmetric electrovac solutions.
Further generalizations to exclude the possible presence of other types of classical
field$ arouoo a black hole also ,have been given (Bekenstein 1972; HartIe 1972;
Teitelboim 1972). II1addition, numerous examples have been given (see, e.g., Wald
19720) to illustrate hovv the final black hole state resulting from gravitational collapse
can lose allil'lformation about the collapsing body except its mass, angular momen
tum, and charge.

12.4 Energy Extraction from Black Holes
By definition, a black hole is a "region of no escape." No material body or light

ray ever can be extracted from a black hole. Therefore, it came as a great suiprise
when Penrose (1969) noted that energy can be eXt;ractedfro,rn a black hole with an
ergosphere. Themechani~mproposed by Penrose can be understood as follows. The
Killing field ~Q which becomes a time translation asymptotically at infinity is space
like in the ergosphere.Thus, for a,test particle of4-momentumpQ = muQ, the energy

E = __p"~Q (12.4.1)

need not be positive in the ergosphere. Therefore, by making a black hole absorb a
particle with negative total energy, we can extract energy from a black hole! To see
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this in more detail, suppose we start in our laboratory far from the black hole by
,throwing a particle toward the black hole. If we denote the 4-momentum of this
particle by pS, its total energy measured in the laboratory will be

Eo = -p3~ (12.4.2)

As it falls freely toward the black hole, Eo will remain constant. Suppose, when the
particle enters the ergosphere, we arrange--e.g., by means of explosives and a
timing device-to have it break up into two fragments as illustrated in Figure 12.7.
By local conservation of energy-momentum, we have

p3 = pT + p~ , (12.4.3)

where pT and ~ are the 4-momenta ,,{the two fragments. Contracting equation
(12.4.3) with ~, we obtain

Eo = E1 + E2 (12.4.4)

However, inside the ergosphere, we can arrange the breakup so that one of the
fragments has negative total energy,

E1 < 0 . (12.4.5)

Therefore, if the other fragment returns to our laboratory in free (i.e., geodesic)
motion, it will have an energy E2 which is greater than the initial energy Eo.

In the case of a Kerr black hole of mass M with a :;:. 0, one may explicitly verify
that the breakup process can be done so that the second fragment does, indeed,
escape to infinity. One also may verify that the negative energy fragment always falls
into the black hole. Thus, at the end of the process, one has energy Eo + lEI 1in the
laboratory, and the mass of the black hole must be reduced to M - 1E1 I. Thus, the
energy lEI 1 has been extracted from the black hole!

How much energy can be extracted from a Kerr black hole in this manner? As we
shall see below shortly, the energy extraction process is self-limiting because the
negative energy particles which enter the black hole also carry negative angular
momentum, i.e., angular momentum opposite that of the black hole. As a result, the
angular momentum J = Ma of the black hole will be reduced to zero while M is still
finite. However, when J =0 the ergosphere no longer is present, and nofurther
energy extraction can occur.

E2

Fig. 12.7. A diagram illustrating the Penrose process for extracting energy from a
Kerr black hole.
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To see this limit on energy extraction in detail, we use the fact that the Killing field
X", defined by equation (12.3.20), is future directed null on the horizon. Hence for
any particle which enters the black hole (which includes all negative energy par
ticles), we have

0> pllX" =p"(~ + OH"''') = -E + OHL (12.4.6)

where L =P"';" and 0H'Was defined by equation (12.3.19). Thus, we find that

L < E/OH (12.4.7)

whicll verifies the above statement that a negative-energy particle entering the black
hole carries negative angular momentum. After the black hole "swallows" a particle,
it should settle back downtoa .Kerr solution with parameters modified by 8M = E,
8J = L. Thus, from equation (12.4.7), the change in black hole parameters is
restricted by

8J <8M/OH ,

which can be rewritten as (Christodoulou 1970)

8Mifr > 0

where the i"educible mass, Mirr, is defined by

MGt = 4[M2 + (M4 - }2)1/2]

Inverting equation (12.4.10), we find

1}2
M 2 =M·2 +--

Jrr 4 M~r

~M~r

(12.4.8)

(12.4.9)

(12.4.10)

(12.4.11)

Thus, the~ of a black hole cannot be reduced below the initial value of Mifr via
the PeI)I'Oseprocess. If we start with a KeJTblack hole of mass Mo and angular
momentumJo, then even assuming that equality is achieved in equation (12.4.7), by
the time the energy Mo - Mirr(Mo,Jo) has been extracted, the angular momentum of
the black hole will have been reduced to zero. Since one can come arbitrarily close
to achieving equality in equation (12.4.7), we can come arbitrarily close to extracting
energy Mo - Mirr from the black hole via the Penrose process. We may interpret
Mo - Mifr as the rotational energy of the black hole. For a maximally rotating black
hole, Jo = Mij, it represents (1 - 1/Y2) "'" 29% of the mass-energy of the black
hole.

The universal nature of the limit on energy extraction implied by
(12.4.11)-obtained above only for the specific process proposed by Penrose-can
be seen from the area theorem 12.2.6. The area of the event horizon of a Kerr black
hole is given by
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== f (rl- + a~sin9 d9 dq,

== 41T(";' + a2
)

== 161T M:r • (12.4.12)

Thus, from the area theorem we obtain the completely general result that Mirr can
never decrease, from which follows the' above energy extraction limit for all possible
processes. The cOnsistency of the area theorem, proven by general, abstract argu
ments, with the result (12.4.11) obtained by the calculation of a specific process for
a Kerr black hole, lends further aesthetic support for the validity of the first cosmic
censor conjecture, which is used in the above argument when we assume that the
infallingparticle merely chartges the black hole parameters and does not convert the
black hole to a naked singularity.

It should be noted that the area theorem also can be used to obtain an interesting
upper limit on the energy radiated away in the form of gravitational waves when two
black holes collide (Hawking 1971). Consider, for example, initial data representing
two widely separated Schwarzschild black holes initially "at rest," with masses M1

andM2• (See the paragraph below eq. [10.2.39] of section 10.2 for a brief discussion
of how to construct such· data explicitly.) Presumably, the dynamical evolution of
these data will yield a spacetime where the two black holes fall toward each other,
coalesce, and "settle down" toa single Schwarzschild black hole of mass M. The
total energy radiated away in·this process is

End == M1+ M2 - M . (12.4.13)

An upper limit on End can be obtained by noting that the initial black hole area is

Ai = Al + A2 == 161T(Mr + M~) (12.4.14)

The final area is

Ar == 161TM2

and, by the area theorem, we have

Af·~AI

Putting together equations (12.4.13)-(12.4.16), we obtain

End ~ M, + M2 - (Mr + M~)1/2 .

(12.4.15)

(12.4.16)

(12.4.17)

For the caseMI = M2 ,this implies that at most (l -1/v'2) "'" 29% of the original
mass can be radiated away. Numerical calculations (Smarr 1979) indicate that far
less energy ·than this upper liIilifllCtually will be radiated in this process.

Although the Penrose process is of great importance for demonstrating that, in
principle, the maximum amount of energy permitted by the area theorem can be
extracted from a rotating black hole,the process requires a precisely timed breakup
of the inci~nt particle/llrelativisticvelocities and it is not a practical energy
extraction method (Bardeen, Press, ~dTeukolsky 1972; Wald 1974c). Interestingly
there is a wave analog of the PenrOse process, known as superradiant scattering
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(Misner, unpublished; Zel'dovich 1972; Starobinskii 1973), which allows energy to
be extracted from a black hole in a relatively simple manner. If a scalar, electro
magnetic, or gravitational wave is incident upon a black hole, part of the wave (the
"transmitted wave") will be absorbed by the black hole and part of the wave (the
''reflected wave") will escape back to infinity. Normally the transmitted wave will
carry positive energy into the blackhole, and the reflected wave will have less energy
than the incident wave. However, for a wave of the form cP = Re[~(r, 9)e-i""e ....]
with

o < w < mOH (12.4.18)

the transmitted wave will carry negative energy into the black hole (analogous to the
negative energy fragment in the Penrose process fur particles) and the reftected wave
will return to infinity with greater amplitude and energy than the incident wave. This
is demonstrated JIl()st easily for the case of scalar waves. By contracting the stress
tensor, equation (4.3.10), of a K1ein-Gordon scalar field cP with the timelike Killing
field t" of the Kerr background, we obtain an "energy current,"

J" = -Tab~b , (12.4.19)

which is conserved since V"J" = -(V"Tab)~b -TabV"~b = O. Hence, ifwe integrate
v"J" over the region.K of spacetime shown in Figure 12.8. we find by Gauss's law
that the difference between theincoming and outgoing energies (i.e., the integrated
ftux of J" over the "large sphere'') equals the integrated ftux of J" on the horizon.
However, on the horizon the time averaged ftux is given by

(J"n") = -(J"X") = (TabX"~b) = «X"V"cP)(~bVbcP»

1="2Cd(w - mOH) Icf1012 (12.4.20)

};,

Fig. 12.8. A spacetime diagram showing the region K over which v"r = 0 is
integrated to derive the conclusion in.the text eonc:emipg. superradiant scattering.
Here thespacelike hypersutface 1 2 is a "timetraDslate" of II by At, and the timelike
hypersutface S~nts a "l.arge sphere" at infinity. The integral of Janaover S
~ts the net energy floW out of K to infinity (i.e., the outgomg minus incoming
energy) during the time 1J.t, wbereasthe integral of Jan· over the horizon represents
the net energyJlow into the black bole. By Gauss's law (see appendix B) the integral
of Jan'" oyer the entire boundary vanishes. (The appropriate~ of naon each
part of the boundary are shown.) However, for a wave with time dependence e- I

""

the integrals over 1:. and ~ cancel by time. translation ~trY. Hence, the integral
ofJan aover S equals minus the integral of Jan aover the horizon.
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where n" = ...,X" (with X" given by eq. [12.3.20]) is the appropriately directed
normal to the horizon. (The tenn in Tab proportional to gab does not contribute since
X"~ = 0 on the horizon.) Thus, in the frequency range of equation (l2.4.18) the
energy flux through the horizon is negative, and hence superradiance is obtained.
This conclusion also can be derived by considering the "particle number current,"

j" = -i("if>V"q, - q,V""if» . (12.4.21)

for the complex field </Joe-illJteil!t4>. This current is conserved by virtue of the K1ein
Gordon equation. Again, ..!..j"X" is negative in the range (12.4.18), thus establishing
superradiance.

Thesuperradiance of electromagnetic waves in the range (12.4.18) can be proven
similarly by consideration of the energy current, - T~bJ or a (non-gauge invariant)
..particle number current" analogous to (l2.4.21), although the demonstration of the
negative integrated flux of the energy current through the horizon is less straight
forward (see problem 5). In the gravitational case, we also can fonn a conserved
"effective energy current", (1/81T)G~~b, where G~ is the second order Einstein
tensor (see section 4.4b for the expression for G~ for perturbations off flat space
time), and a conserved ~particlenumber current." The fonnula for the energy current
is rather complicated, and neither currentis gauge invariant. However, one can-avoid
dealing with them by working, instead, with the decoupled Teukolsky equation for
the variables '1'0 or '1'4 defined in section 12.3. By doing so, superradiance in the
range (12.4.18) for gravitational waves can be established in a relatively sttaight
forward manner (Teukolsky and Pres.s 1974).Superradiance of electromagnetic
waves also can be proven from the Teukolsky equation for 4>0 or 4>2. Numerical
computations (Teukolsky and Press 1974) have shown that the largest superradiance
effects occur for gravitational waves, where an amplification factor of up to 1.38 can
be achieved for a Kerr black hole with a =M.

The necessity of superradiance in the regime' (12.4 .18) also can be seen directly
from the area theOrem (Bekenstein 1973a). For a wave with frequency Cd and
azimuthal number m in a stationary axisymmetric background, the ratio of angular
momentum flux to energy flux at infinity is

~/~ = m/Cd • (12.4.22)

Thus, by conservation of energy and angular momentum, when such a wave is
incident upon a black hole, the change in energy, 8M, and angular momentum, BJ,
of the black hole must be related by

BJ/8M = m/Cd (12.4.23)

However, in the range (12.4.18), we have

BJ/8M > I/On (12.4.24)

If 8M > O. this would violate equation (12.4.8), which, by equations (12.4.9) and
(12.4.12), would violate the area theorem. Hence, we must have 8M < O-i.e.,
superradiance must occur-when 0 <Cd < mOn.

Interestingly, fennion fields do not display superradiance (Unruh 1973; Guven
1977). The "particle number current," j", associated with neutrino or Dirac fields
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(see chapter 13) is manifestly a timelike or null vector, and hencejlln ll is manifestly
nonnegative on the horizon for all waves including those in the range (12.4.18).
Thus, the reflected wave never has larger amplitude than the incident wave. In this
case the argument given in the previous paragraph is inapplicable because the stress
tensor of these fields fails to satisfy the weak energy condition, so the area theorem
does not hold.

The behavior of both boson and fermion fields incident upon a Kerr black hole
with a -+ 0 is in very close mathematical analogy to a well studied effect in non
gravitational physics known as the Klein ''paradox.'' If a Klein-Gordon field of
charge Q and mass M in one spatial dimension is incident upon an electrostatic
potential, V, such that V -+ 0 as x -+ -00 but V -+ ~ > 2M/Q for x -+ +00, then
when f» + M < Qifl the -reflected wave has greater amplitude and energy than the
incident wave. For a Dirac field" the reflected wave will be smaller than the incident

.' wav~ain the Dirac "particle number current" is always timelike-but the trans
mitted wave still has a negative "kinetic energy" (Klein 1929). In quantum field
theory, the interpretation of the Klein paradox is that in both the boson and fermion
cases particle-antiparticle pairs are spontaneously created in the strong electrostatic
field associated with the potential, V. When incoming particles also are present,
stimulated emission occurs in the boson case, and in the classieallimit this gives rise
to the larger "reflected wave" obtained in the classical analysis. The close analogy
between the Klein paradox and the scattering of waves by a Kerr black hole suggests
that spontaneous particle creation should occur near a Kerr black hole. Indeed, this
is the case, but we shall postpone our discussion of this phenomenon until
chapter 14.

12.5 Black Holes ad Thermodyaamics
The area theorem 12.2.6 states that in any physically allowed process, the total

area of all black holes in the universe cannot decrease, eM 5: O. This law bears a
strong resemblance to the second law of thennodynamics, which states that in any
physically allowed process the total entropy of all matter in the universe· cannot
decrease, as 5: O. It might appear that this similarity is ofa very superficial nature.
After aU, the area theorem is a mathematically rigorous consequence of general
relativity, whereas the second law of thermodynamics is believed not to be a rigorous
consequence of the laws of nature but rather a law which holds with overwhelming
likelihood for systems with a large number of degrees of freedom. Nevertheless, we
shall show in this section that this formal analog for black holes of the second law
of thennodynamics extends to the other laws of thennodynamics as well. We will
return to this issue in chapter 14, where further evidence will be presented that the
relationship between the laws ofblack hole physics and the laws of thermodynamics
is of a fundamental nature.

Our first task is to introduce a quantity, Ie, defined on the horizon of an arbitrary
stationary black.hole (not riecessarily vacuumor electrovac in its exterior region) and
derive a number of properties of K. As mentioned at the end of section 12.3, for a
stationary black hole, there exists a Killing field, XII, which isnonnal to the horizon
of the black bole. If XII does not coincide with the stationary Killing field ~II, we
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obtain an axial Killing field .pa in the spacetime by taking a linear combination of Xa

and ~a. Thus, in general we may write Xa as

Xa = ~a + flBl/Ja , (12.5.1)

where (as in the case of a Kerr black bole, eq. [12.3.20]) the constant fiB is called
the angular velocity of the horizon. Since the horizon is a null surface and xa is
normal to the horizon, we have XaXa = 0 on the horizon, so, in particular, XaXa is
constant on the horizon. Hence Va(XbXb) also is DOnna! to the horizon, so on the
horizon there exists a function K such that

Va(XbXb) = -2KXa (12.5.2)

Taking the Lie derivative of equation (12.5.2) with respect to the Killing field xa we
find

£XK = 0 (12.5.3)

(12.5.5)

i.e., K is a constant on the orbits ofxa
• In fact, we shall prove below that K is constant

over the horizon, i.e., its value does not change from orbit to orbit. For a charged
Kerr black hole, the value of K is

(M 2 - a2 _ e2)1/ 2
K = (12.5.4)

2M[M + (M 2 - a2 - e 2)1 / 2] - e2

We may rewrite equation (12.5.2) in the fonn

XbVaXb = - XbV~a = - KXa ,

which is just the geodesic equation in a non-affine parameterization. Thus, K mea
sures the failure of the Killing parameter, v, defined by

Xavav = I (12.5.6)

to agree with the affine parameter, A, along the null geodesic generators of the
horizon. If we define ka on the horizon by

(12.5.7)

we find

(12.5.8)

Le., lea is the affinely parameterized tangent to the null geodesic generators of the
horizon. This shows that on the horizon the relation between affine parameter Aand
Killing parameter v, is given by

so that, if K .;:. 0, we have

dA
- IX e'"'
dv

A IX e'"'

(12.5.9)

(12.5.10)
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Since X" is hypersurface orthogonal at the horizon, by Frobenius's theorem (see
appendix B) we have on the horizon

X["VbXc] = 0 . (12.5.11)

Using Killing's equation VbXc = - ~Xb, this implies

Xcv,.Xb = -2X["VbjA'c (12.5.12)

on the horizon. Contracting with V"Xb
, we find

Xc (V"Xi(V"Xb) = - 2(X"V"Xi(VbXc)

= -2KXbVbXc

= -2/(2Xc (12.5.13)

Thus, we obtain a simple explicit formula for /(,

1
/(~ = - 2 (V~Xb)(V"Xb) ,

where evaluation on the horizon is understood.
Equation (12.5.14) provides us with a physical interpretation of /( as follows. We

have everywhere (Le., not just on the horizon)

3(X["Vbxc])(X["VbXc]) = X"X,,(VbXC)(VbXc) - 2(X"VbXC)(Xbv,.Xc) . (12.5.15)

Since X[" V~c] == 0 on the horizon, the gradient of the left-hand side vanishes on the
horizon. On the other hand, by equatiot{(12.5.2), Vb(X"X,,) .;:. 0 on the horizon,
provided that /( .;:. O. Hence, by l'liospital's rule,the left-hand side of equatipn
(12.5.15) divided by XjJX~must9roachzeroon the horizon. Thus, using equation
(12.5.14), we find

/(2 = lim{-(XbVbXCXX"v,.Xc)/XdXd} , (12.5.16)

where "lim" stands for the limit as one approaches theborlzon. Now,

a C = (XbVbXC)/( -X"X,,) (12.5.17)

is just the acceleration of an orbit of X". Thus, we have

/( = lim(Va) (12.5.18)

where a = (a cac)1/2 and V = (-X"X,,)1/2. In the case of a static black hole, we have
X" =~fI. ThenV'isjust.tbe redsbift factor; and, by problem 4 of chapter 6, Va is the
force tbatmust be exerted at infinity to hold a unit testmass in place, Thus, k is the
limiting value of this force at the horizon; Le., it is the surface gravity of the black
hole. (Of course, the locally exerted force, a, becomes infinite on the horizon.) For
a rotating black hole, flo .;:. 0, a test~s cannot be held stationary with respect to
infinity near the black hole, but we shall continue to refer to /( as the surface gravity.

Using equations (12.5.7) and (12.5.11), we lindon the horizon

k[..v,,]kc = -e-2IWx{4V"Xb + X[" Vb](/(V)] (12.5.19)
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Contracting equation (12.5.19) with any two vectors mb
, n C tangent to the horizon

(i.e., Xama = Xana = 0), we obtain

mbncVbkc = 0 , (12.5.20)

Le., in the notation of section 9.2, we have

~ = 0 . (12.5.21)

Thus, the expansion 8, twist &'>"", and shear 6-"" of the null geodesic generators of the
horizon vanish. From equations (9.2.32) and (9.2.33), we see also that on the
horizon

and

~=o

(12.5.22)

(12.5.23)

(12.5.25)

The latter equation states that ka is a principal null vector of the Wey1 tensor (see
section 7.3). In fact, we shall see below that ka must be a repeated principal null
vector.

It should be emphasized that most of the above equations-in particular, the
relation (12.5.2) defining 1(-ho1d only on the horizon. Thus, we may not simply
apply Va to, say, equation (12.5.2)since we may differentiate equation (12.5.2) only
in directions tangent to the horizon. If the horizon were a spacelike surface, we could
apply h""Va to all equations, where the projection operator h"" was defined by
equation (10.2.10). However, the horizon is a null surface and has no natural
projection operator associated. with it. Nevertheless, the tensor EabcdXd, where €abed
is the spacetime volume element (see appendix B) is tangent to the borizon,since
(rXd)Xc = O. Thus, we may apply EabcdXd'Vc to any equation holding Qn the
horizon. Equivalently, we may apply X[d Vcl to any such equation.

We now shall prove !pat the surface gravity, 1(, is constant over the event horizon.
Applying X(d'Vcl to equatiQn(12.5.5), we obtain

XaX{d'Vc]1e + Ie X[d'Vc]Xa = X[d'Vcj{XbVbXa)

= (X[d'Vc]X,(VbXa) + XbX[d'Vc]V~a

= (X[d'Vc]X")(V~a) - XbR",,,/Xd]X~, (12.5.24)

where equation (C.3.6) in appendix C was used in the last step. However, using
equations (12.5.12) and (12.5.5), the first term on the right-hand side of the last line
of equation (12.5.25) is found to be

(X[d'Vc)XIt)(VbXa) = - ~(XbVdXc)VbXa

1
= -'2KXaVdXc

= I( X[d~]Xa ,
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which cancels the second tenn on the left-hand side of equation (12.5.24). Thus, we
obtain

XaX[dv"jl( = XbRab[/XdlXe (12.5.26)

On the other hand, if we apply X[dVeJ to equation (12.5.12), we obtain

(X[dVejXc)VaXb + XcX[dVejVaXb

= -2(X[dVejX[a)VbjXc - 2(X[d~j~bXlcl)Xaj . (12.5.27)

Using equation (12.5.12) repeatedly, we find that the first tenn on the left-hand side
of equation (12.5.27) cancels the first tenn on the right-hand side. Thus, using
equation (C.3.6), we obtain

-XcRab[/XdlX/ = 2X[aRb]c[/XdlX/ . (12.5.28)

If we multiply by gce and contract over c and e, the left-hand side vanishes, and we
find

-X[a~{X/Xd = X[aRbjc/XcX/ . (12.5.29)

However, the lenn on the right-hand side ofthis equation is ofthe same fonn as the
right-hand side of equation (12,5.26). Thus, comparison of these two equations
yields

X[dv"jl( = -X[dRc{X/ . (12.5.30)

Up to this point we have not. used Einstein's equation anywhere in th~above

analysis. However, we show now that ~instein 's equati~ntogether with the ck>triipant
energy c.o~~n (defined in section 9.2)implies thattb~ right-hand side ofeqoapon
(12.5.30) vllQishes. Namely, the dominant energy condition states that ...;.TabXbtnuSt
be afoture directed timelike or nqll vector. However, Einstein'.s equation together
with equatiOll (1Z.5.22) implies TabXbXa = O. This implies that - T"bXbmust t>9int
in the direction ofXQ

, i.e., X[c Ta]bX b == O. Hence u~ingEtnstein's equation again,we
find that the right-hand side of equation (12.5.30) also must vanish, and we conclude
that

X[dv"jf( = 0 , (12.5.31)

which states that I( is constant on the horizon. Note, incidentially, that the vanishing
of both sides of equation (12.5.29) implies by equation (3.2.28) that
X[a CIJ]cd/XcX/ = 0, i.e., that Xa is a twice repeated principal null vector of the Weyl
tensor on the horizon.

A simple fonnula for the mass of a stationary, axisymmetric spacetime containing
a black hole now maybe obtained (Bardeen, Carter, and Hawking 1973). Let I be
an asymptotically flat spacelike hypersurface which intersects the horizon, H, on a
2-sphere, '#e, which fonns the boundary of I. The calculation which led to equation
(11.2.10) of the previous chapter is modified only by the presence of an additional
boundary tenn due to '#e. We obtain

M = 2 L(T"" - ~ Tg"")na~bdV - 8~ f7t Eabedvc~d . (12.5.32)
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We may evaluate this boundary term by using equation (12.5.1) to write

r Eabcd'Vc~d = r Eabcd'VcXd - OH r Eabcd'Vct/Jd
J:Jl J:Jl. J:Jl

= f:Jl Eabed'VcXd
- 161TOHJH

where we may interpret JH ;e (1/161T) f:Jl Eabcd 'Vc t/Jd as the angular momentum of the
black hole (see problem 6 of chapter 11). On the other hand, we may express the
volume element, Eab' on '1t as

(12.5.34)

(12.5;36)

where N Q is the "ingoing" future directed null normal to '1t, normalized so that
NaXQ = -1. Thus, we have

EabEabed'VcXd = NeX/EabelEabed'VcXd = -4NcXd'VcXd = -4K (12.5.35)

and hence

r Eabcd 'VcXd = .!. r (Eel Ee/cd 'VcXd)Eab = - 2KA
J:Jl 2 J:Jl

where A = ht Eab is the area of the event horizon. Thus, we obtain the following
formula for M:

M = 21 (Tab - ~Tgab)nQ~bdV + 11TKA + WaJH (12.5.37)

Of greatest interest for the development of the analogy between the laws of black
hole physics and the laws of thermodynamics is the derivation of a differential
formula for M, i.e., a formula for how M changes when a small stationary, axisym
metric change is made in the solution. We may use the freedom of applying dif
feomorphisms to solutions to ensure that ~Q, t/JQ, and the location of the horizon on
the manifold remain unchanged when we vary the spacetime metric. For simplicity,
we Shall treat only the vacuumcase6

, Tab = O. A gener8lization of the differential
mass formula to the case of ftllid matteJ: outside.the black.hole was given in the
original paper of Bardeen, Carter, and Hawking (1973), and further generalizations
have been given by Carter (1973).

A formula fOr 8M in the vacuum case can be obtained by varying equation
(12.5.37),

(12.5.38)

6. Actually, as discussed at the end of section 12.3, in the vacuum case, the only possible black hole
solutions are the Kerr metrics, so our formula (12.5.44) below could be derived simply by verifying that
it holds for the Kerr metrics. However, as mentioned in the text, the derivation we give generalizes to
the case where matter is present outside the black hole.
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However, this is not the desired fonnula. Another fonnula for 8M can be derived as
follows. First, we note that in any spacetime if va and wa commute and satisfy
v..va = v..wa = 0, then

(12.5.39)

and hence

(12.5.40)

Consequently, ifwe apply Stokes's theorem to a three-dimensional volume bounded
by two spheres SandS', we find that .& EabcdVcWd = .&' t"abedvcwd• We apply this
general result here, choosing S to be a "sphere at infinity," S' to be a sphere, '1t, on
the horizon, wa= Ea, and

va = Vb('Yab - gab'Y) , (12.5.41)

where 'Y. is the perturbed metric and'Y = gab'Yab. The above required properties are
satisfied by ~a and va since for any stationary perturbation we have £Eva = 0 (i.e.,
va and ~a commute), we have Va~a = 0 by Killing's equation, and Vav a = 0 is just
the trace of the perturbed vacuum Einstein equation, R = 0 (see eq. [7.5.15]). Thus,
we find

r t"abed~d~('Yc" - gC"'Y) = r Eabcd~dV..('Yc" - gC"'Y) • (12.5.42)h J~ .
If both the ADM and Komar expressions for total mass, equations (11.2.14) and
(11.2.9), are used, the; left-hand side is evaluated to be 81T8M. A significantly longer
computation reveals that the right-hand side is equal to -2A8K - 161T~8aH (see
Bardeen, Carter, and Hawking 1973). Thus, we obtain

8M = - 4~A8K - 2~80H . (12.5.43)

Adding equations (12.5.38) and (12.5.43), we obtain the desired formula,

1
8M = 811' KM + OH8~ . (12.5.44)

The close mathematical analogy~tw~n laws ofblack hqle physics derived above
and the ordinary laws of thermodynamics is displayed in Table 12.1. We noted at
the beginning of this section th.at the bl~ hole area theorem is analogous. to the
second law of thermodynamics. Now we have obtained the formula (12.5.44) for
8M, which is closely analogous to the first law of thermodynamics. In particular, the
term OH8~ is analogous to the "work teon" P8V of the first law; indeed, for an
ordinary rotating body a term of the fonn OM would be present in the thermo
dynamic fonnula. The temi M appears in equation (12.5.44) in the same manner as
SSappears in the first law of thermodynamics, except that it is multiplied by (1!81T)K
rather than T, so K plays the role of temperature in the black hole laws. But we proved
above that K satisfies an important property analogous to the property oftemperature
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Table 12.1
BUCK HOLES AND THERMODYNAMICS

CONTEXT

LAW

zeroth

First

Second

Third

Thermodynamics

T constant throughout body
in thermal equilibrium

dE = TdS + work terms

as ~ 0 in any process

Impossible to achieve
T = 0 by a physical
process

Black Holes

K constant over horizon
of stationary black hole

dM = 8~KdA + flHdJ

M ~ 0 in any process

Impossible to achieve
K = 0 by a physical
process

in the zeroth law of thennodynamics: it is unifonn over an "equilibrium" (Le.,
stationary) black hole. Finally, we see from equation 02.5.4) that for the charged
Kerr black holes, K vanishes only for the "extreme" case M 2 = a2 + e2• Explicit
calculations (see, e.g., Wald 1974a) show that the closer one gets to an "extreme"
black hole, the harder it is to get a further step closer, in a manner similar to the third
law of thennodynamics. (However, the analog of the alternate version of the third
law of thennodynamics, which states that S -+ 0 as T -+ 0, is not satisfied in black
hole physics, since A may remain finite as K -+ 0.)

Note that the analogous quantities in Table 12.1 are E ~ M, T ~ aK, and
S ~ 0/81Ta)A, where a is a constant. A hint that the relation between black hole
laws and thennodynamic laws might be more than just an analogy comes from the
fact that E and M are not merely analogs in the fonnulas but represent the same
physical quantity: total energy. However, the thennodynamic temperature of a black
hole in classical general relativity is absolute zero since a black hole is a perfect
absorber but does not emit anything. Thus, it would appear that K could not phys
ically represent a temperature. Nevertheless, in 1974 Hawking discovered that quan
tum particle creation effects result in an effective "emission" ofparticles from a black
hole with a blackbody spectrum at temperature T = fJ,K/21T. Thus, K does physically
represent the thennodynamic temperature ()f a black hole! This suggests that the
relationship between laws of black hole physics and thennodynamics may be much
more than an analogy: The black hole laws of Table 12.1 may be precisely the
ordinary laws of thennodynamics applied toa black hole. We shall discuss this issue
further in the last section of chapter 14.

Problems
1. Since an observer outside a black hole does not lie within the causal future of the
black hole, such an observalliterally cannot "see" the black hole. As is apparent from
Figure 6.11, an observer looking at a region where gravitational collapse has oc-
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curred would, in principle, see the~collapsingmatter at a stage where it is just outside
the black hole. Consider a particle-such as a particle on the surface of the collapsing
body-which falls into a Schwarzschild black hole. Show that for any smooth,
timelike curve, dUIdT must have a finite, nonzero value on the horizon, where U
denotes the Kruskal coordinate (6.4.26) and T is the proper time along the curve.
Show, therefore, that if the particle emits photons radially outward at a constant rate
(with respect to its proper time), the rate at which photons will be received by a
~stant static observer will vary as e-t

/
4M at late times, where t is the Schwarzschild

coordinate time ("'" proper time of the observer). The frequency of each photon also
will be redshifted by this factor. Since 4M "'" 2 x 1O-'(MIM0 ) s, this means that
the region where collapse has occurred will appear black on a very rapid time scale
(Ames and Thome 1968).

2. a) Let (M, gab) be a spacetime with a Killing field, wa, and supposeAa is a vector
potential which respects this symmetry, i.e., £wAa = O. Show that for a particle of
charge q moving under the Lorentz force law (4.3.2), wa(mua + qAa) is constant
along the world line of the particle.

b) Obtain the constants of motion, E and L, for charged particle motion in the
charged Kerr spacetime. Use this result to derive an effective potential for radial
motion in the equatorial plane, thereby generalizing equation (12.3.25) to the
charged case.

3. Show that the energy (defined as in problem 2 above) of a particle of mass m and
charge q held fixed at radius r outside a Reissner-Nordstrom black hole of mass AI
andchargeeisE = m(l - 2Mlr + e'Zlr'l)'/'l + qelr. Hence, ifq has the opposite
sign of e, we will haveE < 0 for r sufficiently close to r+. Thus, we may extract
eDergy from a Reissner-Nordstrom black hole by lowering a charged particle to near
the horizon and then dropping it into the black hole. By paralleling the derivation of
equation (12.4.9) in the Kerr case, obtain an upper limit for the amount of energy
that can be extracted by this process (Christodoulou and Ruffini 1971). Show that
this upper limit agrees with that obtained from the area theorem.

4. Suppose two Widely separated Kerr black holes with parameters (M"J,) and
(M'l' J'l) initially are at rest in an axisymmetric configuration, i.e., their rotation axes
are aligned along the directionof their separation. Assume that these black holes fall
together and coalesce into a single black hole. Since angular momentum cannot be
radiated away in an axisymmetric spacetime (see problem 6 of chapter 11), the final
black hole will have angular momentum J = J, + J'Z. Derive an upper limit for the
energy radiated away in this process. Note that this upper limit is larger when J, and
J'l are antiparallel rather than parallel. This suggests the existence of a gravitational
"spin-spin" force which is attractive for antiparallel spins. (The existence of a force
of the correct magnitude and sign to account for this effect can be demonstrated
directly from the equation of motion for a spinning test body [Wald 1972b ].)
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5. a) Let Fab be a closed two-form (i.e., satisfy equation (4.3.13» and let wa be an arbi
trary vector field. Show that

£..,Fab = -2V[o(FbjcW')

b) Show that the time averaged flux of the Maxwell energy current, JO = - To,,€b,
across the horizon of a KelT black hole is negative when co and m satisfy equation
(12.4.18), and thus that superradiance of electromagnetic waves occurs in that
regime. (Hint: Use part (a) to relate Fab €" to FabXb

.)
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SPINORS

In chapter 4 we briefly considered the issue of what types of quantities appear in
physical laws. We noted that tensor fields-i.e., multilinear maps associated with
each spacetime point, taking vectors and dual vectors into numbers-encompass a
very general elass of mathematical entities, and this helps to account for why
essentially all physical quantities in spacetime are represented by tensor fields. In the
first section of this chapter we shall reinvestigate this question from a more system
atic point of view, using the "special covariance" of the laws of physics in special
relativity. This will motivate us to define and investigate the properties of more
general entities called spinor fields.

In essence, a spinor at a point x of spacetime is an ordered pair of complex
numbers associated with an orthonormal basis of the tangent space Yx which trans
forms in a specified way under a continuous change of basis. The most unusual
aspect of this transformation law-which contrasts sharply with the analogous trans
formation laws for ordinary tensors-is that a spinor changes sign when the basis
completes a rotation of 21T radians about a fixed axis and thereby returns to its
original configuration. Thus, the numerical values of a spinor in a given orthonormal
basis cannot be directly physically measurable since it has two possible distinct
values in that basis. However, real bilinear products of spinors and complex conju
gate spinors may be identified with ordinary vectors and thus have a direct physical
interpretation. Indeed every null vector can be expressed as the tensor product of a
spinor and its complex conjugate. In this sense, a spinor may be viewed as a "square
root" of a null vector.

Spinors arise most naturally in.the context of quantum theory. In quantum me
chanics, the numerical value of a wave function r/J is not physically measurable since
r/J and elar/J represent the same physical state. Consequently, no contradiction results
from having a wave function be represented by a spinor field. Indeed, we shall see
that spinors arise naturally when one considers from a general viewpoint the types
of fields which can occur in quantum theory.

However, we should emphasize that the notion of spinors has proven to be an
extremely powerful tool for analyzing purely classical problems. Perhaps the most
dramatic example of this is Witten's (1981) spinorial proof of the positive mass
conjecture. In section 13.2 we shall give further examples of this by deriving a useful
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spinorial decomposition of the curvature tensor and obtaining the existence and
properties of the principal null directions of the Weyl tensor in a manner far simpler
than can be achieved by tensor methods.

We begin our discussion in section 13.1 by arguing from a general viewpoint that
the isometry group of a spacetime acts in a natural way on the states of a physical
theory defined on that spacetime. For a quantum theory defined on Minkowski
spacetime, this leads us to examine the unitary representations of the Poincare group
on a Hilbert space.· However, because state vectors which differ by a phase factor
represent the same physical state, representations "up to phase" of the poincare group
also are allowed. These representations are in one-to-one correspondence with true
representations of the covering group of the ·Poincare group, namely, the groUpl
ISL(2, C) composed of all translations and linear maps of unit determinant acting on
a two-dimensional, complex vector space. Ordinary tensor fields on Minkowski
spacetime arise as realizations of the true representations of the Poincare group.
Spinorsand spinorial tensor fields arise as realizations of representations· of
ISL(2, C). The relation between spinors and vectors also is obtained in section 13.1,
and other basic properties of spinors and spinorial tensors are established. We
conclude section 13.1 by defining the notion of the derivative of spinor fields in
Minkowski spacetime and giving the linearequations for fields in Minkowski space
time associated with the irreducible representations of ISL(2, C) of mass m and
spin s.

In section 13.2 we consider the generalization of the notion of spinors to curved
spacetime. Since the presentation of spinors in section 13.1 is based heavily on the
Poincare group, we must significantly reformulate the notion of spinors in order to
define them in curved spacetime: We do so by means of a construction involving
fiber bundles. As explained inseetion 13.2, it turns out that the spacetime manifold
must satisfy certaintopologica1 properties in order to admit a notion of spinor fields,
and that~ than one inequivalent spinor structure may exist in a spacetime which
is not simply connected.

The derivative operator acting on ordinary tensor fields· associated with gab can be
generalized to act on spinoriallensor fields. This allows us to obtain a spinorial
decomposition on the Riemann curvature tensor. As applications of spinor methods,
we conclude section 13.2 by deriving the algebraic classification of the Weyl tensor
and demonstrating the inconsiStency of the natural generalization to curved space
time of the Minkowski spaeetime equations for a masslessdield of spin greater
than 1.

We take this opportunity to bring two points conCerning terminology and con
ventions to the attention of the reader. First, the tenn "spinor" in this chapter refers
to an SL(2,C) (2-component)spinot; As mentioned at the end of section 13.1 , a
Dirac (4-component) spinor is simply anSL(2, C) spinor together with a complex
conjugate SL(2~C) spinorr In this sense, SL(2, C) spinors may be viewed as being
more fundamental objects than DiraCspinors~ and it is more natural for us to work

1. The group SL (2, C) consists of the "speCial" (i.e., unit detenninant) linear maps on C2
• The &roup

ISL (2, C) contains, in addition, the (inbomogeneous)ttanslation maps.
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with them. However, we emphasize that in most references on quantum theory, the
term "spinor" means "Dirac spinor."

Second, for the reason explained below equation (13.1.18), in this chapter we use
the metric signature convention + - - - . Thus, in the formulas of this chapter
which involve the spacetime metric, a change of sign for each appearance of the
metric must be made in order to obtain agreement with the formulas appearing in the
other chapters of this book. Further remarks on these sign changes are given in the
section on notation and conventions at the beginning of this book.

13.1 Spinors in Minkowski Spacetime
Tht main purpose of this section is to motivate the definition of spinorfields on

Minkowski spacetime and establish some of their basic properties. We shall do so
by investigating the general issue of what mathematic~ entities may represent
physical fields in Minkowski spacetime. Our approach will be group-theoretic in
nature. We·first shall argue that if "special covariance"of the physical laws holds.
then the isometry group ofa spacetime acts ina natural way on the states ofa physical
system. In the case ofa quantum theoor in Minkowski spacetime, we thereby obtain
a unitary representation up to phase of the PoincaregrollP. The study of these
representations leads to consideration of the group, SL(2,C), consisting of linear
maps of unit determinanfacting on a complex two-dimensional vector space, 'W: The
notion of spinor fields in Minkowski spacetime then is obtained by assigning vectors
in W to points of spacetime in an appropriate way.

To begin, we give a general artMJ1eot that there should exist an action of the
isometry group ofa spacedme(M,g.,g) on the collection, '[i, of states of a physical
theory defined on that spacetime. We shall asspme that the physical properties of
each state in '[i can be characterized by local measurements PUlde at each spacetime
event by a family of observers. A good exampl~ of an '[i satisfying this property is
the collection ofstates of a pbysicalsystem that can be described by tensor fields of
a specified type on M (with the components of these fields corresponding to. the local
physically measurableqwmtities); blJt since our purpose is to investigate the possi
bilities for what'[i may consist of, weIeave g> unspecified. Consider a family of
observers, 0, equipped wit;h rpeasuring apparatus on M. We shall assume that these
observers can be characterized by .specifying an orthonormal basis (e.JQ

· with
a = 0, 1, 2, 3 for the tangent space at each point ofM. Here the first vector (eot in
the basis at each eVent is chosen tangent to the world line of the observer at that
event, and the remaining basis vectors (ec,)Q for a =.. 1, 2, 3 serve as references fQr
how the apparatus he carries is aligned. Since all experiments in physicsmeas~
numbers, ~sociated with each s E '[i there should be a collection of numbers,
corresponding tothe outeomesof a complete setof measurements on the state s made '\
by these observers. We shall assume for simplicity that eayh x EM only a finite \
number, k,of measurements need be made. Then for the given spacetime (M, gab)
and the given family, a,. of observers, we obtain a mapfo:M x '[i -+ IRk which
uniquely characterizes each s..~ :/..• in terms of the measurements made by these
observers. A different family, q, of obse,rvel'S would, in general, obtain a different
map, fl>, i.e., the numerical results of the measurements on s may depend on bow
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the observers move and how they orient their measuring apparatus. Consider, now,
a diffeomorphism cP:M -+ M and allow cP to map the basis fields (ea)Q into <P·(ea)Q
in the manner described in appendix C. In general, the basis cP·(ea)Q will not be
orthononnal at each point and thus will not correspond to a physically realizable
family of observers. However, when (and only when) cP is an isometry, cP·(ear will
be orthonormal, and we can use cP to map our original fam~y, 0, of physical ob
servers associated with the basis field (ea)Q into a new family 0 ofphysical observers
associated with cP·(ear.

If the laws of physics are "specially covapant" under the isometries of (M,8ab)
(see ~hapter 4), then any physically possible result of a set of measurements ~e
by 0 must be a physically possible result for a set of measurements made by O. In
other words,. given any s E ~, .. there must~xist ans E ~ such that the results of
measurements by 0 on sare identical to the resultsofmeasurements by jj on S, i.e.,
for each x EM we ~avefo(x, s) =/6(cP(x), '5). Thus, asSOfiate~ with each isometry
4>, we obtain a map cP:~ :-+ ~, denned by the requirement that cP(s) "look the same"
to the observers 0 as s "looks" to O. In the case where ~ consists of tensor fields,
this map is simply the map <b* defined in appendix C.

The is()metries on (M, 8ab) form a Ue group (see section,7.4). ,We shall denote the
abstract group isom<;>rpqic to the grOl1P pf isometries by G and. <lenote the isometry
assoc~ated with 8 E G as cPs' By the al>overem~ks, for eilch 8 ,E G we obtait! a
map t/>,::J -+ ~. Furthermore, from the physical criteria which defined the map cP"
it is clear that fpr all 8h 82 E G, 'Ye have '

~'I 04>'2 = 4>'1'2 (13.1.1)

We specialize, DOW, to the Case of.Minkowski spacetime (1R4, 'YIaq). The isometry
group of ~owskispacetimeIS the exten~ Poi~e group, but since, as tnen
tioned in section 4,.2, the laws of physics in Minkowski SPacetime are llelieved to be
"special,ly covariant" only under pro~ Poincare. transformations, we shall,~e G to
be thegro'!p ofproper Poioc&lf6 transformations. In order to procee<.l further, wemust
specify the nature ofth~Pllysical ~ry in.more detail. We shall take the fulmewor~
of our physicalth~ to .be ~t ofquantum theory. ;\s we s~l see below, spinors
will emerge as candidates for physical fields in qqantu~ theory'.

In quantum theory, states of a system are represen~as v~ors with unit noon
in a Hilbert Space2 '1t.However,two vectors which diffq t>y all overall phase factor,
i.e. ,a complex number ewith Ie I = 1, represeIltthe s~phYsi~al state. Thus, the
physical states, ~, are the unit rays in the .UI~I1spa~,j.~., the equivalence classes
ofunit norm vectors differing only by a Pltase facto/. Let4>,:~, -+ ~ denote the map
of'~ into i~lfasSOfiated with the isome¥Y cP,. VVe.tpay associated with 4>, a map
Ug : '#t -+ '#t, where. the phase of U, (1/1) for an.,1/1 E '1t~ be chosen arbitrarily. The
requirement thattp, take the sta~s in r;j ~a,ctetized by o~server 0 to states which
"look the s~~" to ob~rver 0 iowues that .. all transition probabilities must be
preserved by 4>,. TJ:Us implies thilteach Ug must satisfy I(U, 1/1" U, !/J,.) I = I(1/11' !/J,.) I

2. See the beginning of section 14.2 for ~,definitionofa Hilbert space. An introduction to some
of the basic properties of a Hilbert space also is givencthere. but this discussion is not essential forthe
present chapter.
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for all "'I, l/J2 E '1t. As shown by Wigner (1959), this implies that U, can be re-phased
so that it is either unitary or antiunitary. Since all proper Poincare transformations
can be continuously defonned to the identity element, the continuous dependence of
4>, with 8 requires that U, be unitary. The requirement (13.1.1) on 4>, implies that
.V, must satisfy

(13.1.2)

where co is a phase factor, Ico(gh 82) I = 1.
We take this opportunity to introduce some terminology. Let G and G' be groups.

A map h:G 4 G' is said to be a homomorphism if for all 8h 82 E G we have
h(8182) = h(81)h(82)' Now, the collection, GL(V), ofone-to-one, onto linear maps
of a (not necessarily finite-dimensional) vector space, V, into itselfbas a natural
group structure. A homomorphism h :G -+ GL (V) is'called a representation of the
group G, and V is said to be its representation space. A map of G into GL (V)
satisfying arelation of the fonn (13.1.2) is called a projective representation or a
"representation up to phase."

OUr strategy for obtaining physical fields on spacetime now may be explained. We
have seen abOve that the Hilbert space ofquantum states is the representation space
for a unitary representation up to phase of the proper poincare group. Therefore, we
may·posethe·mathematical problem of fintling all the unitary representations up to
phase of the Poincare groupon a Hilberfspace whichdepend continuously on the
poincare group elements in the sense desetibed by Wigner (1939). We then may seek
to define fields on spacetime corresponding to.all the representations we have found.

The problem of.finding the continuous unitary representations up to phase of the
poincare group was systematically analyzedbyWigner (1939). The first key result
of Wigner'sanalysis is that the unitary maps U, can be redefined by multiplication
by phase factors in such a way as to maketu(8h82) = ±l. Thus, the U, may be
chosen so that they yield a "representation up to sign." (The proof of this result is
nontrivial and compri~es a substantial portion of Wigner's analysis.) The ne'tt key
tesuk (see Barginiinn 1954) is that the representations up to sign of the Poincare
group correspond precisely to the true representations of its universal covering
group. We digress,now,tddefine the term "universal covering group."

Let M be a connected manifold aIld .let p, q EM. Let 'Y:[O, 1] -+ M and
1" :[0,1] -+M be continuous curves withj(O) = 'Y'(O) = P and 'Y(l) = 'Y'(l) =
q. We say that 'Yand 'Y' are homotopic if they can be continuously deformed into each
other keeping theirendpointsfi'ted, i.e., if there e'tists a continuous function
P:[O, 1] x to, ll-+ M such that F(O,t) =: 'Y(t) and p(1, t)r= 'Y'(t) for all
t E [0, IJ and F(s, 0) = p, F(s, 1) :=: q for all s E [0, 1]. It is easy to check that
h()motopy defines an equivalence relation between curves fronl' p to q. M is said to
besimplyconnected ifevery closed curve in M [i.e. ,every curve with 'Y(O) =. 'Y(l)]
is homotopic to the trivial curve y(t) :=: 'Y(O) for all t E [0,1]. Equivalently, Mis
simply connected if for each p, qE M all the curves connecting p and q are homo
topic. Note that the number of homotopy equivalence classes of curves between
p, qE M is independent of the choice ofp and q. Note also that the set of homotopy
equivalence classes of closed curves through p can be given a natural group structure·
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{t'(t) = e fOf all t. What is perhaps more surprising is that the homotopy class of the
21T-rotation is the only nontrivial homotopy class of closed curves through e in the
poincare group, i.e., every closed curve passing through e either is homotopic to the
21T-rotation curve')' or the trivial curve ')". In particular, a rotation by 411' about a
fixed axis can be continuOQsly 4efonned to ')" as illustrated in Figure 13.1. Thus,
the universal covering group, G, of the Poincare group, G, will yield a twofold
covering of G. As we shall see below, G is isomorphic to the group ISL(2, C) of
translations and linear maps of unit·determinant on a two-dimensional comple~

vector space. Our next major task therefore, will be to establish some properties of
the groups SL(2,C) and ISL(2. C) and the VeewfSpace upon which they naturilllY
act. These properties· are basic to the notion of spinors, and we now shall make a
lengthy digression to study these properties.

Let Wbea.two-dimensional Vectof space over the complex numbers. Following
the index~ conventions di~ussed in chapter 2, we shall use latin superscripts
to denote vectors in Wand greeks.rscripts to denotecompqnents of vectors in W
with respect to a basis. However, in order to distinguish vectors in W from tangent
vectors in spacetime. we shall use capital letters in the superscripts. Thus, for
example, ~ ~otes .an.element of w. and. ~I. denotes a component of~. As in the

6 6
(0 I (bl

1J ¢
(e) (d I

¢ 0
(e) (f)

Fig. 13.1. A diagram illustrating how a rotation Of a sphere by 411' about a given
axis can be continuouslydefonned to no rotation. We break up the 41T-rotation into
two 21T-rotationS lind contillUOllSlycbange the axis of the second 2"..rotation until it
is opposite the axisilf the first rotation, as shown in the sequence (a}-(d). Then we
COIItinuoQsly decrease the angle of both rotations to zero, as shown in the sequence
(d)-(j)..
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case of a real vector space, starting with W we can construct the dual space, W·,
composed pf linear maps from W into C. Then W· is a two-dimensional vector space
over C, and we shall denote its elements with subscripts. Thus, for example, Ao4
denotes an element of W·. However, for a vector space, W, over C, we also can form
the complex conjugate dual space W*, cOmposed of the antilinear maps from W into
C. (Here amapf:W -+ Cis saidtobeantilineariff(Et + ~) = f(~t) + f(~) and
f(C~o4) = cf(~) for all ~, ~, ~o4 E W and for all c E C.) Then W· also is a
two-dimerisional vector space over C, and we shall denote its elements with a primed
lower index, e.g., "'A' E W*. Finally, we define the complex conjugate space, W, to
be the dual space of W*, and we denote elements ofW with a primed upper index,
e.g., q,04' E W. Note that there is a natural antilinear one-to-one correspondence
between elements ~ E Wand q, E W defined by the requirement that "'(~) = q,("')
for all '" E W·. (We omitted the indices here since their presence could cause
confusion.) We call this map of W onto W (as well as the inverse map ofW onto W)
complex conjugation. We denote the image of~ E W under complex conjugation
as f4" E W, and similarly denote the image of q,04' E W as (f)o4 E W.

A tensor, T, of type (k, I; k' ,I') over W is defined as a multilinear map,

T: W· x ... x W· x W x ... x W x W* x ...W* x W x ...W -+ C
'---.-----" ....._----

k I k' I'

We shall use a natural generalization of the index notation for tensors over a real
vector space to denote tensors over W. Thus, for example, TlJJeD' denotes a tensor
of type (2,1; 1,0). The relative ordering of the primed and unprimed indices is
irrelevant, e.g., TAD'Be denotes the same tensor as TlJJ

e
D'. However, the ordering

within the unprimed indices and within the primed indices is as relevant as in the case
of tensors over a real vector space. The complex conjugation map of vectors extends
to tensors and maps a ~nsor T of type (k, I;k' ,I') into a tensor, denoted T, of type
(k' , 1'; k, I). Note thad' = T. Finally. we now have two distinct notions of .con
traction: con~ overunprim¢ indices, taking tensors of type (k, I; k' ,I') into
tensors of type (k - 1,1 - l;kl

, l'). and contraction over,primed indices, taking
tensors of type (k,l;k', I') into tensors of type (k,l;k' - 1, I' - 1). However,con
traction over one primed index and one unprimed index is not defined. Again, we
shall adopt the notation of using the same letter twice in the indices to denote
contraction.

For a two-dimensional vector space, W, over C, the vector space of antisymmetric
tensors of type (0, 2; 0,0) is one-dimensional. Jf a particular such tensor EIJJ = - €sA
is chosen.. the pair (W, EM) is called a spiMr &paCe. The elements of W are called
spinors, and tensors over Ware called spinprial tensors. We can use EIJJ to map
spinors into dual spinors via~-+EAB~A.Since EAB is nondegnerate (Le., EIJJ~o4 *" 0
unless f- = 0) we obtaiJl'&om EM' an isomorphism of W and W· much like the
isPmorptiism that would be Obtained froin a metric on W. We shall take advantage
of this similarity by emplQyU1g ootaUonal conventions for EIJJ similar to those em
ployed for metrics in chapter 2. First, we shall denote Ute dual vector EIJJ~o4 as simply
6, and more generally, use EAB to lower unprimed indices on all spinorial tensors.
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Note, however, that since EAB is antisymmetric in A and B, it makes a difference
which index of EAB is contracted with ~c in the index-lowering operation. We follow
the standard convention of using·contraction Qver the first index of EAB to lower
indices. Thus, we have

(13.1.4)

Following standard conventions, we define EAB to be minus the inverse of EAB, Le.,
~ is the antisymmetrictensor of type (2,0;0,0) which satisfies,

EABEBC= -8A
C (13.1.5)

where 814c denotes the identity map on W. In order to compensate for the minus sign
in equation (13.1.5) we use contraction over the second index of EAB to raise an
index; e.g., for /LA E W· we have

ILA =E
ABILB = -EM ILB (13.1.6)

Thus, it is essential to pay careful attention to index positions in order to prevent sign
errors. Note that we have

~ cPA = (EM ~B)cPA

= -EAB~BcPA

= -ecPB (13.1.7)

In particular, for any spinor ~A, we have ~~A = O. It also should be noted that
confusion can arise with the symbol8Ac, which could be interpreted either as (a) the
identity operator on Wor as (b) the identity operator, 8B

D
, on W· with its first index

raised and its second index lowered. [Tensors (a) and (b) differ by a minus sign.]
Thus, it is preferable to use EcA to denote the identitY operators on bothW and W·,
since no confusion in interpretation arises for this symbol. Finally, we denote the
tensors obtained from EAB and ~. via complex conjugation as EA'B' andEA'1J' and use
them to lower and raise primed indices, with the same convention ofcontraction over
the first index of EA'B' and the second index of EA'B'.

Alinear map L: W -+ W is represented by a tensor LAB' The determinant of L is
defined by

(13.1.8)

It is well known that LAB is ope-to-one, onto, and hence invertible if and only if its
determinant is nonvanishing. We define SL(2, C) to be the group of linear maps of
W into itself which have unit determinant. Here the group product· is defined by
composition, i.e.,(LM)"B = LACMcB, and the group inverse ·i~ given by the inverse
of the linear map. Sin~the determinant condition is one complex equation on the
four complex components of LAB, it takes siX rea/parameters to specify an element
ofSL(2, C). Indeed, uSIngthe polar decomposition t1lebrem-which states that with
respect to any inner product introduced on W, every element of SL(2, C) can be
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written uniquely as the composition of a unitary map of determinant one [Le., an
element of SU(2)] and a positive, self-adjoint map-it can be shown that SL(2, C)
has the natural manifold structure S3 x 1R3

. Thus, since the group operations are
smooth with respect to this manifold structure, SL(2, C) is a six-dimensional Lie
group. Since S3 and 1R3 are simply connected, it also follows that SL(2, C) is simply
connected. Note that the condition that LAB have unit determinant is equivalent to

LAcLBDEAB = ECD (13.1.9)

which states that EAB is preserved under the action of LAB.

The relation between SL(2,C) and the Lorentz group now may be established. The
tensors of type (1,0; 1,0) comprise a four (complex) dimensional vector space, Y. A
convenient basis of Ycan be defined as follows. Let OA, t A bea basis of W satisfying

OAtA = EABOAtB = I (13.1.10)

Then the tensors

x M ' = ~(oAiA' + tAOA,)

yM' = ~(oAiA' _ tAOA,)

M' 1 (_A-A' A-A')
Z = v'2 0--0 - t t

(13.1.11)

(13.1.12)

(13.1.13)

(13.1.14)

comprise a basis of Y. Now, complex conjugation maps Y into itself, and the elements
tfJM' of Y which are taken into themselves under complex conjugation, iiA'A = tPM ',

are called real. It is straightforward to check that the above basis elements .of Y are
real and. further, that the .-eat elements of Y are precisely those which can be written
as sums of these basis elements with real coefficients. Thus, the.real elements of Y
comprise a four-dimensional vector space over IR, which we shall denote as V.

The tensor

gM'BB' = EABEA'B' (13.1.15)

yields a multilinear map V x V -+ IR, since it is easily verified that gM'BB,tPAA" y,BB'

is real for tP
M

', ~' E V. Furthermore, gM'U' is no{l(iegenerate with signature
+ - - - and thus defines a Lorentz metric on V. (This can be verified explicitly
by checking that the basis vectors [13.1.11]-[13.1.14] are orthogonal with respect
to gM'BB', that gM'BB'tM't

BB
' = I, and that the similar norms of x

M
', yM', and ZM'

are -1.)
Now, associated with each map LAB E SL(2, C) is the glap A: V -+ V defined by

AM'u' = LABLA'B' (13.1.16)
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Since by equation (13.1.9) LAB preserves EM, it follows that AAA'BB' preserves gAA'BB',

i.e., we have

AAA'cC'ABB'DD,gAA'BB' = gCC'DD' (13.1.17)

But, by definition, the extended Lorentz group-denoted 0(3, 1)-consists pre
cisely of the metric preserving linear maps on a four-dimensional real vector space
with a Lorentz signature metric. Thus, AAA 'BB , is a Lorentz transformation on V!
Indeed, the Lorentz transformations which arise in this way comprise the proper
Lorentz group-denoted A-as can be verified explicitly from the component form
of this correspondence which we shall obtain below (see eqs. [13.1.31] and
[13.1.32]). Hence, we have found that associated with every element LAB of SL(2, C)
is a proper Lorentz transformation AAA'BB', defined by equation (13.1.16). Further
more, LAB and MAg give rise to the same Lorentz group element if and only if
M A

B = ±LA
B• Indeed, the map/: SL(2, C) -+ A obtained from equation (13.1.16)

satisfies all the properties required of the universal covering map; namely, it is a
homomorphism from the simply connected Lie group SL(2, C) onto A, and for any
simply connected open set U C A it is a diffeomorphism between each connected
component of /-'[U] and U. Thus, we conclude that SL(2, C) is the universal
covering group of the Lorentz group. Similarly, the group ISL(2, C)-defined by
composing in the natural way the elements of SL(2, C) with tp.e elements of the
tw~complex-dimensional translation group of W--can be seen to be the universal
covering group of the proper Poincare group.

Since gAA'BB , is a metric on V, we can define its inverse metric gAA'BB'. From
equations (13.1.5) and (13.1.15), it follows that

(13.1.18)

Let T be a tensor of type (k, I) over V. Then, viewed as a tensor over W, T is of type
(k, I; k, I), i.e., T has k upper primed-unprimed index pairs and 1 lower· primed
unprimed index pairs. If we View T as a tensor over V, it would be natUral' to use
g'«'BB' and gAA'BB~to raise and lower "V-indices," i.e., primed-unprimed index pairs.
On the other ~d, if we view T as a tensor over W, we already have defined the
raising and lowdring of indices via EM, ~ ,EA'/t, and EA'B'. Fortunately, it is easily
verified that these two distinct notions of raising and lowering indices fortensors over
V always yield the same result. This is the reason why we choose to use metric
signature + - - - in this chapter. We could have conformed to our previous
signature conventions by defining gAA'BB' to be -EABEA'B" but then the two notions
of raising and lowering V-indices would differ by a sign and in each calculation we
would need to specify which raising,and lowering convention we are using.

It is instructive to express some of the. ,above relations in basis component form.
With respect to a basis OA, "A satisfying equation (13.1.10), it is easy to check that

(13.1.19)

since both sides give the same result when applied to OA or "A. Thus, we may
represent the components Em of EAB 'by,the matrix,
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Similarly, we have

EAB = OAtB - tAOB

and may represent its components as

Em = (_~ ~)
The components of an SL(2, C) transformation LAB are

LIn = (: :)

where a, b, C, d are complex numbers satisfying

ad-bc=l

(13.1.20)

(13.1.21)

(13.1.22)

(13.1.23)

(13.1.24)

(13.1.30)

The components of the basis elements (13.1.11)-(13.1.14) of V are

t II
' = ~ ~2(01 0

1
)VL. (13.1.25)

xII' = ~(~ ~) (13.1.26)

yII' = - ~(~ -~) (13.1.27)

zII' = ~(~ _~) (13.1.28)

Note that the right-hand sides of equations (13.1.25)-(13.1.28) are -apart from the
factor of 1/v'2 and the minus sign in equation (13.1.27)--just the Pauli spin
matrices. An arbitrary vector vAIl' E V can be.Written as

vAIl' = ttAll' + XX""" + yyAll' + zzAll' (13.1.29)

and thus its components with respect to the basis ofV associated with OA, t A may be
represented by the matrix

II' _ 1 (t + z x + iY)v --
v'2x-iy t-z

The transformation on the components of vAIl' induced via equation (13.1.16) by the
SL(2, C) transformation LAB is given by

(t' +~' x' + iY') = (a b)(t + ~ x+ iY)(~ ~) , (13.1.31)
x' - 'Y' t' - z' c d x - 'Y t - z b d
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where ordinary matrix multiplication is understood on the right-hand side. By re
writing equation (13.1.31) in the form

x'JJ. = 2: AJJ.~x~ ,
~

(13.1.32)

where xJJ. = (t,x,y,z), one obtains in explicit, component form the mapftaking
elements of SL(2, C) (represented as 2 x 2 complex matrices, L10 ) into elements of
A (represented as 4 x 4 real matrices, AJJ.~).

Given a spinor ",A E W, we can construct a vector kM ' E V by

kM ' = ",A iii A' (13.1.33)

We have
M' BB' A B - -A'-B'

gM'BB,k k = (EAB'" '" )(EA'B'''' '" ) = 0, (13.1.34)

so kM
' is a null vector with respect to the Lorentz metric on V. We thus may view

",A as a "square root" of the null vector k M '. Note that for any two spinors ",A, 4>A

we have

AXA' ..I.B-B' ..I.B (;T; IB' I ..I.B I2 13 1 5gM'BB'''' CP '#' 4> = ("'B'#' ) '#"B''{I ) = "'B'#' ( ••3)

Thus, the null vector associated with the arbitrary spinors "'A and 4>A have manifestly
nonnegative inner product which means (with our new metric signature + - - -)
that these null vectors lie on the same half of the light cone. By convention we call
this the future light cone. Thus, the vector space V has a natural time orientation.
Furthermore, the real spinorial tensor,

(13.1.36)

defines a totally antisymmetric tensor of type (0, 4) over V and thus yields an
orientation of V.

If 4>A differs by a phase factor from ",A, Le., 4>A = C",A with Ic I '= 1, then 4>"
defines the same null vector kM ' as ",A, so the same kM ' is associated with a
one-parameter family of spinors. However, we can define the real tensor FM'BB' by

FM'BB' = "'A ",BeA'B' + ijiA'ijiB'eAB (13.1.37)

Viewed as a tensor of type (2,0) over V, FM'BB' is antisymmetric, Le.,
FM'BB' = _FBB'M'. Furthermore, FM'BB' satisfies

FM'BB'FM'BB' = 0 (13.1.38)

and

FM'BB' k BB, = 0 (13.1.39)

where k M ' = ",Aiii A' as before. Thus, viewed as a tensor over V, FM'BB' is a null
bi-vector with null vector k M ', Le., FM'BB' is of the form

FM'BB' = ~'mBB' - kBB'mM ' (13.1.40)

where k M ' is null and m M ' is orthogonal to k M '. We call FM'BB' the null flag
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associated with spinor t/I~. Two spinors t/lA and q,Agive rise to the same null flag if
and only if they differ at most by sign, q,A = ±t/lA. No tensor over V can be
constructed from a spinor t/lA which distinguishes between t/lA and - t/lA .

We return, now, to the general issue of obtaining the possible fields on spacetime
which maY. arise. in quantum theory. We wer~ led by the considerations discussed
above to seek unitary n;pre~ntationsof the group ISL(2, C) onllHilbert space. We
now shall define spinor fields and spinorial tens9f fields on. spacetime which have
well-defined·"ttansfo~tion laws" under I$L<2, C). By constructing1lilbex:t spaces
out of these fields (~we shall do later), these transformation laws yiel<f the desired
representations of ISL(2, C).

We define a spinor field on Minkowski spacetime (1R4
, '11ab) to be simply a map of

spacetime into spinor space, W. Similarly, a spinorial tensor field of a specified type
is defined as a map of spacetime into the tensor space over W of that type. We define
an action of ISL(2, C) pn ~pinor fields.asJo~ows. Associated with any
g E ISL(2, C) is the transformation t/lA(X) -+ LABt/lB[P-l(X)] where LAB E SL(2, C)
is the "homogeneous part" of g and P is the Poincare group element associated with
g. In this way, we obtain by brute foreea representation of ISL(2, C) on the vector
space of spinor pelds.Howeven this representation does not correspond to a true
representation of the poincare group. Since there are two ISL(2, C) elements for
every Poincare element, P, when we attempt to define a transformation, p', on
spinor fields associated with a Poincare el~ment, P, we encounter a sign ambiguity,

, (13.1.41)

This ambiguity is resolved if we are given not only P but a continuous curve in the
poincare group frotne toP, since such a curve is uniquely associated with an element
of ISL(2, .C).·Thus, in this well-defined sense; a spinor at point i changes sign under
a rotation by 2w about a fixed axis at x. However, given only P (and not a curve from
e to P), wecatmotresolve the sign ambigUity mequation (13.1.41) in a natural way.
No choice of sign can be made so that we obtain a true representation of the Poincare
group. Note that although we have defined an action up to sign of the Poincare group
on spinor fieldS, we have not de~riedthe'actionof an arbitrary diffeomorphism on
spinorfieldSlThils, in particUlar, the Lie'derivative ota spinorfield with respect to
a non-Killing vector field is undefined.

The relation betWeen spinorfieldsand Ordinary vector fields now may be estab
lished. As discUsse<iabove, thereaHepsors of type 0;0; 1,0) over W form a
four-dimensional teaIvector space:V, on which the-Lorentz metric (13.1.15) is
defined. Lett4, x4iy4,z<lOO an orthonormal basis field in Minkowski spacetime
associated With aglobalfariUly ofmertial obserVers O. Let OA, t" be a basis for W
satisfying (13.1. 10). For each point x in Minkowski spacetime, we define the linear
map 0' which taesvectors inV toveetors mthe tangent space, \{, at x by identifying
ta, xa, ya, za with the,basis (1~.1.1l)-{13.1.14) of V. In other words, we define the
hybrid vector/spinorial tensor tieldu<lAA' by

(13.1.42)
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Then at each x, 0'0AA' is a vector space isomorphism between V and Yx which
preserves the Lorentz metric defined on these spaces; Le., we have

(13.1.43)

(Here all lower case indices are raised and lowered with 1'/ab and 1'/ab' while capital
letter indices are raised and lowered with e AB , eAB, and their complex conjugates.)
Using uDAA', we may map real spinorial tensor fields of type (1,0; 1, 0) on Minkowski
spacetime into vector fields. We find, then, that the action of the poincare group
preserves this association; namely, the action (13.1.41) of Poincar6 group element
p on spinor fields induces on a spinorial tensor vAA

' of type (1, 0; t, 0) the
transformation

(p·tI~'(x) = LABLA'B'VBB'[p-I(X)] = ,\AA'BB'VBB'[P-I(X)] , (13.1.44)

where ,\AA'BB' is the Lorentz transformation corresponding to the "homogeneous part"
of P. Hence, we have

P • \.4.4' AA' BB'[ -I, ]uDAA,( V, (x) = uDAA,'\ BB'V p \x)

= (uDAA''\AA'BB'O'bBB')O'bCC,vCC'[p-l(X)]

= ,\°bVb[P-!(x)]

=(p. v)O(x) (13.1.45)

where in the last line p. is the natural action of P on the vector field VO = uDAA'VAA'
as defined in appendix C for a general diffeomorphism. Consequently, by
selecting-once and for all-a map 0'0AA' of the form (13.1.42), we may consistently
identify real spinorial tensorfields oftype (1,0;1, 0) with vectorfields. It is cuswm
ary to literally make this·identification3 in our notation by omitting the map uDAA'

from our expressions and denoting, for example, the vector field associated with v AA'
by simply v AA' rather than by O'OAA'VAA'. We shall follow this practice here. Because
of our new metric signature convention no confusion will arise as to whether indices
are raised and lowered .with the metric. or with e AB and EAB.

Our physical interpretation of a spinor field t/JA BOW may be given. As described
above, associated with every spinor is a null flag FAA'BB' defined by equation
(13.1.37). Using the map O'OAA', we may view FAA'BB' as a tensor field of type (2,0)
on spacetime.; However, tensor fields.are objects whose interpretatic;>n and mea
surability are well understood. We take the physically measurable properties of t/JA
to be the quantities determinable from FAA'81'. Note that this implies that t/JA and - t/JA
are physically indistinguishable. It may seem strange that we have gone to a great
deal of trouble to define spinor fields only to interpret them by associating them with
tensor fields. However, the dynamical evolution of physical fields represented by
spinors (see below) is given by differential equations involving the spinor fields, not

3. It also is customary and convenient to make the identifications a =M', b =BB'. etc., in the
labeling indices (see Penrose and lWtdler 1984), so that, for ex,ample. one may write .". = EAl/E,.'B'.

However, we shall not follow this practice here because we wish to maintain the spinar indices so that
equations in this chapter (where the metric sigDature is +- - -) will easily be distinguished from those
in other chapters (where the signature is - + + +).
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just their null flags. If the region where a spinor field, ~, initially is nonvanishing
is disconnected, then a knowledge of the initial value of its null flag FAA'BB' (as well
as time derivatives of FAA'BB') will not suffice to determine the subsequent evolution
of t/JA or FAA'BB' since there will be a sign ambiguity in t/JA in each of the initial regions
where it is nonvanishing, and relative sign differences in these regions will affect its
subsequent evolution. Thus, in this sense, a spinor field contains more physically
relevant infonnation than is present in its null flag. Furthermore, even in the case
where the set where t/JA :;: 0 is connected so that it can be recovered (up to sign) from
its null flag, the formulation of the dynamical laws in terms of null flags would be
extremely cumbersome. On the other hand, these laws take a simple and natural form
when formulated in terms of spinor fields.

We take this opportunity to point out several identities which are very useful in
calculations involving spinors. Let Tab be a (real) tensor of type (0,2), and let TAA'BB'

be the corresponding spinorial tensor. It is straightforward to verify that

I2(TAA'BB' - 1BB'AA') = T(AB)[A'B') + 1[AB](A'B') (13.1.46)

where, as in the case of ordinary tensors, round and square brackets denote, re
spectively. symmetrization and antisymmetrization and we remind the reader that the
relative order of primed and umprimed indices is irrelevant. However, since EA'B'

spans the one-dimensional vector space of antisymmetric spjnorial tensors of type
(0,0;0,2), we must have

T(AB)[A'B') = q,ABEA'B' (13.1.47)

where q,AB is sYmmetric. Contracting equation (13.1.47) with EA'B', we find

q,AB ='4 T(AB)A'A' (13.1.48)

Similarly. we have

1[AB](A'B') = EABt/JA'B'

However, reality of TAA'BB' implies that;jiAB = q,AB' Thus, we find

1 - 72(TAA'BB' - 1BB'AA') = q,ABEA'B' + 'PA'B' EAB

(13.1.49)

(13.1.50)

where q,AB is given by equation (13.1.48). In particular, every antisymmetric tensor
Tab = 1[ab] can be written in the form given by the right-hand side of equation
(13.1.50). Similarly, we have \

1
-(TAA'BB' + 1BB'AA') = ~'B') + 1[ABIA'B'}2

(13.1.51)

where T = 1AAA,A' = 1;,a. In particular, every symmetric tensor Tab = 1(ab) can be
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written in the form given by the right-hand side of equation (13.1.51). Contracting
equation (13.1.51) with ?'B', we obtain

A' 11[AB]A' = "2EABT (13.1.52)

If Tab is symmetric, the square brackets can be omitted from the left-hand side of
equation (13.1.52).

Derivatives of spinor fields on Minkowski spacetime may be defined as follows.
Since a spinor field I/JA is a map of spacetime points into W, we may take the ordinary
partial derivatives of·",A With respect to global inertial coordinates of Minkowski
spacetime. We define aBB,I/JA to be the spinorial tensor field of type (1, 1; 0, 1) whose
components with respect to the basis OA, "A are

. r ~ IL aI/Jr
aAA'I/J= L.i U AA' axIL

IL

For a given fixed choice of u"M', the spinorial tensor field aBB,I/JA determined in this
manner is independent of the choice of global inertial coordinates, x IL, and of spin
basis 014., "A, SO aBB.I/JA is well defined. The derivative of a spinorial tensor field Of
arbitrary rank is defined similarly by taking partial derivatives of its components with
respect to global inertial coordinates and applying UaM" It iseJsily verified that ~M'
is linear, satisfies the Leibnitz role, Cotnl11utes with contraction, and also satisfies

aM,eBC = 0

Furthermore, for a vector field v BB' we have·

aM'VBB' = u"M'U/B'aavb

(13.1.54)

(13.1.55)

More generally, for an ordinary tensor field ofarbitrary rank, the action of aM' agrees
With that of the usual derivative operator, aa' Thus, aM' may be viewed as a
generalization to spinorial tensor fields of the usual derivative operator aa on Mink-
owski spacetime. .

Note that the derivative operators commute when applied to an arbitrary spinorial
tensor field on Minkowski spacetime,

(13.1.56)

Consequently, the same derivation as led to equation (13.1.52) above now yields

A' 1 0aM,aB ="2 EAR (13.1.57)

where

(13.1.58)

Our motivation for introducing spinorfields arose from seeking unitary represen
tations up to phase of the poincare group on a Hilbert space. We finally are ready
to return to this issue now and show how Hilbert spaces can be built out of spinorial



13.1 Spinors in Minkowski Spacetime 3S7

tensor fields satisfying certain equations such that the transformation law (13.1.41)
leads to the desired unitary representations. Recall, first, that a representation is said
to be reducible if all the linear maps occurring in the representation take a fixed
proper subspace of the vector space into itself. It is easy to show that on a
finite-dimensional vector space, V, every unitary representation can be decomposed
into a direct sum of irreducible representations, Le., V can be written as a direct sum
of subspaces each of which is invariant but has no proper invariant sub-subspaces.
For an infinite-dimensional Hilbert space this result does not always hold, but
Wigner (1939) has shown that the unitary representations of ISL(2, C) can be
decomposed into irreducible representations. Thus, it suffices to consider only the
irreducible representations, since all representations can be constructed out of these.
This simplifies the analysis considerably.

The irreducible representations are conveniently labeled by the values of the
Casimir operators,4 m2 and 52, of the Lie algebra of ISL(2, C) (which is isomorphic
to the poincare Lie algebra), which can be interpreted as representing, respectively,
squared 4-momentum (Le., mass squared), and squared angular momentum about
the center of mass. We may classify the representations into the following four cases
according to the value of m 2: (a) m 2 > 0, (b) m 2 == 0 bilt the translations are not all
represented by'the identity operator, I, (c) m 2 == 0 and the translations are all
represented by I, and (d) m 2 < O.

In the representations (c), all states are translationally invariant. Thus, these
representations appear to be of no physical signifi~ce. The "taehyonic" represen
tations, (d), al~ do not appear to be of physical significance, although some tachyon
field theories have been investigated (Feinberg 1967). The representations in these
classes (c) and (d) have been obtained by Bargmann (1947), but a systematic
construction of fields on Mirikowski spacetime which realize these representations
dpes not appear to have been given. The representations of classes (a) and (b) were
obtained by Wigner (1939), and a realization of all these representations as fields on
spacetime was first given in a systematic way by Bargmann and Wigner (1948).·The
representations of class (a) are characterized by the values of m1 and 52 with
52 == s(s + I), where the spin s takes the values s == 0, !, 1, .... The represen
tations of class (b) can be divided into two subclasses: (b 1) representations charac
terized by a helicity parameter s (whose magnitude also is called the spin) with values
s = 0, ±L ±I, ... , and (b2) the so-called "continuous spin" representations.

.. 4. The univerStJI enveloping algebra, OU, of a Uealgebra, L, is obtained by taking the direct sum,m~(k, 0), of all "upper index" tensors over L and defining two elements to be equivalent if they can
be reduced toeacb other by any fonnalcalculation in wbicbfor any vQ, wQE L we replace vQw b - vbwQ

by [v, w:t. An element X E OU whiCh commutes with all vEL is called a Casimir element. By Stone's
theorem (see, e.g., Reed and Simon 1972) and results of Glirding (1947) every unitary representation
of a Lie group G gives rise to a self-adjoint representation Of its Lie algebra, L. The representatives of
the Casimir elements, called CasimiroperalOrs; commute with aU representatives of L and hence with
all representatives of G. Therefore, by Schur's lemma, in an irreducible representation every Casimir
operator must be a multiple of the ideJ,1tity operator. These numbers provide convenient labels of the
irreducible representation. The univerWenve10ping algebra of the Poincare group pOssesses two inde
pendent Casimir elements; Their intetptdation in terms of mass and spin arises from identifying. the
Poitl<llri L}e algebra with the Killing fields of Minkowski spacetime.
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The fields on spacetime associated with the representations (b2) do not appear to
have any physical significance or mathematical utility. However, the representations
ofclasses (a) and (b 1) describe all physical fields known to occur in quantum theory.

The equations which select the subspaces of spinorial tensor fields which realize
the representations of classes (a) and (b 1) can be given in many equivalent fonns.
A convenient choice for the representations of class (a) of mass m and spin sis

(0 + m2)</>A". ·A. = 0 (13.1.59)

where </>A1·' ·A. is totally symmetric, </>A1·' ·A. = </>.(,4," 'A.), and the number of indices
is n = 2s. For s > 0, equation (13.1.59) also can be expressed in the following
form. We define the auxiliary variable UAjAz···A. by

a </>
A" ..A _ m A2' ··A

A'A • - ~ ;;::u~' •, , v 2 ",

From equations (13.1.59) and (13.1.57) we obtain

a A,'A, A2"'A _ m A.A,"'A
UA' '---0/ •., v'2

(13.1.60)

(13,1.61)

Furthermore, using equation (13.1.57) again, one may verify that the pair of equa
tions (13.1.60) and (13.1.61) imply equation (13.1.59), so the coupled first order
system (13.1.60), (13.1.61) is equivalentto equation (13.1.59). Indeed, by repellted
differentiation of </>A1" ·A. and contraction over the unprimed indices, a whOle hier
archy of auxiliary variables may bed~fined, each of which is coupled to the pre
ceding variable by equations of .the form (13.1.60), (13.1.61).

Many equivalent forms also rllaY be given of an inner product which gives the
solutions of equation (13.1.59) the structure of a Hilbert space. A convenient expres~
sion isobtalned as follows.' For two solutions <l>A, .. .A.. and I/IA, ...A" of equation
(13.1.59) with aUXiliary variables UAjA, ...A., PAIA""A., respectively, we define the
particle current vector jAA'(</>, t/J) by'

jAA' = (_l)n-I{4>A'A2"'A~aA2A2 ••• aA~A.l/lAA2···A"

+ uAA2" 'A~aA2A2 ••• aA~A"pA'A2'..A.}. (13.1.62)

It follows from equations (13.1.60) and (13.1.61) that jAA' is conserved,
aAA,jAA, = O. We define the inner product of </> and t/J by integrating the nonnal
component ofjAA' over a Cauchy surface,

(13.1.63)

Although it is not obvious from this expression, the inner product (13.1.63) is
positive definite when n is odd (Le., half-integral s) and is positive definite for
positive frequency solutions when n is even (Le., integral s). (This result can be
proven byree~prCssing~ inner ptoc:l\let as .an iAtegral in Fourier-transform space,
where it can be written in a manifestly positive definite form;;see Bargmann and

S. I am indebted to P. Yip for providing me with this fonn of the inner product,
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Wigner 1948.) Thus in all cases, the positive frequency solutions of equation
(13.1.59) with finite norm in the inner product (13.1.63) form a Hilbert space. The
natural action of ISL(2t-'C) on cPAj " '14.. gives rise to the irreducible representations of
class (a) characterized by m2 and s = n12. For integral s, these representations are
true representations of the poincare group, and the above construction could be
reformulated using only ordinary tensor fields. However, for half-integral s, these
representations of ISL(2, C) are only representations up to sign of the Poincare
group, and the use of spinorial tensor fields is essential.

When m = 0, the representation selected by equation (13.1.59) becomes reduc
ible except in the case s =0. The irreducible representations in class (b I) with
s > 0 are obtained from the equation (Penrose 1965b)

aAjAlePAj ' ..A. = 0 , (13.1.64)

where again .Aj ...An is totally symmetric and n = 2s. (The negative s representations
are obtained from the complex conjugate of eq. [13.1.64].) For s = L the current

jAA'(ck, "') = ~A' ",A (13.1.65)

can be used to define an inner product as before. For s > ! we must introduce
potentials (Penrose 1965b), and a gauge independent expression for a current vector
cannot be given. However, a simple expression for the inner product in momentum
space can be obtained (Bargmann and Wigner 1948). Again, the unitary represen
tations thus obtained are true representations of the poincare group if and only if s
isintegraE

We comment that in the case s = ! equation (13.1.59) written in the form
(13.1.60) and (13.1.61) is known as the Dirac' equation and the pair of spinors
(cPA, UA') is called a Dirac spinor. By choosing a basis of spinor space and denoting
the four components of (q,A, UA') as t/Jo, "'I, i/J,.. t/J-J. respectively,. the component form
of equations (13.1.60) and (13.1.6l).yields the usual form of the Dirac equation
(problem 2). Similarly. equation (13.1.64) in the case s = I is known as the (Weyl)
neutrino equation. Note that as claimed in section 12.4,the Dirac current vector
(13.1.62) with tf>A =t{lA is the sum oltwo future directed null vectors and hence is
a future directed timelike vector, while the neutrino current vector (13.1.65) is future
directed and null. Fmally, we point out that equation (13.1.64) in the case s = I is
equivalent to Maxwell's equations (problem. 3) while in the case s =2 it is equiv
alent to the linearized Einstein equation (see problem 6).

In summary. weha.ve found that spinorial tensor fields give rise to all the unitary
representations up to phase of the Poincare group which are believed to have physical
relevance. This suggests thatspinorial tensor fields may be the most general type of
fields in Minkowski spacetime which can arise in a "specially covariant" quantum
theory. In any case, we have completed the primary task of motivating the intro
duction ofspinor fields from a general and systematic viewpoint.

13.2 Spinors in Curved Spacetime
In the previous section, we defined the notion of spinor fields on Minkowski

spacetime. Our definition was motivated by the fact that the natural action of the
Poincare group on spinor fields and spinorial tensor fields gave rise to the desired
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representations up to phase of the Poincare group. Thus, the "transformation
property" (13.1.41) under Poincare isometries was an essential ingredient of our
definition of spinor fields on Minkowski spacetime and was used to identify real
spinorial tensor fields of type (l, 0; 1, 0) with vector fields. However, the Poincare
group does not act in a natural way on a curved spacetime, so clearly this character
istic property of spinor fields cannot be carried over in a direct manner to curved
spacetime. Thus, we seek to refonnulate the notion of spinorfields so that it applies
in curved spacetimes and, of course, such that it reduces in Minkowski spacetime to
the notion of spinor fields given in the previous section.

Since a general, curved spacetime possesses no isometries or any other preferred
classes of diffeomorphisms and since even in Minkowski spacetime there is no
natural action of the full group of diffeomorphisms on spinor fields, we cannot expect
to define a "transfonnation law" of the type (2.2.10) under diffeomorphisms for
spinor fields in curved spacetime. However, as in Minkowski spacetime, we may
represent an observer together with his measuring apparatus at an event, x, in a
curved spacetime (M, 8ab) by an orthonormal tetrad at x. Hence, associated with two
different observers 0 1 and Oz at x is a Lorentz transformation which rotates the tetrad
ofOt into that of Oz. Note that this Lorentz transformation acts on the tangent space,
Yx, rather than the spacetime manifold, M ..We shall seek to define spinors at x so that
associated with each Lorentz transfonnation is the spinor transformation .

",A(X) -+ ± L'\",B(X) (13.2.1)

such that the results of all measurements by Oz on the spinor ±LAB",B at x are
identical to the results of all measurements by 01on ",A. (Again, the sign ambiguity
in [13.2.1] is resolved if a continuous curve connecting the Lorentz transformation
to the identity element is specified.)"Thus, in formulating a notion of spinors in
curved spacetime we shall replace the action (13.1.41) of the poincare group of
isometries on Minkowski spacetime by the action (13.2.1) of the Lorentz group on
the tangent space at each point.

Fiber bundles provide a precise mathematical framework for defining spinor fields
in curved spacetime. We shall proceed, therefore, by defining the general notion of
a principal fiber bundle and its associated fiber bundles. The construction of the
spinor bundle then will be described.

I:.etG be a Lie group, letBbea manifold, and consider a CtGmap tP:G x B -+ B.
We sball write tP(g,p) as tP,(p). The map tP is said to be a left action of G on B if
(i) for each fixed g E G, the map f/>,:B -+ B is a diffeomorphism and (ii) for all
810 82 E G, we have t/J"of/>,z = l!J",Z' An example of a left action of G on the
manifold B = G is provided by the left translation map considered in section 7.2.
For a general left action tP it follows from (ii) that f/>~°tP~ = tP~, where e is the
identity element. which (composing with tP;l) implies that tP~ is just the identity map
on B. This implies further that t/J,-' ::. 4>,-1 for all g E G. A left action g,issaid to
be free if for each 8 :rI= e, tP, leaves no point of B fixed, i.e., if for aU p E B and
8 :f: e we have tP,(p) :f: p. [On the other hand, since tP~is the identity map, we have
tP~(p) = p for all p E B.] Thus, for example, left translation is a free action of G
on the manifold G. For each p E B, the set 0 = {~(p) 18 E G} is called the orbit
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ofp under G. It is easily seen that the condition that two points of B lie on the same
orbit of g defines an equivalence relation between points of B, so B can be expressed
as a disjoint union of orbits.

In essence, a principal fiber bundle is a manifold which locally (but not necessarily
globally) "looks like" the product, G x M, ofaLie groupG and amanifoldM. More
precisely, a principal fiber bundle (B, G, M, tP) consists of a manifold B (called the
bundle manifold), a Lie group G (called the fiber group), a manifold M (called the
base manifold), and a free left action tP: G x B -+ B satisfying the following two
properties: (i) The orbits of G are in one-to.-one, onto correspondence with the points
of M, and the projection map '7T: B -+ M which assigns to each p E B the point of
M associated with the orbit of pis C"'. (ii) For each x EM there exists an open
neighborhood, V, of x such thatthereisa diffeomorphism, .p, taking '7T- 1[U] C B
into G x U such that the action of G on 1T- 1[U] corresponds to left multiplication
on G x V; Le., if lfJ(p) = (g, x), then lfJ[tP,'(p)] = (g' g, x). Figure 13.2 illustrates
the nature of a principal fiber bundle. Note that we always have dim(B) = dim(G)+
dim(M).

11ms, a partiCUlarly simple example of al>rincipal fiber bundle is obtained by
taking the prodUClr.i1anifold, B = ox M, of a Lie groupG and a manifoldM, with
the left action of G on B defined by left multiplication, i.e., tP,,(g, x) = (g' g,x); A
bundle of this form is said to be ttjvial. One of the simplest examples of a nontrivial
principal fiber bundle is obtained by taking B to be the circle, S I, and G to be the
groUP,Z2' consisting of the two elements e, a with a 2 = e. (Thus, G is a zero
dimensional, disconnected Lie group.) We define a left action of Z2 on the circle,
tP:Z2 x B.-+ B. bY tPe(8) = 8 and ·tPa(8) = 8 + '7T. Thus, the orbits of Z2are the
opposite points on the circle B, and the collection of orbits, M, can be given the
manifold structure 8

'
so thattheprojection'7T:B.-+ M is smooth. It then may be

verified that (Sl;Zt; st. 4» is aprincipal fiber bundle. This bundle is nontrivial since
B is not diffeomorphic to the product manifold G x M, which consists <of two
disconnected circles. The bundles B and G x M are illustrated in Figure 13.3.

A.particularlyimportantexample of a principal fiber bundle is the bundle ofbases,
defined as follows. LetM be an n-dimensional" manifold and consider the collection,
B, of pairs (x.(v,.)4) where x EM and (V,.)a (where p. = 1, ... ,n) is a basis of the

M

I I BI I.
1/"-'[x] I I

:~
I

t 1T-t(U]
I 'f--/I

(

1f

t .. ). x\
u

Fig. 13.2. A diagram illustrating the structure of a principal fiber bundle (see text).

G
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G=Zz( G=Zt:•

(o) (b)
Fig. 13.3. (0) The trivial principal fiber bundle Z2 )( 8 1

, (11) The principal bundle
(8 1

, Z2, 8 I, </» constructed in the text.

(13.2.3)
v

i.e.', we use the inverse map, A-I, to transfonn the basis of the tangent space at x.
Then it is easily seen that 4J is a free left action of GL(n) on B and that the above
properties (i) and (ii) are satisfied. Thus, (B. GL(n),M, 4J) is a principal fiber bundle.
For some manifolds, M-for example, for R"-the bundle manifold has the structure
GL(n) x M, i.e., the bundle of bases is trivial. On the other hand, the bundle of
bases of other manifolds, such as the ~-sphere. 8 2, is nontrivial. .

Similarly, for a manifold Mon which a metric, gab, of signature (p, q) is defined,
we may construct the bundle oforthonormo.lbases. The only changes from the above
construction are that we take B to consist of pairs (X, (eJ"), where x E M and (e/l.)4
now is an orthonormal basis for Yx, and the group which acts on B is now the
orthogonal group, O(p, q), rather than GL(n). In particular, for a spacetime (M,gab)
the bundle of orthonormal bases has fiber group equal to the (improper) Lorentz
group 0(3,1). Similarly for an orientable, time orientable spacetime, we may
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construct the bundle of oriented, time oriented bases with the proper Lorentz group,
A, as the fiber group.

Given a principal fiber bundle (B, G, M, (/J), another manifold F, and a (not
necessarily free) left action X: G x F -+ F of G on F, there is a general procedure
for constructing from B a new manifold E, in which, in effect, the fiber group G is
replaced by the" manifold F. To do so, we take the product manifold B x F and
define a left action, l/J, of G on B x F by

l/Jg[b,f] = [(/Jg(b),Xg(f)] . (13.2.4)

We define E to be the set of orbits of G on B x F. There is a natural projection map
p:E -+ M given by p(y) = '1T(b), where b E B is such that (b,1) E B x F lies on
the orbit of y E E and 11':B -+ M is the projection map on the principal fiber bundle.
For every neighborhood U C M satisfying property (ii) of the definition of principal
fiber bundle, it follows that p~I[U] C E is homeomorphic to F x U. We define a
manifold structure. on Eby requiring that these homeomQrphisms be dif
feomorphisms. Thus, E locally "looks like" F x M in the same sense as B locally
"looks like" G x M. The manifold E together with the large amount of structure on
E determined by B, G, M, (/J,F, and X is called afiber bundle or, more precisely,
the fiber bundle associated to (B, G, M, (/J) with fiber manifold F and group action X.
For each x EM, the subsetp-I(x) C E- called thefiber over x-is diffeomorphic
toF.

It may appear from the above rather complicated constructions and definitions that
fiber bundles coglprise an extremely specialized class of manifolds. In fact, how
ever, a large variety of manifolds caQ be expressed in a natural and very useful way
as fiber bundles. The utility of the fiber bundle viewpoint for proving theorems on
the topology of manifolds can be seen, for example, in Steenrod (1951).

Given a principal fiber bundle (B" G, M (/J) we may take F = G and Xg to be left
translation. Theresuhing associated fiber bundle E is diffeomorphic to B, so every
principal fiber bundle also can be viewed as an associated fiber bundle. Another
particularly simple example of a fiber bundle associated to a principal bundle
(B,G,'M.. f/J) is obtained by letting F be any manifold and taking X to be the trivial
action, Xg(f)' = ffOc all 8 E G "and f E F. The resulting fiber bundle E is dif
feomorphic to the product manifold, F x M,.of the fiber manifold F with the base.
manifold M. A fiber bundle which is diffeomorphic to F x M is called trivial. A
simple eXal'nple of a nontrivial fiber bundle, associated to the principal bundle
(5 I, Z2. 5 I, f/J) discussed above, with fiber manifold F ::: R is obtained from the
following action of Z2= {e,a} on R. We define Xe(x) = x,Xa(x) = -x fot all
x E R. The resulting Jiber bundle E"locally looks like" the cylinder R x Sl, but
has the property tbal the R-fibers "flip upside down" when one goes once around a
curve which projects down to a circle in the base manifold M = 5 I. The manifold
E is called the Mobius strip and also could be constructed by identifying the points
in the plane,Rl

, via <X, y) = (x + 1, -y).
An important example of a fiber bundle associated to the bundle of bases of an

n-dimensional manifoldM is obtained as follows. We take F := R" and let GL(n) act



364 Spinors

on IR" in the natural way, i.e., for a = (aI, ... , a") E IR" and A E GL(n) we
define

"(XA(a»)I£ = 2 AII-"a" .
",=1

(13.2.5)

(13.2.6)

Now, corresponding to each point (x,(vII-)a;a"') in the manifold B x IR" we can
associate the vector

~

"va = 2 ap.(Vp.)a
11-=1

atx EM. Given the actions (13.2,3) and (13.2.5) of G on B apd on IR", it is easily
seen that two points of ~ x IR" coqespondto the same vector va at x if and onl)' if
they lie on the same orbit (13.2.4). Thus, the points of the associated fiber. bundle
E are in onc~l<)-.one correspondence with the pairs (x, vO), where x E M and va EYx.
We call E the tangent bundle ofM arid denote it by T(M). IfT(M) is trivial, we say
that Mis parallelizable, Jbe bUlldle Tt.I(M) of tensors of type (!, I) over M caIl. be
constructed similarly by taking Ftobe the tensor product, Fie. h of k copies of .IR" and
Icopies of its dW:l1 spp (IR")* and taking X to be the natural action of GL(n) on Fie.1
given by

(XA(b»)I£'· .. P.k"', ... .., =

"~ All-I ••• AII-k (A-I)fJl .•.• (A-I)1fI1 baC ....ka a
~ (II <It '" "/"" ....../ •

a;. 1Jj= I

If a metric, &W, o( signature (p, q) is given on M we alSo may construct TtAM) by
restricting attel1tion to ortb<>noqnat bases, i.e., by starting with tlie pr.incipalbundle
oforthonormal bases and definjng an actionofO(p, q)on Ii. I> via equation (13.2.6).

Thus, the above construction gives us a ~w. viewpoint 011 tangent vectors: A
tangent vector at a pointx on lltnapifoldM is a point pf the laJlg~nt bundle T\M) lymg
in the fiber over x, i.e., a point y E T(M) such that p( y) = x. More generally,a
tensor of type (k, I) at x .E M~s a point inth~ tibet' over x of ~e bundle ft,l (It{) t:)f
tensors oftype (k,l). A smooth tensor field Qn M is .a.t:ross section of Tt I(M), i.e:,
a C«> map I:M.-+ Tt,I(M) such thatpo~is the idCtitity 111llP o11M. N~ thaftflis
viewpoint on tefisprs is rather close in spirit to the> characterization of tensors
mentioped in chapter 2 in terms ofthe tensor transformation laW (2.3,.8). There it was
remarked that .the change in the coordinate basis components of a tensor under II
coorditJ.ate transformation could be usedto.characterize it.. Here,apoint in B X Fie.1
is a collection ofnHI nUtnbers associated with a point x eM and a (not necessarily
coordinate) basis of the tangent spac;e of x.The grotJp action (13.2.6) can be viewed
as telling us how this collection of numbers changes when we mak~.a change of
basis. The equivalence class of the collection of numbers under changes of basis at
x is a point of 1k,dM), i.e., a ~nsor atx...Both the tensor transformation law and the
fiber bundle characterization of tensors havelitde advaptage oVerthe direct definition
of tensors as multilinear maps given in chapter 2. However, since there is no
analogous direct definition of spinors, we must proceed to define spinors by the
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relatively indirect route of specifying their behavior under SL(2, C) transfonnations
associated with changes of orthononnal basis. We tum, now, to this task.

The basic idea for constructing spinor fields in a curved spacetime (M, gab) is to
start with the principal fiber bundle of oriented, time oriented orthononnal bases, so
that each fiber is diffeomorphic to the proper Lorentz group. Then we "unwrap" each
fiber to produce a principal SL(2, C) bundle over M. The spinor bundle then is
co~ted as the fiber bundle associated to this principal bundle with fiber F = C2,
where X is taken to be the natural action of SL(2, C) on C2. A spinor at x E M may
then be defined as a point in the fiber over x of the spinor bundle.

However, complications may arise in this construction if the topology of the
spacetime M is nontrivial. Consider, first, the case where M is simply connected.
Then M is orientable and time orientable, so there is no difficulty in constructing the
principal bundle, (B, A,M, 4» of oriented, time oriented bases. Consider, now, a
closed curve, '}', in B. Since M is simply connected, the curve ?To'}' obtained by
projecting'}' down onto M can be continuously deformed to the trivial curve through
x, i.e., the curve e(t) = x for all t. This implies that in B the curve'}' can be
continuously deformed to a curve which lies entirely in the fiber ?T- 1[x] over x.
However, this fiber is diff~morphic to the proper Lorentz group, A, and
?T1(A) = Z2. Thus, in general, we would expect there to exist precisely two distinct
homotopy equivalence classes ofclosed curves in B. However, it is possible for there
to exist only one homotopy equivalence class of curves, i.e., for B to be simply
connected. Although the curve in the fiber over x corresponding to a 2?T rotation of
the basis of liz cannot be deformed to the trivial curve while remaining within the fiber
over x, for certain manifolds this curve can be continuously deformed to the trivial
curve in B.by moving it out of the fiber over x. In other words, it may happen that
a 2?T~rotation of a tetrad can be "undone" by transporting the tetrad alOng a one~

parameter sequence of closed curves throu~ x inM. If B is simply corm«ted. the
notion ofspiMrs. on M cannot be defined. This is ~ause we cannot consistently
assign a change ofsign to a spinor under a 21f-rotation of the bll$is if this 2?T.-rotation
can be continuously defonned to the identity. Examples of manifolds for whicb·8 is
simply connected.;ue given by Geroch (1968a). It is known·.(Milnor 1963; Clarke
1971) thatB will fail to be simply connected-i.e., ?T1(8) = Z2 and spinors can be
defined-,...ifand only if the second Stiefel-Whitney class (defined, e.g., in Steenrod
1951) of M vanishes..Geroch (l968a) has proven7 that if Mis noncompact, then
?TI(B) = Z2 if.and only ifMis parallelizable. Further equivalent criteria are given by
Geroch (1968a, 1970a) and Clarke (1971).

.If ?T1(B),;,= Z2, we define spinors on M as follows. The universal covering
manifold, B, ofB will have the natural structure ofa principal fiber bundle with fiber
group SL(2, C). We define the spinor bundle. S(M), to be the fiber bundle associ-

6. However, one still may define "generaIizedspin structures"; see Avis and Isham (1980) and the
referenc:escited therein.

7. SinceQ(n) andO(n,l)have fundamental group~ for all n > 2,one can define analogous notions
of spinors for Riemannian and Lorentzian $paces of dimension greater, respectively, than 2 and 3. (See
problem 1 for the Ri~"case with n =3; see Yip (1983) for a discussionof'spinors in two
dimensional spacCtimes, where 0(I, 1) is simply connected;) Oeroch's parallelizability criterion applies
only to four-ditDensional spacedmes;
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ated to (B,SL(2, C),M, 4» with fiber manifold C2
, with the action XL of L E

SL(2, C) on E C2 taken to be the natural action given by

2
[XL(e)}I = ~ Llfef

fzl

(13.2.7)

A sptnor at x E M is defined to be a point of S (M) lying in the fiber over x.
Similarly, the bundle, Sk,l;k',l'(M) of spinorial tensors of type (k, I;k', I') is de
fined by taking F to be the tensor product of k copies of C2, I copies of its dual space
C2*, k' copies of its complex conjugate space C2

, and l' copies of its complex
conjugate dual space C2*. The action of X on

I.",It Ii'·,Ii' E Fe A1,··A/ Ai . .,Ai•.

is given by

(13.2.8)

Equivalently, once the notion of spinors has been given, spinorial tensors may be
defined in terms of linear (and antilinear) maps on spinors irta manneranalogo\lsto
the•. way ordinlU)'.tensors were constructed from vectors in chapter 2. As in the
previous section we shall use capital latin indices to denote spinorial tensors.

The ~ve definition of spinors is sufficiently abstruse that soinlhvordsof e?cp1a
nation might be helpfuL Recall, first, that a point of B consists of a point x e M
together with an oriented, time'orientedorthomormal basis at x. If we fix a particular
basis {(el')Q} at x, a pointofBmay be vieWed asconsistingofa point x e M together
with a con~uous' one"Parameterfamily oforiented, time oriented basesat x starting
from {(e:#r}, where two such families.are consid~equiv~erit if they have tbe same
endpointaDd~bomotopic. In other words, the fiber of B over i can be viewed as
consisting of all Qrlented1. time oriented orthonormal baSes at x together with their
2'7T-rotations..A point()fB x C2 isa pair of complex nUmbers associated with xand
a basis or 2?7'-rotatedbasis atx.The gr<.>Up action Xg ofequati90(13.2.7) tells US how
theSe num.bers.··ttansform~ under a change of basis. Eac}1 equivalence class of
transformed nUin~andbases at x-i.e., each orbit oft/Jg, equation (13.2.4)
defines a spioor at x. Thus~our fiber bundle construction is just a precise way of
implementing the notiop that "a spinoI' at x is an ordered pair of complex numbers
which ttansfQrms by the natural representation of SL(2, C) under a change ofbasis."

Note that C2 has a great deal of structure beyond that of a complex two
dimensional veclQrspace; for example, it has a ~atural inner product' and a notion
of the. real andimaginlU)'~ of vectors. However, only those properties ofC2
which are preserved uDder the action of SL(2, C) survive to yield structure on the
fibersQf the spinor bundleS(M). Thus, for example, since there ~ elemeptsof
SL(2, C) which take real vectors in C2 to complex vectors, there is no natural notion
of the real aDd imaginary parts ofaspinor'at x. However, since the SL(2, C) maps
~ litlear,~y~e additi~J1 and •Scalar multiplication,. so the spinors at x do
have tbenaturalst:ruc~ofatw{)-(limensional complex vector space. Beyond that,
only the element Elr e C2* ® C 2* (as well as objects constructed fromjt) given by
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the matrix array (13.1.20) is preserved under the action of S1-(2, C), so the only
additional natural structure of spinors is that of a tensor EAB of type (0,2; 0, 0). Thus,
each fiber of S(M) has precisely the natural structure of spinor space (W, E'AB). Note
that there is no natural way of identifying the different fibers of S(M), i.e., there is
no way of sayinS-that a spinor at x E M is "the same" as one at y EM, just as there
is no way of saying that tangent vectors at different points are "the same." However,
we do know what it means for a spinor to vary smoothly from point to point: A
smooth spinor field is simply a (smooth) cross section of S(M).

The relation between spinorial tensor fields of type (1, 0; 1, 0) and vector fields
may be seen as follows. Fix an isomorphism, u, between the real elements of
C2 ® C2and 1R4-such as thatgiven by equation (13.1.30)-for which the Lorentz
metric EIAEl'A' on Re(C2 ® (2) is taken into the Lorentz metric
diag{1, -1, -1, -1) on 1R4• Then the natural 2 to 1 map of iJ onto B gives rise to
a 2 to 1 map u' of iJ X Re(C2 ® (2) ontoB x W. Furthermore,u' cOJ!UDutes with
the natural group actions I/J and t/J on these spaces, Le., we have u' OI/JL == I/JAOU,
where A is the Lorentz group element associated with L E SL(2, C). Hence, we
~btairi a (one...to-one) correspondenCe, it, between the SL(2, C) orbits of
B x Re(C2 ® C2) and the Lorentzgro9P orbits of 11 x 1R4• Thus, we obtain in tum
an identification of the real subset of SI.O;liO(M) with T(M); Le., real spinorial
tensors of type (1,0; 1,0) are identified with vectors. As in the previous section,we
shall incorporate this. identification into our notation by allowing vM ' to denote a
vector rather than explicitly writing it".«,vM '. AgaiJl the spacetime metric is related
to EM by

(13.2.9)

In the case where the spacetime manifold, M, is not simply connected, the analysis
ofwhetherthe.llOtion of spinors can be defined is somewhat more complicated. First,
M may fail to be orientable or time oriented. In such a case, the bundlt, B, qJ
orienttd,time.orienttd orthonormal bases does not exist, and the notion ofspinors
cannot bedejintd. 8 IfM is orienta~leand time orientable, we may construct B, but
we cannot obtainBby taking the universal covering manifold of B since this would
"unwrap" M as well as the fibers of B. In order to make sense.of the idea of
unwrapping only the fibers of B, it is necessary that the fundamental grotJP of B be
ofthe.direct product fOrIll

(13.2.10)

8. We should reemphasize that the term "spinors" here and elsewhere in this chapter means SL(2, C)
spinors. Other types of spinors can be defined by a similar construction starting f'ro!n other bundles of
bases. In partiCUlar, in a time orientable but not necessarily orientable spacetime, let B denote the bundle
of time oriented orthonormal ba,ses. 'fhe.fiber~ is then the (disconnected) group obtained by
co~gproperLoreI'ltZct1'anSformations\Vitha "parity" transformation. Its covering group can be
made to act on a four...dinlensional complex vector~e via the usual transformation formulas for Dirac
spinors. Thus, a noti()D of (+Component) Dirac spinors can be defined on nonorientable spacetimes. In
the case Qfan orienta}:jle splICetime, Dirac-spinors are naturally isomorphic to a pair (4)A, UA' ) consisting
of a two-cotDponent spinor 4>A and a complex conjugate dual spinor UA', as mentioned at the end of
section 13.1.
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where G1 is the fundamental group, 1TI(A) = Z2, of the Lorentz group and ~ is the
fundamental group, 1TI(M), of M. [Here the direct product G = G1 X ~ of groups
G1 and ~ is defined as the group consisting of ordered pairs (gl' g2) with gl E G1,

g2 E ~ with composition law (g\>g2)(g;,gi) = (glg;,g2gi).] Furtbennore, it is
understood in equation (13.2.10) that each element of the subgroup of 1TI(B) of the
form (gh e2) with e2 the identity element of G2 is homotopic to the closed curve gl
lying within a single Lorentz group fiber, whereas each element of the subgroup
(eh g2) projects down to the closed curve g2 E 1TI(M) in M. Note that in the case
where M is simply connected, equation (13.2.10) reduces to our previous criterion
1TI(B) = 1TI(A) = Z2.lf 1Tt(B) cannot be expressed in theform (13.2.10), the notion
of spinors cannot be defined on M. On the other hand, if 1TI!B) is of the form
(13.2.10), we may construct a (nonuniversal) covering space, B, of B by defining
two closed curves through a point b E Bto be equiv~ent if their composition is
homotopic to a closed curve of the form (e\> g~. Then B has the natural structure of
a principal SL(2, C) bundle over M, and one can proceed to define spiners on M in
the same manner as in the case where M is simply connected. Again-assuming that
Mis orientable and timeorientable-spinors can be defined [i.e., 1TI(B) is of the form
(13.2.10)] if and only if the secOnd Stiefel-Whitney class of M vanishes. further
more, if in addition M is noncompact,spinors can be defined if and only ifM is
parallelizable(Geroch 1968a; see also Clarke 1971).

One further pOint is worthy of note in the case where M is not simply connected.
The decomposition of '"I(B) as a direct product of subgroups of the form (13.2.10)
need not be unique, and each distinct decomposition gives rise to a distinct notion
of spinors on M. The reason is as follows. Each element of 1TI(B) corresponds to an
equivalence' class of transports of tetrads around closed curves in M. When we
express 1TI(B) in the form (13.2.10), we, in effect, state that tetrad transports of the
form (eh g2) cOrrespond to no net rotation of the tetrad, while those of the form
(a\> g2>--"Where at is the non-identity element of 1TI(A) = Z2-correspond to a 21T
rotation of the tetrad. Suppose, now, that 1Tt(M) has a· normal subgroup9 H with
factor grouplO isomorphic to Z2. Then we can define Gi to be the subset of 1TI(B)
consisting olall elements either of the form (e, h) or of the form (0, bh), where
h E H and b e H. Then it is easy to check that Gi is a ~ubgroup of 1TI(B) iso
morphic to 1Tl(M) and that 1TI(B) is ofA the form ql x Gi. We may use this decom
position to define the covering space B' and use B' to define spinors. With this new
decomposition of 1TI(B), closed curves in B of the form (0, bh) now correspond to
no net rotation of the tetrad in M, whereas curves of the form (e, bh) now correspond
to a 21T-rotation. Spinors on M defined with respect to B will not change sign if
transported aroUnd a closed curve bh E 1TI(M) in M in such a way that the com-

9. A subgroup H of It group G is said to be normal if ghg- I e H for all g e G and h E H.
to. For a normal subgroup H, the orbits obtained by the natural left action of H on G-called right

cosets of·H --QIl be given a group structure via the composition law Ct C2 = c. where C is the coset of
H containing 8112, Where 81 e C1 and g2E C2. (It is necessary that H be a DOnna! sUbgroup in order
that this composition law be independent of the choice of representative elements gl, g2') This group of
cosets is called the factor group of H and is denoted G/H.
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ponents of its null flag (13.1.37) with respect to the basis associated with
(e, bh) E 11'1(B) remain constant during the transport. Spinors defined with respect
to iI' will change sign under the same transport. Thus, depending on the group
structure of 11'1(M), there may be severalII distinct ways of defining spinors in the
sense that there may exist freedom to decide whether or not a spinor changes sign
when transported around certain closed curves in M. For example, if 11'1(M) = Z2,
then if spinors can be defined at all, there exist two inequivalent definitions. On the
other hand, if 11'1(M) = Zj (i.e., the cyclic group consisting of three elements), then
the definition of spinors is unique.

We turn, now, to the definition of derivatives of spinors in curved spacetime. As
mentioned above, in curved spacetime there is no natural identification of the spinor
spaces at different points, just as the tangent spaces at different points cannot be
identified in a natural way. However, .in chapter 3 we introduced the notion of a
derivative operator on ordinary tensor fields and found that there.is a unique deriv
ative operator, Va' associated with a metric gab via the requirement V"gbc = O.
Furthermore, given a derivative operator, we obtain a notion of parallel transport,
Le., a curve-dependent identification of the tangent spaces at different points. This
notion of parallel transport of tensor fields obta~ from Va gives rise to a unique
notion of parallel transport of spinors, 12 namely, a spinor will be said to be parallelly
transported along a curve if its null flag (13.1.37) is paralIelly transported and, in
addition, the spinor itself does not change sign discontinuously. (Recall that the
cOntinuity of a spinOI' field is a well,..defined notion.) This notion of paralIel transport
then can be used to take derivatives of spinots along acme '}'-since a spinor at ')'(t)
now can be compared with a spinor at y(t + 8t) via parallel transport-and this, in
turn,. uniquely gives. rise to a notion of a spinor derivative operator V;4A' taIdng
spinorial tensor fields of type (k; I; k', 1')' into spinotial tensor fields of type
(k,l + l;k',1' + 1). ThisderivativeoperatorV;4A,willsatisfytheanalogsofproper
ties (1H3) listed in section 3.1 for a derivative operator on ordinary tensor fields
where, in property (3), contraction now is with respect to spinor indices. Further
more, when applied to ordinary tensor fields, V;4A' will agree with the derivative
operator Va associated with gab, which implies, in particular, that properties (4) and
(5) are satisfied by V;4A,.In addition~ V;4A' satistles two further conditions: (i) for all
spinorial tensor fields t/J we have (Vc/J) = vfji, Le., VM ' is "real," and (ii)
V;4A'EBC = 0 = V;4A'EBC• Note that although the derivative operator Va satisfying
'v.,gbc = 0 is but one of a wide class ofdenvative operators on tensor fields, most of
these other ~tivativepperliltorscannot be generalized to apply to spinor fields, since
for these notions of derivative the parallel transp<:)rtof a null flag will not, in general,
retain the form of a null flag. .

11. The numberofdistinct ways of defining spinors equals the number of normal subgroups of 77'( (M)
with factor group ~2. This, in tum. is equal to the number of generators of the cohomology group
H 1(M;Zz); see ~ham (1918) for further discussion.

12. This can be·demonstrated Rl(lre systemJticallyby reformulating the notion of parallel transport
in terms ofthe th,¢ory Of~~~ona prfllCipal fiber bundle and its associated bundles (see. e.g.,
Bishop and CriuetldtD 1964). The connection on B gives rise to a connection on B, which in tum yields
a connection on S(M).
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Ifwe take two spinor derivatives of a dual spinor field ac and antisymmetrize over
the derivative indices, the same argument used to define the Riemann tensor in
chapter 3 shows that the resulting spinorial tensor field at a point x E M depends
only on the value of ac at x. Thus, there exists a spinorial tensor field XAA'BB'CD such
that for all dual spinor fields ac, we have

(VAA,VBB, - ~B'V,«,')ac = XM'BB'CDaD (13.2.11)

We apply this commutator to the dual vector acaC', using the Leibnitz role and the
reality property (i) of VAA,. Comparison with formula (3.2.3) for all acac establishes
that

DD' D- D' - D' D
RAA'BB'CC' = XAA'BB'C EC' + XAA'BB'C' Ec, (13.2.12)

where RAA'BB'CC,DD' is the spiriorial equivalent of the Riemann tensor. Arguments
similar to those which led to equation (3.2.12) show that, for an arbitrary "down
index" spinorial tensor field, ac, ...c/Cj ... c'" we have,

(VAA,VBB, - VBB,VAA')ac""cr =~ XM'BB'C/DaC""D"'Cj.

'-I
(13.2.13)

The generalization of equation (13.2.13) to spinorial tensor fields with "up indices"
is easily obtained by raising indices on both sides ofequation (13.2.13) with eEC) and
-E'C:E I.

The antisymmetry of Raltc4 in its ~t two indices implies via equations (13.2.12)
and (13.1.46) that XAA'BB'CD is symmetric in C and D. Since R altc4 is antisymmetric in
its first two indices, the argument which led to equation (13.1.50) implies further that
XAA'BB'CD can be expressed in the form

. XAA'BB'CD = ~DEA'B' + c;l>A'B'CDEAB (13.2.14)

where

and

AAHCD·= Ar!.sXCD) (13.2.15)

c;l>A'B'CD = c;l>WB'XCD) (13.2.16)

Substituting these results in equation (13.2.12), we find that the Riemann tensor
symmetry R llbaI = R cd4b implies that <IlA'B:CD is real:

<IlABC'D' = c;l>C'D'AB (13.2.17)

and A..aco satisfies

AABCD = AcDAB (13.2.18)

Because ofequation (13.2.18) EACAABCD is antisymmetric in Band D and hence must
be a multiple of EBD. We define 'VABCD by

'VABCD = AABCD - A(EACEBD + EBCEAD) (13.2.19)
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where

(13.2.20)

Then by construction 'ItABCD satisfies

EAC'ltABeD = 0 (13.2.21)

Together with the other symmetries of A.uCD' this implies that 'ItABCD is totally
symmetric,

'ItABCD = 'It(ABCD) (13.2.22)

Finally, a calculation using equation (13.1.36) establishes that the Riemann tensor
symmetry Ra[bdJ = 0 implies the reality of A,

A = A (13.2.23)

Thus, we have found that

XA/t'BB'CD = 'ItABCDEA'B' + c;l>A'B'CDEAB + A(EACEBD + EBCEAD)E,t'B' (13.2.24)

and hence we have obtained the following spinorial decomposition of the Riemann
tensor:

, (13.2.25)

where C.C. denotes the complex conjugate of the preceding terms. To obtain the
Ricci tensor, we contract over B and D and over B I and D I. We obtain

(13.2.26)

This shows that -2c;1>,t'c'A.C is just the spinor equivalent of the trace~freeRicci tensor
Rab + iRgab, where now we define R =:-Rabgabin oriier to compensate for our
change in metric signature and thereby agree with our previous definition given in
chapter 3. (The definitions of Robed and'Rab are unaffected by the change of metric
signature made in this chapter~) Furthenrtore, equation (13.2.26) shows that
A = -R!24.Using these results and comparing the decomposition (13.2.25) with
that of (3.2.28), we find that the spinor equivalent, CA/t'BB'CC'DD', of the Weyl tensor
Cabcd is simply ,

CM'BB'CC'DD' = 'ItABeDEA'B'Ec'D' + 'ltA'B'C'D'EABEcD (13.2.27)

We refer to 'ItABeD as the Weyl spinor.

Tlle decomposition (13.2.24) of. XM'BB'C
D allows us to reexpress equation

(13.2.11) in sgcha way as to separate the effect of Ricci and Weyt curvature on
spinors. If we contract equation (13.2.11) with EAB

, we find

VAWVB,)Aac = c;I>,t'B'CDaD (13.2.28)

where we used the identity (13.1.46) to obtain the left-hand side of this equation and
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formula (13.2.24) to obtain the right-hand side. On the other hand, if we contract
equation (13.2.11) with iA's', we get

VA'(A.VS{ac = AABCDaD = 'ltABCDaD - 2AEC(A.aS) (13.2.29)

The two equations (13.2.28) and (13.2.29) are equivalent to equation (13.2.11). For
future reference, we note that the generalizatiQn of equation (13.2.29) to an n index
spinor </>A 1...A. is

n

VA'(AVB{</>C1.··C. =.~ {'ltABC/D</>CI···D".C.
i=1

- 2AEc/(A.4>tCl···C/_I!B)CI+ 1·"C.}

Note also that the general identity (13.1.52) implies that

v....'[A.Vsf' = .!. EAB0
2

(13.2.30)

(13.2.31)

where 0 = VAA,VAA'.
We now are in a position to explain the spinor motivation of the Newman-Penrose

. (1962) formalism mentioned in section 3.4. Instead of choosing an orthonormal basis
of the tangent space at each point, we choose a basis ~~ = OA, ~1 = t A of spinor
space at each point, normalized so that

OAt
A = 1 (13.2.32)

Instead of defining the 24 real Ricci rotation coefficients by equation (3.4.14), we
define the 12 complex spin coefficients by

'YrA'IA = (~rt(~A,t'(~I)BVAA'(~A)B (13.2.33)

Here r, tJ:, I, A take the values 0, 1 and using the Leibnitz rule and equation
(13,2.32) one verifies that 'YrA'1.A is symmetric in I and A, so equation (13.2.33)
indeed defines 12 independentcomplex quantities. For the specific notation custom
arily used for eachspiiicoefficient, see Newman and Penrose (1%2). Finally,
instead of using equatiop (3..4.17) to e.x:press the tetrad basis components of th~
Riemann tensor in terms of the RiCci rotation coefficients, we use equations
(13.2.11land (13.2.24) to express the.~pinor basis components of 'ltABCD,c;I>A'S'CD,
and A in terms of the spin coefficients. In this way, we obtait,. equations equivalent
to equation (3.4.21) of chapter 3, but the explicit form of the~ equati9DS written out
term by term (see eq. [4.2] of Newman and Penrose 1%2) is far simpler in appear
ance than equation (3.4.21) would be if a separate letter were used for each Ricci
rotation coefficient and each curvature component.

How can o~e evaluate the spin coefficients defined by equation (13.2.33)? More
generally, how dQesone compute derivatives, VM', of arbitrary spinorial tensors?
Recall that the spinor derivative operator VAA' corresponding to the tensor derivative
operator Va satisfying V~gbc :::: 0 is the only sensible derivative operator for spinors,
so no analog of an "ordinaryderivative" operator aM' exists. Thus, there is no analog
for spinorsof the coordinate basis methods used for tensors, However, we can
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evaluate the spin coefficients (13.2.33) by using the formula (Friedman, un
published)

1 I
'YM'IA ;a (~I)BVM·(~At = - ~ Er'A·(~r')B'(~I)BVM.«~Af(~A.f'] , (10.2.34)

2 r'.A....O

which may be verified by expanding the derivative of the term in square brackets vIa
the Leibnitz role and using equation (13.2.32). However, the term in square brackets
is a vector quantity, Le.,

[M' = tAiA' (13.2.35)

and

nM ' = OAOA' (13.2.36)

are null vectors, while

mM ' = tAO A' (13.2.37)

and

;nM' = oAiA' (13.2.38)

are (complex) linear combinations of the spacelike unit vectors

x M ' = ~(i"A' OA + tAO A') (13.2.39)

yM' = ~(iA' OA - "AOA') (13.2.40)

Thus, the spin coefficients can be evaluated in terms of V"lb, V"n b,V"xb, and V"yb,
which can be calculated by standard methods. Indeed, the entire spinor calculus can
be reexpressed as a tetrad calculus using the complex null tetrad [", n", m", and ;n".

Once the spin coefficients have been found, the derivative of an arbitrary spinorial
tensor field '" can be evaluated by first expanding '" in a basis formed out of "..... OA

and their complex conjugates. Then, using the Leibnitz rule, we can express V'" in
terms of derivatives of the (scalar) basis components and the spin coefficients.

We illustrate, now, the utility of spinor methods by deriving the algebraic
classification of the Weyl tensor (Penrose 1960). In section 7.3 we asserted that in
algebraically general spacetimes the Weyl tensor admits four distinct principal null
directions satisfying equation (7.3.1), whereas in algebraically special sp~mes
some of these null directions coincide and satisfy the stronger conditions listed in
Table 7.1. We did not attempt to prove these assertions in chapter 7 because a direct
proof by tensor methods is relatively difficult. However, the algebraic classification
of the Weyl tensor by spinoi'methods isrematkably simple. Consider the Weyl
spinor 'ItABeD and fix a basis tA, OA of spinor space with 0A"A = 1 and with "A chosen
so that

(13.2.41)
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Let z E C, set

(13.2.42)

and consider the quantity

f(z) = 'ItABCDaAaBa CaD (13.2.43)

SiDcefis a fourth degree polynomial in z and by equation (13.2.41) the coefficient
of Z4 is equal to I, we can factor it into the form

f(z) = (z - Ct)(z - cz)(z - C3)(Z - C4)

Now, for i = 1,2,3,4, let

Then we have

(13.2.44)

(13.2.45)

(13.2.46)

(13.2.50)

(13.2.51)

(13.2.52)

and hence we have established that there exist four spinors (Kit, called principal
spinors, such that the equation

'ltABCDaAaBaCaD = (Kt)A(KZ)B(K3)C<K4)DaAaBaCaD (13.2.47)

holds for all a A of the form (13.2.42), and, consequently, for all spinors a A•

However, since the Weyl spinor is totally symmetric (see eq. [13.2.22]), this can be
true if and only if

'c
'ItABCD= (Kt)f;t (K:z)s (K3)c(1C4)D) (13.2.48)

Thus, we obtain a general decomposition of the Weyl spinor as the symmetrized
product of four principal spinors. No~tbat f(A is a principal spinor if and only if

'ltABCDKAKBKcKD =0 (13.2.49)

Furthermore, KA is 2, 3, or 4 times repeated-i.e., it appears 2, 3, or 4 times in the
decomposition (13.2.48)-if and only if, respectively,

'ltABCDKAKB
K

C = 0 (two times)

'ltABCDKAKB = 0 (three times)

'ItABCDKA = 0 (four times)

If K A is a principal spinor, the· null vector

kM ' = KAiCA' (13.2.53)

is called a ~ipal nup vector. The conditions (l3.2.49}-(13.2.52) on KA now can
be translated to the conditions on k4 listed in Table 7.1 (problem 5). Thus, we obtain
the algebraic classification of section 7.3. .

We conclude this section by examining the generalization to curved spacetime of
the equations in Minkowski spacetime for fields of mass m and spin s. The most·
natural generalization of these equations is obtained by the "minimal coupling"
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prescription of replacing OAA' everywhere by VAA,. However, for m > 0, tllis pre
scription giv~sinequivalent results when aplied to equation (13.1.59) as opposed to
equations (13.1.60) ~ (13.1.61).'Ote ..curved spacetime version of equation
(13.1.59)~ a well po$edinitial value fOl'lJlulation for all s, but the current (13.1.62)
is ~ longer conserved. On. the other~, for s = ! the equations

VAA'cf>A = ViUA' (13.2.54)

VAA'UA' = - ~~ cf>A (13.2.55)
v2 .

have a well posed initial value formulation (see problem 8), and the current (13.1.62)
generalized to curved spacetime is conserved. Hence, we adopt equations (13.2.54)
and (13.2.55) as the generalization to curved spacetime for the Dirac equation.
Similar results hold for s = 1. However, when s > I, the curved spacetime versions
of equations (13.1.60) and (13.1.61) do not have a well posed initial value lonnu
lation (Buchdah11962). Similarly, the curved spacetime spin s equation for m = 0,

VA\Aj cf>A\' "A. = 0 (13.2.56)

has a. well posed initial value formulation for s = ! and for s = 1 (where it is
equivalent to Maxwell's equations in curved spacetime), but, as we shall see below,
it fails'to have a well Posed initi~ value formulation for s > 1. Thus, the natural
curved spacetime generalization of the Minkowski equations for s > 1 do not yield
physically viable mOdels for fields iii curved spaCetime.

To prove that~quation (Il2.56) does not. have a well posed initial value formu
lation when s >1, we note first that equations (13.2.56) and (13.2.31) imply that
cf>At" ·A. must satisfy the wave equation, .

. Dcf>At' "A. = 0 (13.2.57)

. However, unlike.the situation in flat spacetime, if equation (13.2.57) is satisfied
everywhere in sPacetime and equation (13.2.56) holds on an initial surface, this does
not imply that equation (13.2.56) holds everywhere. Indeed, contracting equation
(13.2.56) with VAiA2alld using the fact that cf>A\" ·A. = cf>Vtl' "A.), we obtain

0:;:;:: VAjAzVA\Aicf>A\Az···A.

- V. n A'\.I,.AjAz·"A- AiVtzVA\) 'I' •

= (n - 2)'I'A\AzCVt3 cf>'A lAzC!A4"·A,,) (13.2.58)

where equation (13:2.30) was used in the last line. Equation (13.2.58) is a purely
algebraic condition which must be satisfied by cf>Al" ·A. throughout spacetime. Note
that it is not preserved under evolution by equation (13.2.57); i.e., even if equation
(13.2.58) and its time derivative hold for data for cf>A\" ·A. on an initial surface, there
is no reason why equation (13.2.58) will hold for the solution of (13.2.57) evolved
from these data. Thus, few, if any, solutions ofequation (13.2.56) will exist in a
general curvedspaeetime. Thus, for s > 1 there is no natural generalization to
curved spacetime of the notion of a "pure" massless spin s field.
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Problems
1. SU(2) Spin()rs: As mentioned in a footnote to the text, aDalogous notions of
spinors exist for all Riemannian and Lorentzian spaces of sufficiently high dimen
sion. In particular, we can define spinors for ordinary three-dimensional Euclidean
space as follows. LetW be a two-dimensional complex vector space on which a
Hermitian metric is given, i.e., for which we have a real tensor GA'A which satisfies
GA'A~A' t/JA > 0 for all t/JA #= O. We define GA'A by

GA'AGA'B = EB A

and rescale EAB if necessary so that it satisfies

EABGA'AGB'B = EA'B'

We use EAB and EAB to raise and lower. indices as before, and now we may use GA'A

and GA'A to.eliminate all primed indices in favor of unprimed indices. We define the
t operation by

( .l..tvt.·· - GA • •• GB' ::I'A'···
'¥') "'B - A' B'¥'oo 'B'

The group SU(2) is defined as the group of unitary maps on W with unit determinant,
i.e., as the subgroup of SL(2,C) consisting of maps UAIJ satisfying the additional
condition (utfB = (U-Ifa. Parallel the discussion of~on 13.1 to show that (a)
the two-index symmetric spinors t/>AB= t/>IIA which are self-:adjoint, (cp-ff/J = t/>AB,

form a three-dimensional, real vector space on which EAjA2EBJB2 is a negative definite
metric and (b) SU(2) is the universal covering group of the rotation group S0(3).

We comment that if.one is given a spacelike hypersurface in spacetime, one may
use the normal vector 1JA'A at etiCh. point to define the Hermitian metric
GA'A = v'2 nA'A. Hence, on the hypersurface one may associate the SL(2, C) spinor
space of spacetime with the SU(2) spinor space of the hypersurface. This enables one
to obtain a "3 + 1 decomposition" of spinors (Sen 1982).

2. Choose a spinor basis OA, "A satisying OA "A = 1 and write out the components of
the Dirac equation (eqs. [l3.1.60]8Qd[l3.1.61]forn = 1). Show, thereby, that our
version of the Dirac equation is equivalent to the form found in most books.

3. According to equation (13.1.50), a real antisymmetric tensor Fob can be written
in the form

FAA'D' = t/>ABEA'B' + q>A'B'EAB

where t/>AB = 4>wrJ. Show that Fob satisfies the source-free Maxwell equations
(4.2.23) and (4.2.24) if and only if t/>AB satisfies equation (13.1.64).

4. Show that equation (l3.1.64) has a well posed initial value formulation in Min-
kowski spacetime as follows; .

a) Show tbatequation (13.1.64) implies Ot/>A\ .. ·An = O.
b) Using theorem 10.1.2, show that if Ot/>A\ .. ·An = 0 throughout spacetime and
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equation (13.1.64) and its normal derivative n 88' 088'(OA,Ai cf>A!.' .An) = 0 are satisfied
on an initial hypersurf~, then equation (13.1.64) is satisfied.

c) Show that if Dcf>AI'" An = 0 and equation (13.1.64) holds initially, then
088,oAIAi,pAI."An = 0 automatically holds intitially. (Hint: Use the fact that n[bOc]

applied to eq. [13.1.64] must hold initially to conclude that initially
088' OAIAi cf>AI .. ·Anis of the fonn nBB' aA jA2' . 'An.Show that an expression of this form can
be nonvanishing for timelike n88' if and only if it remains nonvanishing when
contracted with iB'Ai.)

The results (a), (b) and (c) show that equation (13.1.64) is equivalent to the
equation Dcf>AI"'An = 0 (which has a well posed initial value fonnutation) together
with equation (13.1.64) holding only as an initial value constraint.

5. Show that the conditions (13.2.49)-(13.2.52) on principal spinors translate into
the conditions of Table 7: 1 on the corresponding principal null directions.

6. Show that in a vacuum spacetime, R tIb = 0, the Bianchi identity ~aRbc]de = 0
takes the fonn VAA''lJr''BCD = O.ln particular, this shows that the linearized Einstein
equation offMinkowski sp~eimpliesthat the linearized Weyl spinor satisfies
the equation for a massless, spin..,2 field. [In fact, giv~n a solution of eq. (13.1.64)
in the case s == 2, one can find a metric perturbation 'YtIb (unique up to gauge
transformations) satistYing~e source..freelinearized Einstein equation, (4.4.11) and
(4.4.12), whose !inearizedWeyl spinot equals the given solution. Thus, eq.
(13.1.64) with s =2 is equivalent to eqs. (4.4.11) and (4.4.12).]

'7. Solve problem 6 of chapter 4 using the spillOr decomposition of the Weyl tensor.
Include a proof that T~ = 1(abcl/}. .

8. Show that equation!; (13+~4) and (13.2.55) are equivalent to the equation
(0 + m2 -6A)4""= O.Thisequation is of the general fonn for which thC?rem
10.1.2 applies, so this establisbesdlat the Dirac equation in curveti !>pacetime has a
well posed initial value fonnubt,tion.



FOURTEEN

QUANTUM EFFECTS IN STRONG ORAVITATIONAL FIELDS

As described in chapter 4, the theory of general relativity put forth a revolutionary
new viewpoint on spacetime structure and gravitation. However, in one important
sense, this theory is not revolutionary enough. It. is well established that all known
physical fields must be described on aJundamentallevel by the principles of quantum
theory. In q\l.antum theory, states of a system are represented by vectors in a Hilbert
space, 'iJt, and observable quantities are represented by self-adjoint li~ar maps
acting on 'iJt. Unless the state of the system happens to be in an eigenstate of the
observable, the. observ.ble will not have a definite value aDd one can predict only
probabilities for the outcomes of measurem~nts. However, general relativity is a
purely classical theory, since in the framework of general relativity the, observable
quantities-in particular, the spacetime metric-aIways have definite values. Thus,
if the principles of quan~ theory ,are to apply to the gravitational field, general
relativity must at best be only an approximation to a truly fundamental theOry of
gravity, perhaps in the same sort of way as Maxwell's theory ofelectromagnetism
is only an approximation to quantum electrodynanlics.

Classical descriptions of ordinary matter are, in general, excellentapproxiptatioDs
for describin~ ~nomenawhich occur on macrOscopic scales, although even here
quantum effects can be important for suitably prepared states. Ho)Vever, the classical
description of matter becomes wholly inadequate on atomic and smaller scales. In
this case, the scale at which the classical description breaks down is determined by
the masses and charges of the fundamental particles as well as the two fundamental
constants of nature which enter the theory, namely Planck's constant, Ii, and the
speed of light, c; Similarly, in a quantum theory of gravitation based on general
relativity, one would expect that the fundamental scale at which the classical descrip
tion becomes wholly inadequate should be set by Ii, c, and the gravitational constant,
G. There is a unique combination of these constants which has the dimensions of
length, namely the quantity lp & (GIi/C 3)1/2, called the Planck length. As might be
expected, the Planck length arises naturally in attempts to formulate a quantum
theory of gravity. Thus, dimensional arguments suggest that a classical description
of spacetime structure should break down at scales of the order of the Planck length
and smaller.

In cgs units the magnitude of the Planck length is only _10-33 cm. (The corre
sponding Planck scales of other quantities such as time and energy are given in
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appendix F.) The smallness of Ip compared with typical length scales occurring in
atomic, nuclear, and elementary particle physics is directly related to the weakness
ofthe gravitational force between two elementary particles as compared with the
other fundamental forces, namely the strong, weak, and electromagnetic inter~

actions. The Planck scales lie many orders of magnitude beyond what we presently
are able to probe with high energy accelerators. Therefore, it might appear that the
development of a quantum theory of gravity-while undoubtedly a laudable goal
would be unlikely to have much relevance to any presently observable phenomena.

However, there are at least two good reasons for believing that the predictions of
a quantum theory of gravity could be very relevant to phenomena at presently
observable scales. The first reason arises from the theory of elementary particles. It
is widely believed that the -true, fundamental theory of nature will achieve a
unification of thef~ of nature by describirig them simply as different aspects of
a single entity. A unification of the classical theories of electricity and magnetism
was achieved over a century ago by Maxwell. More recently, the Weinberg-Salam
theory has given a successful unified description of the weak and electromagnetic
interactions. It is presently believed that the "grand unified models" may successfully
unify the strong and electroweak interactions. The unification of gravitation with the
strong~weakinteraetionwould be the next logical step in this'Program. Inter
estingly, the natural length scale which arises in the grand unified theories is only a
few orders of magnitude larger than Ip. Thus, it is quite possible that a quantum
theory of gravitation may even play an important role in the unification orthe strong
and electroWeak interactions. A unified theory of all forces undoubtedly would yield
many new predictions of phenomeoaat presently observable scales.

The second reason arises directly from general relativity.-As discussed in chapter
9,spacetimesingularities occur in the solutions ofclassical general relativity relevant
to gravitational collapse and cosmology. -Thus, in these situations, the classical
description of spacetime structure must break down. In particular, one cannot expect
the homogeneous,. isotropic models of chapter 5 to be an adequate description of our
universe in the regime where they predict curvatureofmagnitude Ip-2 or greater, i.e.,
for t < tp .. (GIi/CS)1/2 ..... 1O-4ts. Thus, it appears that the development of a
quantum theory ofgravitationwill be an essential requirement for our understanding
of the initial state of our universe. It is not implausible that Phenomena which occur
in-the very early universe and which can.·be understood only in the framework of
quantum gravity will1eadto observationally verifiablepredictions about the structure
of the present.universe.

However, even if quantum gravity leads to no predictions of phenomena which
can.be observed with present day technology, the formulation of a quantum theory
of gravity undoubtedly would be of major significance for theoretic.al physics. After
all, dassical general relativity has provided us with major new insights into the
workings of nature even though· the new·· observationally verifiable predictions it
makes are relatively meager.· The new fundamental insights provide\l~y a quantum
theory of gravity certainly should be no less significant than those~vided by
general relativity. .

As discussed in section 14.1, all of the known procedures for formulating a
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quantum field theory associated with a classical theory ron into difficulties when
applied to general relativity. Thus, the fonntilation of a viable quantum theory of
gravity remains a goal for the future. However, ,a completely satisfactory theory
exists for a free (i.e., linear) quantum matter field propagating in a fixed background
curved spacetime:,Although such a theory is, at best, only an approximation to a full
quantum theory ofgravity with quantum matter, the effects thereby predicted should
at least give a good indication of the types of quantum effects which may occur in
strong gravitational fields; In particular,as described in section 14.2, the creation of
particles by a gravitational, field is predicted by this theory. Remarkably, when
applied to the'case of a blackhole in section 14.3, one finds that particle creation
causes the effective "emission" by a black hole of a thennalspectmm of particles at
temperaturekT = f",c/21r, where I( is the surface gravity .of the black hole. The
implications.of this result for the relationship between black holes and thermo·
dynamics are explored in section 14.4.

14.1 Quaawm Gravity
It is generally believed that the correct, fundamental description of all physical

fields is given by the general framework of quantum field theory. In quantum field
theory,',states,ofa.SysteJri are.,<iescribed by vectors in a Hilbe

1
space ~,'and the

phYSic.al.field',iSdescribed by~operal?r (i.e., a line~ ~~) 0 '~~efined at each
spacetime pomt:However, umike ordinary. nonrelatlvlStic S ~rOdmger quantumr
mechanics where well, defined-"-albeitprobabiIistic-predictions always can.be
made once one is-given the Hanllltomanof the system, serious difficulties arise when
one attempts to'formulate quantQmfield theories. Many of these difficulties can be
traced to the fact tha4 even fora free ~eld, the expression obtained for the field
operator does not tnllke mathematical sense as an operator defined at each spacetime
pointbut must be interpreted as a distribution on spacetime (see section 14,2 below);
This corresponds tothe,p~y~ical fact,that the field .cannotbe measured at a single
point; only averages()f the field over spacetime regions are physically well defined.
In the case of a free field this causes ft() serious problems and a well defined quantum
field theory can be constmeted.However, for the more interesting case of a theory
with interactions (Le. ,.for a field or fields satisfying nonlinear equations) one is led
unavoidably to consider the products of field operators at the same spacetime point.,
Such quantities have no natural mathematical meaning, and consequently, with the
exception ofsomesimple models in lower spacetime dimensions, there are at present
no known examples of quantum field theories of physically reasonable interacting
fields which are Jnathematicallywell defined.

However, although one does not know how to formulate an exact theory of an
interacting quantum field .. ooe can fonnally treat the interactions as pertUrbations of
the weUdefinedfree fieldtheory.0nethereby may obtain alorma! expansion for
physical quantities as power seriesin the "coupling constant" (i.e., the coefficient of
the nonlinear interaction term in the equation). However, in general the formal
expression for the individual terms in the poWer series will yield divergent results
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when one attempts to evaluate them, as should be expected from the fact that the
exact theory upon which the perturbation series is based is ill defined. Nevertheless,
one can introduce cutoffs into the divergent expressions in order to obtain finite
answers. This, of course, leaves the theory in an !lnsatisfactory state, since the
predicted values of all physical quantities depend upon the chosen values of the
cutoff parameters. However, it may happen that in the limit of large cutoff parame
ters,the dependence of all physical quantities on the cutoff parameters may be
identical to their dependence on the so-called bare parameters (such as masses,
charges, and the coupling constants) which originally were present in the theory. If
this occurs, then one can take the limit as the cutoff parameters go to infinity while
readjusting the bare parameters so as to produce the desired finite answers for certain
physical quantities. In this way, one obtains finite expressions for each term in the
perturbation series e~sions for· all physical quantities with only the same number
of free parameters in the theory as originally were present classically. If this occurs;
the theory is called renormalizable, and it is wid~ly believed that physically viable
quantum field theories must be renonnalizable (or, at least, satisfy properties closely
akin to renormalizability; see Weinberg 1979). Quantum electrodynamics (Le., the
quantum field theory of a Dirac field interacting with an electromagnetic field) is
renormalizable, ,and the agreement to high accuracy of the predictions of the first few
terms of its perturbation series with experiments provides the best quantitative
evidence for the belief that quantum field theory provides a correct description of
nature. The Weinberg-Salam theory of the electroweak interactions and "quantum
chromodynamics" (i.e., the theory of quarks interacting with gluons) also are renor
malizable quantum field theories which are believed to accurately describe nature.
However, the state of affairs with regard to giving an exact formulation even of
renormalizable field theories. is unsatisfactory. Only the individual terms in the
perturbation series are defined precisely, and there is good reason to believe that the
full perturbation series does not converge.

Given a classical field theory formulated in terms of a Lagrangian or Hamiltonian,
there exist a number ofprocedures for formulating a quantum field theory associated
with the classical theory. However, general relativity is sufficiently different from
otherclassical field theories that, as we shall see in more detail below, the approaches
which have been tried for formulating quantum general relativity all have encoun
tered fundamental difficulties. The essential difference between genual relativity
and other classical theories appears to be the dual role played by the field 8ab as both
the quantity wl1ich describes the dynamical aspects ofgravity and the quantity which
describes the background spaeetime structure. Thus, it would appear that in order to
"quantize'" the dynamical degrees of freedom of.the gravitational field, one must also
give a quantum mecbanicaldescription of spacetime structure. This latter problem
has no analog for othU quantum field theories which are formulated on a fixed,
background spacetime, which is treated classically.

The nature of the difficulties caused by the dual role of 8ab are perhaps best
illustrated by the following simple exaIhple. It is a fundament!l property of quantum
field theory in Minkowski spacetime that the field operator, l/J, corresponding to an
integer-spin classical field, l/J, evaluated at spacelike related points must commute
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with itself, Le., for x and x' spacelike relatedI we have

[~(x), (i,(x ')].FS (i,(x)~(x ') - (i,(x ')(i,(x) = 0 (14.1.1)

(This equation expresses thefuct that a measurement of l/J atx' cannot inftuencethe
value of l/J at x.) Now, as mentioned in section 4.4 and in problem 6 of chapter 13,
linearized gravity is just the theory of a massless, spin-2 fieldiri Minkowskispace
time. Thus, we may view general relativity as the theory of a self-interacting:spin-2
field. By analogy with ftatspacetime quantum field theories it would be natural to
expect the metric field operator gali to satisfy the commutation relation

[g~(x), gcd(X ')] = 0 (14.1.2)

for x and x' spacelike related. However, this equation makes no sense since we do
not know if x and x' are spacelike related until we know the metric; and equation
(14.1:2) is an operator equation which, ifvalid, musthold independently of the state
of the gravitational field, Le., independently of the value of (or probability distribu
tion for) the metric. More generally, the entire notion ofcausality becomes ill defined
when the notion of a classical spacetime metric is abandoned. Thus, some of the
fundamental reSults' which 'are believ:~ to hold for an other quantum field thOOties
appear to be inapplicable to general relativity.

The differences between·general relativity and . other field theories and the
difficulties with causality that arise when the spacetime' metric' does not have a
definite value suggest the possibility that perhaps the principles of quantum theory
donor apply to gmvity-thatclassicalgeneral relatiVity is correctat the fundamental
level. However, this vieWPOint appears to be untenable, because the spacetime
metric is coupled to mattersOUi'CeS. Suppose spacetime structure is described bya
classical spacetime (M, gab) and quantum>theory applies to these matter sources.
Whitis the curvature of spaeetimeassociated with a given quantum state of·the
matter? If the classical Einstein equationi. to hold in the limit· where the matter
distribution can be described classieally,the mOst natural candidate for a quantum
version' of Einstein'sequation (with gravity treated classicallyhi~

Gab =lhi(Tab ) (14.1.3)

where (Tab) denotes the expectation value of the stress-energy operator Tab in the
given quantum state. Now consideta state of matter where, with probability 1/2, all
the matter is locatedin a certain region;OI' of spacetimeandi with probability 1/2,
the matteriscloeated in a region O2 disjoint front 0 1, Accardingto~atioll (14.1.3).
the gravitational field will behave like ballot the matter is in 0 1 and the other balf
is in (h. Suppose,ri<>w,·that we make a measurement of the location of the matter.
We then will find the matter to be either entirely in 0 1 or entirely in O2, Ifequatioh
(14.1.3) continues to hold after we have resolved the quantum state of the matter by

1. As mentioned above. we; must ~fact treat tj, as a distribution. Strictlyspeaking, equatiQn (14.1.1)
should be replaced by (tj,(f),tj,(g)] = 0 whenever the supports of the test functionsf and g are sPacelike

separated.. .. ,.'.., ,,'
2.rqote that in postulating a se~c1assical equation like (14.i.3), the superposition principle for

mattet states is lost, since different matter states are associated with different spacetimes.
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this measurement, then the gravitational field must change in a discontinuous,
acausal manner. Thus, the attempt to treat gravity classically leads to serious
difficultiesfTbese difficulties·.apparently can be avoided only by treating the space
time metric in a probabilistic fashion-i.e., by quantizing the gravitational field-so
that in the initial state it has probability 1/2 ofcorresponding to the gravitational field
of matter in 0 10 and has probability 1/2 of corresponding to the gravitational field
of matter in O2•

The issue of how to formulate a quantum theory of gravitation is presently under
active investigation by many researchers. We shall confine our discussion here to a
very brief mention of some of the main approaches that have .been tried. A more
detailed discussion of these approaches as well as a much more complete description
of the range of topics related to quantum gravity which presently are under in
vestigation can be found in Isham, Penrose, and Sciama (1975, 1981) and the final
five chapters of Hawking and Israel (1979).

The covariant perturbation method is perhaps the most straightforward approach
to fonriulating a quantum theory of gravity. Here one writes the spacetime metric gah
as

. gah = 'rIah + "Yah (14.1.4)

where 'rIah is a flat metric and we shall assume that M = 1R4 so that (M, 'rIah) is
Minkowski spacetime. [More generally, one could replace (1R4

, 'rIah) by any solution,
(M, °gah), of Einstein's equation.] To first order in "Yah, the classical Einstein equation
is just the equationJor a free,spin-2 field. Therefore, as already mentioned above,
we may view the full Einstein/equation (with "Yah not assumed to be "small") as the
sum of this "'free" piece plus a nonlinear, self-interaction tenn; i.e., we may view
Einstein's equation as an equation for a selHnteracting spin-2 field "Yah in Minkowski
spacetime (R"\ 'rIah).The eo"\1ariant method treats gravity by viewing it in this manner
as an ordinary "Poincare covariant" field theory. The dynamical variable, Yah, has
conSIderable gauge arbitrariness, bUt it is known howto obwn a perturbation series
expansion for the quantum field theory of "non-abelian" gauge fields of this type
(Fadde'ev and Popov 1967; DeWitt 1967a,b).ThU$, in this approach thete is no
obstacle, in principle, to obtaining a fonna! perturbation series for the type of
physical quantines·usually calculated for field theories in Minkowski spacetime.
Note that the Rat, background metric.llah introduced in equation (14.1.4) is treated
in an entirely classical manner in this approach.

TIle main difficulty which arises in this approach is that the perturbation theory one
obtains fot'Yab is hon-reriormalizable. Indeed, the IJOn-tenonnalizabitity of quantum
gravity in the covariant perturbation approach can be seen·purely from dimensional
argumentsOTheexpansion parazne~erin thepenwbatioo series one obtains is the
squared Planck length,31i;·Thus,the terms in the perturbation series of successively
higher order in ·1, must have the dimensions of (;orrespondingly higher powers of
inverse length and the "superficial degreeofdivet1ence" (see, e.g., Coleman 1973)

3. The classicalv~ Einstein equation.G.. "" O. does not involve NewtOn's constant G. How
ever. G enters the quantum theory through the normalization of 'Y0b0 which accounts for the presence of
G (via Ip) in the quantum theory.
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of these tenns increases. Hence, there is no possibility of canceling the divergent
terms with the "bare" tenns. Thus, the only hope for obtaining a well defined
perturbation series without the introduction of new parameters is that the perturbation
series befinite in each order, i.e., that when all the contributions to order l~ are
added together, the divergences will cancel each other. In fact, this happens in the
lowest ('·one loop") order. However, finiteness does not occur in lowest order for
gravity coupled to matter fields, nor is it expected to occur in higher orders in pure
quantum gravity; see Oeser, van Nieuwenhuizen, and Boulware (1975) and the
references cited therein for further discussion.

Thus, in the oovanant perturbation approach to formulating a quantum theory of
gravity, it appears that meaningful physical predictions cannot be made. In addition,
this approach has a number of other unappealing features. The breakup of the metric
into a background metric which is treateddassically and a dynamical field "Yab, which
is quantized, is unnatural from the viewpoint ofclassical general relativity. Further~

more, the perturbation theory one obtains from this approach will, in each order,
satisfy causality conditions with respect to the background metric 'Jab rather than the
true metric gab. Although the summed series (if it were to converge) still could satisfy
appropriate causality conditions, the covariant perturbation approach would provide
a very awkward way of displaying the role of the spacetime metric in causal struc
ture.Finally, in this approach it is very difficult even to formulate questions about
such issues as the quantum effects occurring near the initial singularity ()fthe
universe, since the usual procedures for formulating quantum field theories in Min
kowski spacetime eff~vely aSsume that the interactions are uturned off' in the
distant past. On the other hand, the covariant approach has the advantage that one
can obtain concrete expressions for physical quantities in perturbation theory without
having to develop an entirely new. conceptual framework.

.An. important approach which does not rely on a breakup of the spacetime metric
such as (14.1.4) is the canonicalquantization method. This approach for f()nnulating
a quantum theory is applicable if the classical theory has been put in Hamiltonian
form. The basic idea here is (i) to take the.states of the system to be described by
wave functions "1'('1) of the configuration variables, (ii) to replace each momentum
variable by differentiation with respect to the conjugate configuration variable, and
(iii) to detenpine thetjrne evolution of "I' via the SchrOdinger equation,
ift, 0"1'/ Ot = H"I', where His an operatorcorresponding to the classicalHamiltonian
H(p,q). A precise formulation of these rules for simple quantum mechanicalsys~

temscan be found in Ashtekar and GetQCh (1974).
As discussed in appendix E, general relativity can be cast in Hamiltonian form,

so one can attempt to apply the canonical quantization rules to general relativity.
However, a seoous difficulty arises· because of the presence of the constraint
(Bo2.33). Attempts to solve this constraint (so that one can obtain configuration
variables representing only the ."true dynamical degrees of freedom") or to impose
this constraint as an additional condition on the state vector have not been successful.
Thus, the difficulties caused by the constraint (E.2.33) in the Hamiltonian formu
lation of general relativity have proven to be a serious obstacle to obtaining a
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quantum theory of gravity via the canonical approach. We refer the reader to
Ashtekar and Geroch (1974) and Kuchaf (1981) for further discussion.

Another important approach to formulating a quantum theory of gravity is the path
integral method. The viewpoint here is to stress the amplitudes for physical processes
(rather than states or operators) as the fundamental entities of the theory. For the
quantum theory of a field '" on Minkowski spacetime derived from an action S ['"]
(see appendix E), one expresses the amplitude for the field to go from the function
"'I('X) on the bypersurface t =tl to the functiont/J2(x) on the hypersurface t = t2 as
a path integral: .

(14.1.5)

Here, the integral is to be taken over all neld configurations t/J (not just those
satisfying the classical field equation) in the spacetime region between t} and 12 which
"interpolate'! between t/Jland 1/12, and d,.,.[I/J] denotes a measure on the space of field
configurations. The major difficulty which arises in the path integral approach is the
definition of the measure d,.,.[ t/J]. One simply does not know how to make mathe..
matical sense of dp;[t/J]. except in the context of perturbation theory about a free
field. (In that context, one-can define the integral [14.1.5] so as to obtain the standard
perturbation series, and, indeed, the path integral approach provides a simple formal
derivation of this series which is partiCUlarly useful. in the case of gauge theories; see
Abers and Lee 1973,) However, despite the inability to define (14.1.5) rigorously,
the formal manipulations suggested by the path integral viewpoint have provided
valuable insights4 and useful approximation schemes.

General relativity can be derived from an action principle (see appendix E), so one
can attempt to formulate a quantum theory of gravity by the path integral approach.
It would be natural to write down an integral ofthe form

Z= f eiS[g<rbldp.[gab} , (14.1.6)

with S given by equation (E.l.13) or equation (E. 1.42), to represent the amplitude,
«hl)ab, tIl (h2)ab, t2), for going from spatial metric (hl)ab at time tl to (h2)ab at time t2.
However, in genenu relativity the "times" tl and t2 are merely coordinate labels and
do not have physical sigrtificance. Thus,· the amplitude «hl)aI>, tIl (h2)ab, t2) is not a
physically meaningful quantity. The underlying teason fot this difficulty is·closely
related to the difficulty of the canonical quantization app11.l8Ch: The "tnJe dynaD\ical
degrees of freedom" of the gravitational field have notbeen isolated. As mentioned
nearthe elldofappendix E, general relativity is much like a"parameterized theory"
where time is treated as a dyriam:icalvariable. Thus, it is redundant to insert the

4. In.~ular,.~ path wtegralviewpointprovides a simple explanation of how the classical limit
arises. Namely, in appropriate circumstal1CeS the dominant contributions to the integral (14.1.5) should
arise from field· <:Qnfigurations where the phase factor S[",] is extremized, since then the nearby
configurations will add coherently. But these field configurations are precisely the solutions of the
classical equations {see appendix E).
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"label times" t) and h in the amplitudes, as, in effect, an "intrinsic time" already is
present in the canonical variables hab , 'lT

ab describing the gravitational field. How
ever, since one does not have a well defined decomposition of these variables into
"true dynamical degrees of freedom" and "intrinsic time variables," it is far from
clc;ar precisely what physical amplitude Z is supposed to represent. Furthennore.
another fundamental difficulty which arises is the usual problem in the path integral
approach ofgiving precise meaning to d/L[gab] so that the right-hand side of equation
(14.1.6) is well defined. On the -other hand, in the path integral approach one can
envision analyzing issues such as the probability for a change of spatial topology by
including in the integral (14.1.6) spacetime metrics for which such a spatial topology
change occurs. It is difficult to see how this issue could even be fonnulated in the
canonical approach (since the presence of a Hamiltonian requires, in essence, global
hyperbolicity, and hence no change ofspatial topology) or in the covariant approach.

An important variant of the above path integral approach is the Euclidean path
integral approach. In field theories in Minkowski spacetime, a number of quantities
which arise-.-in particular the vacuum expectation values of products of field
operators-are holomorphic functions of the global inertial coordinates t, x, y, :t in
a domain that includes negative imaginary values of the time coordinate, i.e.,
t = -iT, where Tis real and positive (see Streater and Wightman 1964). It is useful
to view this type of analytic continuation in the following manner. We define
complexified MinJcows/d spacetime to be the four-complex-dimensional manifold (:4
(which also may be viewed as an eight-real-dimensional manifold) with complex
metric 11ab defined in teimsof the complex Cartesian coordinates t, x, y, z of (:4 by

ds 2 = -dt2 + dx 2 + dy2 + dz 2 (14.1.7)

Thus by restricting to real values of t, x, y, z, we recover ordinary Minkowski
spacetime as a four-real-dimensional submanifoldof «(:4 ,flab). However, by re
stricting X, y, Z to be real but t to be pure imaginary, we obtain another four-real
dimensional submanifold, now with a real, Euclidean metric

ds 2 = +dT2 + dx 2 + dy2 + dz2 (14.1.8)

where T = it. This submanifold is referred to as a Euclidean section of
«(:4, 11ab).Thus, we may view the above analytic continuation offunctions to negative
imaginary values of t as the evaluation of these functions on the positive Tregion of
a Euclidean section of complexified Minkowski spacetime. We may perfonn our
analysis of the field theory in this Euclidean section and then analytically continue
the functions back to the Minkowskian section to obtain the physiCal predictions. In
the path integral approach, there is considerable potential advantage to proceeding
in this manner, since in many theories the Euclidean action, SE[I/Il liE -is[I/I]I,=-i7'
is positive definite and the· analytically continued integral is exponentially damped
at "large 1/1" rather than oscillatory. Thus, the possibility of making mathematical
sense of the integral in equation (14.1.5) appears to be greatly enhanced in the
Euclidean section.

Many difficulties arise when one attempts to apply the Euclidean path integral
approach to quantum gravity. In general relativity, one does not have a natural
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background fiat spacetime (lR4 , 'Y/ab) which can be "complexified" to allow analytic
continuation to be perfonned. Nevertheless, one could try to analytically continue
Lorentzian signature metries to Riemannian metrics and work with a path integral
over Riemannian metrics. However, except in special cases such as static space
times, it is generally impOssible to represent an analytic spacetime (M, gab) as a
"Lorentzian section" of a four-complex-dimensional manifold with complex metric
which possesses a "Euclidean section," Le., a four-real-dimensional submanifold
with real, Riemannian metric. Thus, one does not have a general prescription for
analyticalfy continuing Lorentz signature metrics to Riemannian metries. (Further
more, even if one did, one does not have any theorems guaranteeing the analyticity
of any quantities arising in quantum gravity.) Nevertheless, one can postpone the
resolution of interpretational issues and study the properties of the path integral
(14.1.6) over Riemannian metrics, with is[gab] replaced by -SE[gab], where SE is
given by the analog of equation (E. 1.42) for Riemannian metrics.S A number of
highly suggestive results have been obtained in this manner (Hawking 1979). Per
haps the most dramatic suCcess of the Euclidean approach is that, as explained in
section 14.3, the creation of particles by a Schwarzschild black hole can be related
in a direct and simple manner to properties of the Euclidean Schwarzschild solution.

A considerably more unconventional approach toward the formulation of a quan
tum theOry of gravity is provided by the twistor approach.· A twistor in Minkowski
spacetime may be defined as a pair,

Z = (wA, '7TA') (14.1.9)

consisting of a spinor field, wA, and a complex conjugate spinor field '7TA' satisfying
the twistor equation,

(14.1.10)

We refer the reader to such references as Penrose (1967), Penrose and MacCallum
(1972), Penrose (1975), and Penrose and Ward (1980) for the motivation for intro
ducing twistors and a discussion of their properties. The collection of twistors on
Minkowski spacetime forms a four-complex-dimensional vector space, and the
projective twiston-Le., the equivalence classes of twistors which differ by a
nonzero complex multiple-comprise the three-complex-dimensional manifold CP3•

There exist a number or natural correspondences between Minkowski spacetime and
twistor space. For example, a null geodesic in Minkowskispacetime corresponds to
a point in null projective twistor space (Le., the space of projective twistors satis
fying Z • Z = wA

1TA + wA
' '7TA' = 0). whereas a point in Minkowski spacetime

corresponds to a 2-sphere of null projective twiston. Further correspondences be
tween compactified, complexifiedMinkowski spacetime and twistor space also may
be obtained. Furthermore, certain differential equations in Minkowski spacetime can
be reformulated as analyticity conditions in twistor space (see Ward 1981).

5. The action SE is not po&itive definite. However, it is positive definite for asymptotically Euclidean
metrics with R '" 0 (Schoen and Yau 1979), and Hawking (1979) has proposed a further analytic
continuation of the "confonnal degree of freedom" of the metric which, in effect, makes SE positive
definite.
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The basic starting point of the twistor quantization approach is to use twistor space
rather than spacetime as the underlying classical manifold structure upon which the
quantum fields are defined. In view of the correspondences between spacetime and
twistor space, this should result in a quantum theory where, roughly speaking,
certain causal relationships in spacetime retain their classical properties, but the
notion ofspacetime points becomes "fuzzy." (In essentially all other approaches. the
notion of spacetime points is well defined but, as discussed above, since the space
time metric is described probabilistically, the notion of causality becomes "fuzzy.")
Hence, in the twistor approach one can envision incorporating causaJityinto the
quantum theory in a natural way. Thus far, twistors have proven to be useful
mathematical tools (see e.g., Atiyah and Ward 1977). However, at present, little
pr-Ogress has been made toward formulating a concrete quantum theory of gravity via
the twistor approach.

Given the present lack of success of the· above approaches to formulating a
quantum version of general relatiVity, it is natural to consider modifications of
classical general relativity which may lead to better behavior of the quantum theory.
In particular, one may seek to modify the Einstein field equation so that the quantum
theory becomesrenormalizable in the covariant perturbation approach. Perhaps the
simplest attempt along these lines is to modify the Einstein Lagrangian (E. 1.12) by
adding terms quadratic in the curvature. The coordinate component form of the new
field equation then involves fourth derivatives of the metric, so this theory often is
referred to as a "higher derivative" theory of gravity. Stelle (1977) has shown that
the quantum version of this theory is formally renonnalizable. However, other
serious difficulties arise in the theory, so it does not appear that this theory is
physically viable.

A much more ambitious attempt to modify general relativity is given by super
gravity theories. Supergravity theories are a class of models involving interacting
fields of spin 0, 1/2,1, 3/2, and 2. (The prefix "super" refers to the fact that these
models have a certain type of symmetry .called "supersymmetry" between the boson
[i.e., integer spin] and fermion [i.e., half-integer spin] degrees of freedom.) The
main goals of supergravity theories are (i) to improve the renormalizability (or
finiteness) properties ofquantum gravity and (ii) to unify gravity with the other basic
interactions of nature.' With. regard to the first goal, it has been shown that super
gravity is finite at least to "two loop" order in perturbation theory. A present; it is
not known how far in perturbation theory this finiteness extends, and it is believed
to be possible that supergravitycould be finite to all orders. The second goal is
particularly ambitious since one asks supergravity to account for all interactions
observed in high energy particle physics. At present, there appear to be serious
difficulties in reaching this goal .. We refer the reader to van Nieuwenhuizen (1981)
and thearticJesinHawking and Rocek (1981) for an introduction to supergravity,
a discussion of some recent research, and references to earlier work on supergravity
and supersymmetry.

In summary,although many approaches have been tried,there presently does not
exist a demonstrably viable quantum theory of gravity. It is possible that the
difficulties are basically technical in nature and that, for example, a better procedure
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for dealing with the constraint (E.2.33) will lead to a satisfactory formulation of
quantum gravity via the canonical approach, or that supergravity will be shown to
be a fully satisfactory theory. Alternatively, it is possible that the difficulties may be
of a very fundamental nature, and that the quantum theory of gravity simply does not
fit into the framework established for other quantum theories.

However, the lack of a satisfactory quantum theory of gravity does not mean that
we cannot perform any reliable calculations of quantum effects occurring in strong
gravitational fields. In atomic physics, in appropriate circumstances one can reliably
calculate electromagnetieally induced transition rates of electrons in atoms using a
classical treatment of the electromagnetic field. Similarly, in quantum field theory,
using a classical treatment of the electromagnetic field one can, in appropriate
circumstances, reliably calculate the spontaneous creation of electron-positron pairs
in a strong electric field. Thus, it is expected that by treating gravity in the classical
framework of general relativity, it still should be possible to reliably calculate some
of the quantum effects that gravity produces on other fields, such as the creation of
particle-antiparticle pairs. It is to the study of these effects that we now tum.

14.2 Quantum Fields in Curved Spacetime
As indicated at the end of the previous section, in analogy with quantum field

theory in an external potential (see, e.g., Wightman 1971), we seek to formulate a
theory of a quantum field which propagates in a classically describable spacetime
(M, gab)' For simplicity, we will restrict attention to the case of a real Klein-Gordon
scalar field <p. The analysis of other linear fields of spin s ~ 1 is very similar (see,
e.g., Wald 1979b), although there are important, welLknown differences which
occur in the fennion (s = 1/2) case. As mentioned at the end of chapter 13, fields
of spin s > 1 do not have a natural generalization to curved spacetime. We shall not
consider nonlinear (Le., self-interacting) fields. 6 Much of the discussion below is
based on Wald (1975, 1979b). Further discussion of many of the effects predicted
by the theory of quantum fields in curved spacetime and a detailed bibliography of
the original papers is given by Birrell and Davies (1982).

As has been indicated several times above, Hilbert spaces playa fundamental role
in quantum theory. For the benefit of the reader who is not familiar with Hilbert
spaces but hu'studied chapter 2 and the discussion of spinor space given in chapter
13, we give a very brief introduction to Hilbert spaces here, emphasizing some of
the differences between the finite..<fimensional case which was considered previously
and the infinite-dimensional case which is relevant here.. For a much more complete
and systematic discussion, we refer the reader to Riesz and Sz.-Nagy (1955) and
Reed and Simon (1972).

Let V be a (not necessarily finite-dimensional) vector space over the complex
numbers, C.An inner product on V isa map i; V X V - C-where we denote the
complex number i(v" V2) as simply (VI, V2)-satisying the following three proper-

6. Even in Minkowski spacetime the quantum theory of nonlinear fields is well defined only in the
context of pertutbation theory. An interesting issue which arises is whether a renormalizable theory in
Minkowski spacetime remainsrenormalitable in curved spacetime. See Birrell (1981) for a review of
work on this issue.
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ties: (a) i is linear in the second variable, (b) (Vh (2) = (V2, VI), where the bar
denotes complex conjugation, and (c) (v, v) ~ 0 with equality holding if and only
if v = O. Note that properties (a) and (b) imply that i is antilinear in the first Variable.
A vector space equipped with an inner product is called an inner product space. If
V is an inner product space, we define the norm of each v E V by II vII = V(v, v).
We obtain a natural topology on V (called the strong topology) by defining a subset
of V to be open if and only if it can be expressed as a union of "open balls," Le.,
sets of the form DR. "0 = {v E V IIIv - vo" < R}. This choice of topology will be
understood in discussions of convergence and continuity below.

A sequence {VII} of vectors in V is said to be a Cauchy sequence if given E > 0
there exists an integer N such that for all m, n > N we have" VII - vm " < E. It
follows directly that all convergent sequences are Cauchy sequences. Conversely,
for finite-dimensional.inner product spaces, all Cauchy sequences converge.· How
ever, in infinite dimensions, it is easy to construct examples of inner product spaces
which possess Cauchy sequences which do not converge (see problem 1). A .space
where all Cauchy sequences converge is said to be complete, and a complete inner
product space is called a Hilbert space. Thus, in particular, all finite-dimensional'
inner product spaces are Hilbert spaces. If an infinite-dimensional inner product
space, V, fails to be complete there exists a standard procedure for constructing a
unique Hilbert space ~-called the Hilbert space. completion of V-such that V is
isomorphic to a subspace W C ~with W = ~ (see, e.g" Reed and Simon 1972)
where W denotes the closure .of W.

An important difference between finite and infinite-dimensional Hilbert spaces is
that in the infinite-dim~ionalcase linear maps need not be continuous. Indeed, it
is straightforward to show that a linear map A :~I - ~2 between two Hilbert spaces
is continuous if .and only if iUs bounded, Le., there exists aCE IR such that
IlAvn:s C II v II foraU.v E ~I' It is easy to construct examples of unbounded linear
maps when ~l is infinite-dimensional.

In order to get a space with properties similar to the dual of a finite-dimensipnal
vector space, we define the dual, ~*, ofa Hilbert space, ~, to be the vector space
of continuous linear maps from ~ into C. Similarly, the complex conjugate dual
space~*, and complex conjugate space~ are defined as in our discussion of spinor
space in chapter 13, witlltheadditional proviso that the antilinear and linear maps
involved be continuous.

Now, for a general topological vector space V (i.e. , a vector space with a topology
defined on it SUch that the operations of addition and scalar. multiplication are
continuous) the argument wbichin finite dimensions proves. that V is naturally
isomorphic to all of V:* now ShoWS only that V is naturally isomorphic to a subspace
of V**, Le., V CV... Similarly, in general. complex conjugation maps V only into
a subspace ofV.(Note, however, that the natural antilinear cOITeSpOndence between
V*and V*-which associa~s a E V* with ReV* via a(v) = {3(v) for all
v E V-always is one-to-one and onto.) However, for a Hilbert space~, although
the simple proof used in finite flimensions breaks down, it turns out that the inner
product,......which is~ssentially a nondegenerate tensor of type (0,1;0,1) over
:1t-yields a one-to-one, onto, linear correspondence between ~ and ~*. This result
is known as the Riesz lemma. Thus, for a Hilbert space ~, it follows that ~* is
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naturally isomorphic to ~, that ~ and ~:"'are naturally isomorphic, and that the
, antilinear correspondence between ~ and ~ is one-to-one and onto.

The span of a collection of vectors {va} in a Hilbert space ~ is defined to be the
subspace of vectors that can be expressed as linear combinations of finitely many of
the {Va}. The collection {Va} is said to be a basis of~ if the closure of the span of
{Va} equals ~, but the closure of the span of any proper subset of the {va} fails to
equal ~. It 'Can be shown that every Hilbert space admits an orthonormal basis {ea }

(see, e.g., Reed and Simon 1972). In general, {ea } may consist of uncountably many
elements, but in the -ease of a separable Hilbert space-Le., a Hilbert space which
possesses a countable sUbset of vectors whose closure is ~-then {ea } must be
countable. It is generally assumed that the Hilbert spaces arising in quantum theory
are separable, and we will restrict attention to separable Hilbert spaces below.

A further difference in infinite. dimensions occurs, in the definition of tensor
products. As in finite dimensions, ~ ® ~ consists of bilinear maps T: 'K x
'K -+ C. However, in order to obtain a natural Hilbert space structure on ~ ® ~.

we impose the additional requirement that T satisfy

'"
~ IT(e;*,ej*)12 < 00

;,j=l

(14.2.1)

where {et} is an orthonormal basis of~·. The other tensor product spaces are defined
similarly. Note that not all continuous linear maps A :~ -+ ~ satisfy the analog of
equation (14.2.1) and hence not all continuous linear maps can be vieWed. as ele
ments of 'It ® 'K. (Those which can ,are called Hilbert-Schmidt maps.) An index
notion analogous to that used in finite dimensions could be employedfor tensors over
~ (Ge~h, ~publistied).but·to avoid confusion with spacetime tensors we shall not
use this-notation here. .. .

, ,", • 0"

A linear mi).p L: '1t -+ ~ is c~ed an operator. If L is bounded, we define the
adjoint of L, denoted L f " to be thei)ounded operator which satisfies

(Ltw•v ) = (w,Lv) (14.2.2)

for all v. w E ~. (The existence of an operator Lt satisfying eq. [14.2.2] isguaran
teed l:n' theJiiesz lemma.) We say LiS self-adjoint if Lt = L,and we say that Lis
unitary ifLt L =LI)=/, where lis ,theidenti,ty map on ~. In the case where L is
unbounded, the definjtionof~tis not as straightfotward. Fit:st,in general it may only
be possible to (!efinc; L on .. dense do1tlOin 'iD(L), Le."a subspace of vectors whose
closure equals ~. Consider the equation .

(u, v)= (w,Lv) (14.2.3)

For each fixed pair()f vectors ¥. w~~ch that equation (14.2.3) is satisfied for all
v E 'iD(L), w~ say w.E 'iD(Lt) and w.e define L tw = u. [If 'iD(L t) fails to be dense
i.e., if its closure is,not allof~U is not defined.] We call an unbounded
operator, L. se1/~joi.rrJ7if<!beLt) = 'iD(L) and Ltv = Lv for all v E 'iD(L).

7. The ~ise~ity 0(.~ dontains of L t and L is an important part of the definition, since it is
an essential in~t in the proof of the spectral ~eorem (see, e.g., Reed and Simon 1972). If
Ltv = Lv for au: v e ~(L) but ~(Lt) :::> ~(L), then L is said to be hermitian.
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We present, now, some of the basic ingredients of the theory of a free (Le., linear)
real, Klein-Gordon scalar field 4> in Minkowski spacetime. We shall present this
theory in "Heisenberg representation" fonn, i.e., the operators representing observ
abIes will evolve with 'time but the states do not. Classically, 4> satisfies

v" Va 4> - m24> = 0 . (14.2.4)

Our first major task is to construct the Hilbert space of states of the quantum theory.
It is natural to construct the space ofstates of a single scalar particle out of the vector
space of solutions of equation (14.2.4). The conserved current (12.4.21) yields a
promising candidate for an inner product on this space. If a and {3 are solutions of
equation (14.2.4), we define their Klein-Gordon "inner product" by

(a,!3h<o = - Lia[a,{3]nadV = i L(av,,{3 - {3Vaa)nadV ,(14.2.5)

where the integral is taken over a Cauchy s111face I, and we put quotes around "inner
product" (to be dropped hereafter) because ( , )KO is not positive definite. However,
ifwe restrict attention to the subspace ofpositivefrequency solutions-Le., solutions
whose time Fourier transfonn

(p(w, x) : (211)-1/2 [co e it»t4>(t, x)dt (14.2.6)

vanishes for w < O-then ( , >Ko is positive definite. We define the one~particle

Hilbert space, 'It, to be the vector space composed of positive frequency solutions
of equation (14.2.4) whose Klein-Gordon norin is finite, with inner product on 'It
defined by (14:2.5). (More precisely, we define V to be the vector space of smooth,
positive frequepcy" solutions which vanish rapidly at spa~ infinity, with inner
product {14.2.S]. We define 'It to be the Hilbert space completion of V.) By taking
Fourier transfonns, 'It can be shown to be isomorphic to the Hilbert space, L 2(M+),
of square integrable functions on the positive mass shell, M+, of Fourier transfonn
space. Note that the negative frequency solutions can be put in natural linear corre-
spondence with vectors in 'It = '1('. '

In general, if 'ltl is~ Hilbert space of states of one quantum system and ~' is
that of a 'second system, then the tensor product 'ltl ® 'lt2 represents states of the
total (combined) system. In the case of a Klein-Gordon scalar field, the symmetric
tensor product 'It ®s 'It-consisting of symmetric linear, maps'from 'It* x 'iJl* into
C which satisfy equation (14.2.1)-represents the possible states of tWo scalar
particles. The use of only this subspace (rather than all of 'iJl ® 'iJl) to describe the
possible two-particle states reflects the indistinguishability of elementary particles;
an interchange of particles produces the same physiCal state. The choice of the
synunetric tensor product (used for all bosons, i~e., integer spin fields) rather than
the antisymmetric tensor product (used for all fermions, Le., half-integer spin fields)
is closely related to the properties of these fields required by the spin-statistics
theorem. Similarly, the Hilbert space of n free scalar particles is taken to be the
n-fold symmetrized tensor product ®l'lt. The space of states where no particles are
present is assuIlled to be one-dimensional and hence may be taken to be C.
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The Hilbert space of all possible states of the Klein-Gordon scalar field is taken
to be the symmetric Fock space, ~s(~, constructed from 'f/f,. Here ~s('f/f,) is defined
as the direct sum of the complex numbers,C, with' all the symmetrized tensor
products of 'f/f"

Here, the direct sum

'"
~s(~ = C (±) [(±l (®~'f/f,)]

n=1
(14.2.7)

'"t.:p 'f/f,.)iF{1

of a collection {'f/f,i} of Hilbert spaces is defined to be the Hilbert space obtained from
the collection of sequences of the form (VI> Vz, ... ) with each Vj E 'f/f,j and

'"Lll vdl 2 <ao ,
i=1

with addition, scalar multiplication, and inner product defined in the obvious way.
Thus, each 'I' E ~s(~ can be written as

'I' = (ao, al> a2, ... )

where ao E C, al e; 'f/f" a2 E 'f/f, ®s'f/f" etc. The state

10> == (1,0,0, ... )

(14.2.8)

(14.2.9)

represents the vacuum state of the field, i.e. ,the state in which no particles are
present. Hencefor the general Fock space state (14.2.8), ao gives the amplitude for
finding tQe field to be in the vacuum state, al is the "one-particle amplitude"{i.e. ,
the probability offinding only a single particle present instate {3 E 'R is I((3,nl) /2),
a2 is the two-particle amplitude, etc~Thus,every state in ~s ('f/f,) has a direct physical
interpretation in te~ of the probabilities for finding various numbers of particles in
the various possible states..

The most important observable in the theory of a scalar field is the value of the
scalar field itself. Since observables in quantum theory are represented by self
adjoint operators, weseekanoperator 4>(x) defined at each spacetime pointx which
describes (he scalar field. Classically, thefie!d </Jcan be decomposed via Fourier
transforms int<,lmodes of spatial wave vector k, so that the amplitude of each mode
satisfies· the same equation as a classical harmonic oscillator. Analogy with the
quantization of the ordinary harmonic oscillator then suggests the following
definition of ~. First, for each one-particle state q e 'f/f" we define the annihilation
operatdr a(u):~s(~ - ~s('R) as follows. For 'I' E~s('f/f,) given by equation
(14.2.8), we set

a(u)'I' = (u . al> V2u . a2, V3 u . a3, ... ) (14.2.10)

Here u is the vector we associated with 0" un~r the complex conjugation map, and
li . an is the element of ®~:-I 'f/f, obtained by inserting C; into one of the "slots" of
the map a". Note that the vacuum state is uniquely characterized (up to phase) by
the condition

a(u)IO> =° (14.2.11)
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for all 0' E '11l. The adjoint of a(u) is the creation operator, at(O'), given by

at (0')'1' = (0, £lou, v'2 al ®s iT, v'3 a2 ®s 0', ... ) . (14.2.12)

In tenns of a and at, the quantum field operator cf,(x) is defined by
00

cf,(x) = L [O';(x) a(u;) + O'j(x) at (O'j)]
;=1

(14.2.13)

where the sum runs over an orthononnal basis {O'll of '11l. Thus, cf, satisfies the
Klein-Gordon equation (14.2.4) in x, and the operator coefficients of the expansion
of ~ in terms of a basis of positive frequency solutions and their complex conjugates
are justthe annihilation and creation operators. In fact, the sum in equation (14.2.13)
does not converge pointwise and must be interpreted in a distributional sense, i.e.,
cf,"bcan be defi~ only as an operator-valued distribution on spacetime. (See, e.g.,
Reed and Simon 1972 for the definition of a distribution, and see, e.g., eq. [2.7] of
Wald 1979b for the distributional version of eq. [14.2.13].) For calculations in
volving only linear operations on cf" this presents only a minor technical nuisance,
but for nonlinear operations it presents a serious obstacle to making mathematical
sense out of the expressions which result, since the product of two distributions
evaluated at the same spacetime point does not, in general, have any natural math
ematical interpretation. This completes our brief introduction to the theory of the
Klein-Gordon quantum field in Minkowski spacetime.

Consider, now, the quantum field theory of a Klein-Gordon field in a curved
spacetime background (M, Bf/b)' The states of the field still are described as vectors
in a Hilbert space 9t. but in general there may be no unambiguous physical inter
pretationof these states in terms .of particles. The field 4J again is described by an
operator 4> defined on space~(or,more precisely, an operator-valued distribution)
which satisfies the curved spacetime Klein-Gordon equation (14.2.4).

Perhaps the simplest case to consider is that of a globally hyperbolic spacetime
which is nearly isometric to Minkowski spacetime except in a limited region of space
over a limited duration of time. Such a spacetime could be produced by focusing
matter (or gravitational radiation) onto a small region of space and then allowing the
matter to disburse back to infinity. In order to avoid dealing with detailed asymptotic
falloff conditions on the gravitational field, we shall consider the highly idealized
case of a spacetime which is flat outside a C()lIlpact spacetime region, as illustrated
in Figure 14.1. .

9ob= 710b
Fig. 14. h A spacetime diagram of a spacetime (R" Bab) which is isometric to
Minkowski spacetime (R4, "lab) outside of a ~ompact region K.
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Outside the future of the region K of Figure 14.1 an observer (or family of
observers) would be unaware that he was not in Minkowski spacetime. Therefore,
he would associate with each state of the field 'l' E ~ a vector in the Fock space
~s(~uJ wnstructed from the one--.particle Hilbert space, ~iD, of positive frequency
solutions of the free Klein-Gordonfield in Minkowski spacetime. Let
U:~ ~ lfls(~iD) denote this isomorphism of'!l With Fock space obtained by charac
terizing each state in '!l by bow it "looks" to such an observer in the past. To such
an obserVer. the field operator 4> must be physically indistinguishable from the
Minkowski field operator on Minkowski spacetime, so for x outside the future of K
we have'

..
U4>(x)U-1 =L [O'i(X)ain(Ui) + Ui(X)a~(O'i)] if x j!. r(K)

i=1

(14.2.14)

where {O'/} is an orthonormal basis of ~iD' However, the fact that 4>'satisfies equation
(14.2.4) throughout the spacetime implies that for all x E M we have

00

U4>(x)U-1 =~ [U;(X)aiD(Ui) + u: (X)ai~(O'i)]
i-I

(14.2.15)

where 0': is the solution of equation (14.2.4) in the curved spacetime which coincides
with O'i outside the future of K.

Similarly, we have an isomorphism W:'!l~ '!ls(~out> which associates with eaCh
state in '!l the Minkowski sp~~me state it "looks like" in the future. 8 Furthermore,
we have '

..
W4>(x)W- 1 =~ [p; (X)aout(PI) + P; (x)a~(Pi)] •

i-I

(14.2.16)

where {Pi} is an orthonormal basis of~out and P; is the solution of equation (14.2.4)
which coincides wi,th Pi outside the past of K.

One of ~,most impo~t issues to consider is bow the characterization of the
states of the field as "in" states compares with their characterization as "01Jt" states.
This is given by~ S-1fI(ltrix, S = WU- 1

• Given any ..in" state 'l' E '!ls(~m> de
scribing bow ~ state "looks" at early times, the "out" state 5'1' E '!ls(~ de
scribes how the state "looks" atlate times. In PMticular, fpr 'l' ::; IOiD), 'l'0 = S I().m)

tells us the spon~us creation of particles by the gravitational field.
Equations (14.2.15) and (14.2.16) allow us to solve for'l'o. First, we compose ~.

equation (14.2.15) wi9t Son the left and.S- 1 on the right and equate the right-hand
side of the resulting equation with the right:'bandside ,of e<JUation (14.2.16). Let
0' E ~ and let 0" be the solution of the cW'\te4. spacetime KIein-Gordon equation
which coincides with 0' outside the future of K. Taking the Klein-Gordon inner
product with 0". we find that Qjq and a~ ~ related by

Sam(li)S-1 = aoot(CO') - a~(DO') (14.2.17)

8. Here~ is again the Minkowski single-particle Hilbert space and hence is isomorphic to ~, but
it is useful to view ~ia and~ .distinet spaces. In more general spacetimes, there may be no natural
way of identifying~~ ~_.
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for all 0' E ~. Heie the maps C:~~~ and D: '#tm ~ ~t are defined as
follows. Outside the past of K, O"(x) must again coincide with some solution, !(x) ,
of the Klein-Gordon equation in Minkowski spacetime. Let J.L be the positive fre~

quency part of! in Minkowski spacetime, and let Abe the negativ~frequency part
f. We may view J.L as an element of ~out, and A as an element ~out. We define
CO' = J.L and DO' = A.Relations satisfied by C and D which are necessary for the
consistency of equation (14.2.17) are derived in problem 3. A relation of the form
(14.2.17) with C and D satisfying the conditions of problem 3 is called a Bogoliubov
transformation.

We now can solve for '1'0 = S lOin) E els(~out) by applying both sides ofeqwition
(14.2.17) to '1'0. Since ain(u) lOin) = 0 for all 0' E ~in> we find

{aout(CO') - a:'II(DO')}'I'o = 0 (14.2.18)
for all 0' E '#tm. Writing

'1'0 = (ao,at.a2,···) (14.2.19)

and using the definitions (14.2.10) and (14.2.12) of tlout and aJut> we may solve
equation (14.2.18) inductively for an' The result is (see Wald 1979b)

_ {O. (n odd)
a = (n,)1/2

n C • ®n/2 E
2n/ 2(n/2)! s (n even)

Here c is a-constant determined up to phase by the requirement that 11'1'0 ~ = 1, and
E is the following element of ~out ®s ~OIIt. The map DC- t takes vectors in ~OIIt to
vectors in ~out and hence may be viewed as a map from ~out x ~OIIt into C. Thus,
the map E = 15c-1 obtained from DC-'-t by complex conjugation can be viewed as
a map from ~~ X ~~t into C,. It follows from problem 3 that this map is sym
metric. Furthermore, it is proved in Wald (l979b) and Dimock (1979) that this map '
satisfies equation (14.2.1) in the case of a spacetime which is flat outside a. compact
region. 11lus, it defines an elem~t of ~out ® ~OIIh which we have denoted by E.

Given our solution for '1'0, the action of S on all other states of ~s(~m> can be
determinedby ~g~e adjoint of equation (14.2.17) to express the action of Son
an arbitrary product of "in" crea~on operators applied to lOin> in terms of products
of "out" creation and annihilation operators applied to '1'0.. Sinc~ all elements of
els(~in) can be expressed as limits of sums of vectors ofthis form, this suffices to
determine S.

Two features of our solution for '1'0 should be emphasized. First, according to
equation (14.2.20), the amplitude for producing an odd number of particles-from the
vacuum vanishes. This can be interpreted as saying that particles always ate pr~

dueed in pairs. In the theory of a real scalar field considered here, antiparticles are
the same as.particles. However, for a complex field, where antiparticles are distinct
from particles, one finds that equal numbers of antiparticles and particles are created,
i.e., spontaneous creation occurs via the production of particle-antiparticle pairs.9

9. An exception to this statement can occur in.certllin circum~tances for. fennion fields; see Christ
(1980), Gibbons (1979), and Wald (I979b) for further discussion. Expressions for 'fro which display
more explicitly the "pairing" of the particles and antiparticles also can be found in Wald (1979b).
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Second, it is clear from equation (14.2.20) and the definition of E that the necessary
and sufficient condition that no spontaneous particle creation occur is that the oper
ator D vanish. III other words, no particle creation occurs in quantum field theory if
and only if in the (classical) scattering of a positive frequency wave through the
curvature. no negative frequency parts ever are picked up. Thus. with only a few
important exceptions (such as given in problem 4). particle creation generally occurs
in any time varying gravitational field. Of course. the amount of particle creation
and/or its physical effects are generally negligible unless one goes to strong field
regimes.

In the discussion of particle creation above. we restricted attention to spacetimes
of the form illustrated in Figure 14.1. The Hilbert spaces ~in and ~ and the
"classical scattering·, given by the operators C and Dare well defined under weaker
conditions than thereqliirementthatthecurvature be exactly zero outside a compact
region (see Kay 1982), but it has not yet been proven that E satisfiesequation (14.2.1)
under these weaker conditions. More generally. one·can ask if the above particle
creation results can be extended to globally hyperbolic spacetimes which do not
become flat in· the past or future. ·However, in general. such spacetimes will not
possess asymptotic "in'. and "out" regimes where the notion of ''particles·' is phys
ically meaningful. In this regard. it should be emphasized that in ordinary high
energy ~clephysics,the notion of a particle is undefined while interactions are
occurring. However, in ordinary particle- physics. the interactions normally take
place over such microscopic time scales that the particle description of ~vents is
adequate for essentially all purposes~ In the gravitational case. however, the inter
actions of the quantum field with the gravitational field may take place over macr0
scopic spacetime regions. Thus, even in the simple case of a spacetime of the form
shown in Figure 14.1, the.notion oP'particle·· is not well defined in the region of
DODvanishing curvature. In the case of a spacetime which does not become flat in the
past or future, the interactions take place over all time. and. in general. it may not
even make sense to talk of·incoming or outgoing particle states. We will return to
the issue of the physical meaning of particles in curved spacetime at the end of the
next section.

In more mathematical detail. the difficulty in definina particle states in a general
curved spacetime can be seen to arise in the following manner. In Minkowski
spacetime, two key ingtedients were used in ourcons~~of the Hilbert space ~
ofparticle statesftom the vector space, V. of solutions of the Klein-Gordon equation.
FU'St. the currept.(12.~.21) gave us a. natural nondegenerate (but not positive definite)
map from.V x· V into numbers. namely, the Klein-(Jordon illll(ff product defined by
equation (14.2.5). Second, the decomposition of sOlutions into positive and negative
frequency parts gave us the lWditional.~ needed to pick out a preferred
subspace of V on which· the K1eiJl..Oordon,aner product is positive definite so that
it truly defines an inner produckln a general curved spacetime. the current (12.4.21)
still is conserved, so the anal~ of the Klein-Gordon inner product (14.2.5) exists.
However. there is no natural atIalo.g.of the positive and negative frequency decom
position,. so in general there is no natural choice of a suitable SUbspace on which the
Klein-Gordon inner product is positive definite. The problem is not that there are no
such subspaces but rather that there are many and. in general. none is preferred. Of
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course, a good approximate notion of the positive and negative frequency parts of
a solution exists if the scales of spacetime variation of the solution are much smaller
than the scales defined by the spacetime curvature. Thus, for example, in the present
universe it is meaningful to talk of a particle provided only that the particle in
question has wavelength much smaller than the radius of spatial curvature of the
universe and has inverse frequency much smaller than the Hubble time.

An important case where a natural positive and negative frequency decomposition
does exist is that of stationary spacetime, since here the Killing parameter provides
a preferre4 time coordinate with respect to which Fourier transforms can be taken.
Ashtekar and Magnon (1975) and Kay (1978) have shown that for the Klein-Gordon
field (With m > 0) in any globally hyperbolic stationary spacetime (with the norm
of the timelike Killing field bounded away·from zero) one can define a natural Fock
space ofparticle states and define the field operator cl> on this Hilbert space in analogy
with (14.2.13). Thus, the notion ofparticles is mathematically (and physically) well
defined in stationary spacetimes.10 The above discussion of the S -matrix and the
above results on particle creation can be carried over to spacetimes which merely
become stationary (rather than fiat) in the past and future, except that equation
(14.2.1) need not be satisfiedll by the ''two-particle amplitude" E.

As emphasized above, in spacetimes which faiito be asymptotically stationary in
the past and/or future it may not be meaningful to try to characterize states of the field
in terms ofingoing and/or outgoing particle states. However, we mention one
important general approach toward enabling one to do so. Consider a spacetime
(M, gab) which is•asymptotically stationary in the past and future and for which the
two-particle amplitude E satiSfies equation (14.2.1). Then the "in" Fock space
~s(~in)and the ,'out" Pock space els(~out) are well defined, as is the S-matrix
relating the two spaces. We define the Feynman propagator, d(x, y), of the scalar
field in the spacetime (M,8ab) by

'f:j/x ) = (OoutIT(cl>(x)cl>(y»/Ojn)
I ",y (OoutI Oin)

Here we use Dirac notation for inner products, and the "time ordered product" of
field operators is defined by

{

,. A +
A •••• A _ !/>(x)!/>(y) ify e J (x) ..

T(!/>(x)!/>(y» - cf,(y)cl>(x) if x e r(y). (14.2.27)
A A (\

[If x aIld y arespacelike separated, then !/>(x) and !/>(:y) commute, so the two
expressions on the right-hand si<ie ofeq. (14.2.22) a~ee.] One can Show that d(x, y)

. 10. However, see the discussion at the end of section 14.3 below.
11. In the case of a closed universe with initilll and final Static regimes. it is known that E satisfies

equation (14.2,1) (Fplling.Nar.cowich. andWald 1982). If E does not satisfy equation (14.2.1). then the
S-matrix does not exist, i,e.... the "in" and "out" Fock spaces cannot be viewed as representing the same
Hilbert space of quantwn states. However. in s.uch cases as U1 the. case of the "infrared catastrophe" of
quantum electrody~cs. it lDay still be possible to makemeaningfu1physical predictions. The alge
braic approach to qUantum·field~eory(Haag and Kastler 1%4) provides a framework for dealing with
this difficulty by generalizing the notion of states from that of vectors in a fixed Hilbert space to that of
positive linear functionais on the algebra of observllbles.
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is a Green's function for the Klein-Gordon equation, i.e" in each variable it is a
distributional solution of the Klein-Gordon equation with a a-function source at the
val~ 'of the other variable.· Furthennore, it follows directly from the general fonn
(14.t.15) and (14.2.16) of the field operator as well as the property (14.2.11) of the
vacuum state that A(x, y) "propagates" only positive frequencies into the future
Le., '-'for a function f which vanishes outside a compact set, the quantity
J A(x,y)f(y)Y=g d4y is a purely positive frequency solution in the future-and it
propagates only negative frequencies into the past. Thus, given the notion of asymp
totic states for the quantum field theory, one can define a Green's function for the
Klein-Gordon equation by equation (14.2.21) from which the asymptotic notions of
positive and negative. frequency decompositions can be recovered directly. Con
versely, given a Green's function G(x,y) which satisfies appropriate properties---:-in
particular, which "propagates" into the future only functions which have positive
Klein-Gordon "nonn, and propagates into the past only. functions with negative
Klein-Gordon nonn-then•.we may use G to define. the notions of "positiv.e
frequency" in the past and future. These definitions then may be used to define the
notion of asymptotic particle states of the quantum field so that (formally, at least)
G becomes the Feynman propagator of the theory. Thus, the problem of defining
asymptotic states is equivalent to the problem of selecting an appropriate Green's
function for the Klein-Gordon equation to play the role of Feynman propagator.
Hence, in cases where natural candidates exist for the Feynman propagatOr (see,
e.g., Hartle and Hawking 1976; Rumpf 1976), the notion of asymptotic particle
states can be defined.

.One important regime where gravity should be sufficiently strong and time de
pendent to cause significant particle creation is in the early universe. Unfortunately,
since the universe is not believed to be asymptotically stationary in the past and since
there is no generally agreed upon prescription for defining the FeyntnaQ pl'(lpagator,
one does nothave.a natural, ull8JDbiguousnotion of incoming particle states. FW'
thennore, since one would not expect the approximation of treating the spacetime
metric classically to be adequate very near, the "big bang" singularity, the applica
bility of any notion of in(;oming particle states defined on a classical spacetime model
would be qu~stionable.. Despite these difficulties, quantum effects occurring in the
~ly universe have been investigated by many authors, With full fledged efforts
beginning in the 1960s with the work of Parlee!' (1969) and others. Indeed, much of
the.theory of quantum fields in curved spacetime was developed in conjunction with
these investigations. We shall not att((mptto discuss this work here but refer the
reader~o.Birrell and Davies (1982) for ,a summary and bibliography. Instead, we tum
to the.consideration of particle cI'eQ,tion near black holes.

14.3 P81"tide Creation near Blaek Holes
An importantreginle where spontaneous particle creation might be expected to

occur is in the v.icinity ofa blackhole.In4~,we already noted in chapter 12 that
superradiant scattering is closely analogous to stimulated emiSsion. This strongly
suggests that spontaneous "emission" from a Kerr black hole should occur. It turns
out that such spontaneous particle creation near a Kerr black hole does indeed take
place, and superradiant scattering indeed is the classical limit of the stimulated
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emission associated with this particle creation (Starobinskii 1973; Unruh 1974; Wald
1976). However, by far the most dramatic result arising from the investigation of
particle creation near black holes was Hawking's discovery that particle creation also
occurs near a Schwarzschild black hole, resulting in the "emission" of a thermal
spectrum of particles. We turn, now, to a derivation and discussion of this result,
referring the reader to Hawking (1975) and Wald (1975) for further details.

Consider, first,the extended Schwarzschild spacetime of Figure 6.9, or Figure
12.3. Suppose we are interested in the classical wave propagation of a Klein-Gordon
scalar field in region I of this spaCetime. Intuitively, one might expect that any
solution of the source-free Klein-Gordon equation in region I either must have
"started from infinity" or must have entered region I from the white hole region m.
Similarly, at "late times," one might expect that every solution will propagate into
the black hole region nand/or propagate back to infinity. To investigate whether this
is true, we expand q, in spherical harmonics and write the wave equation (14.2.4)
for each mode of the form r-1/(r, t)Y1m(tl, q,). We obtain

tJ2f _ tJ2f + (1 _ 2M)[I(1 + 1) + 2M + m2]f= 0 (14.3.1)
tJt2 nr.2 r r 2 r 3

where the coordinate r. was defined by equation (6.4.20), M is the mass of the black
hole, and m is the mass of the Klein-Gordon field. But equation (14.3.1) Iuls
precisely the. form of the wave equation for a massless scalar field in a two
dimensional fiat spacetime (with Cartesian coordinates t, r.) with a scalar potential

V(r.) = (1 - 2~)e(l ~ 1) + 2:: + m2] (14.3.2)

(Similar resalts hold for electromagnetic, gravitational, neutrino, and Dirac per
turbations of Schwarzschild spacetime, and these results also generalize to the Kerr
black hole; see Cbandrasekhar 1983 for a complete discussion.) As r. -+ -00 (i.e.,
r -+ 2M), the ~tial V(r.) behaves as (1 - 2M!r) - exp(r./2M), i.e., it falls
off exponentially in r•. As r. -+ 00 (i.e., r -+ 00), in the massive case V(r.) behaves
as -(m2 - 2Mm2/r.), whereas if m = 0 we have V(r.) - 1(1 + 1)/r;. Hence, the
theory of scattering by potentials in flat spacetime (see, e.g., Reed and Simon 1979)
suggests that the following results should hold-in confirmation of the above intui
tive expectations-although a complete proof has not yet been given: Ifm *' 0, then
every wave packet should, in the asymptotic past, behave like a free (V = 0)
massless solution in (t, r.)-space propagating in from r. -+ -00 (i.e., from the white
hole horizon) together with a massive solution (distorted by a l/r. potential) propa
gating in from r. -+ 00. Similarly, in the asymptotic future, every wave packet
should behave as a free massless wave propagating to r. -+ -00 together with a
(distorted) massive wave propagating to r. -+ 00. Ifm = 0, then every wave packet
should approach a free massless solution in both the asymptotic past and future and
hence should be of the form f+(u) + g+(v) as t-+ +00 and f-(u) + g_(v) as
t -+ -00, where u = t - r. and v = t + r•. This would imply that a massless
Klein-Gordon field in Schwarzsc~ild spacetime is determined by its value on the
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of~.wh may be viewed as resulting from the ambiguity in defining the condition that
no "particles" emanate from the white hole.

Similarly, there is an ambiguity in the definition of the Hilbert space, ~_.bh' of
particles propagating into the black hole, and hence in

~out = ~_.", EEl ~t.bh
and in ~s(~. In view of these ambiguities, it might appear that no physically
meaningful predictions about particle creation near black holes can be made. How
ever, the ambiguities in the definitions of both incoming and outgoing states can be
treated in such a way as to extract unambiguous physical predictions as follows.

FIrSt, the ambiguities in the definition of ~.wh can be eliminated (Hawking 1975)
by replacing the.extended Schwarzschild spacetime by the spacetime appropriate to
a collapsing spherical body, Figure 6.11 or Figure 12.2. This eliminates the white
hole horizon and thus makes~ be simplY~IIl..." which is unambiguously defined.
Furthermore,~ spacetimes representing gravitational collapse-as opposed to the
extended Schwarzscbild solution-are believed to describe black holes occurring in
nature, so in any case the calculation of particle creation in the spacetime of Figure
6.11 or Figure 12.2 is of greater physical relevance than that of particle creation in
the extended Schwarzschild solution.

The black hole, of course, is the essential feature of the problem we wish to study,
so the ambiguity in the definition Of~oot,bh remains. However, we still can make
important physical predictions which avoid this ambiguity as follows. The "out"
Hilbert space ~s(~_.", EEl ~_.bh) is naturally isomorphic to the tensor product space
~s(~_...,) ® ~S(~_.bh) and thus may be viewed as a "joint state" of two systems:
(i) particles propagating out to infinity and (ii) particles propagating into the black
hole. Now, whenever in quantum mechanics one has a state 'It lying in a tensor
product 'Xl ® 'X2 of two Hilbert spaces 'Xl' 'X2, one can form from 'I' the density
moira p S.'Xl ® 'Xl by taking the trace of 'It ® 'It E ('Xl ® 'X2) ® ('Xl ® 'X2)

a: ('Xl ® 'Xl) ® <'X2 ® 'X2) with respect to a basis of'X2•More precisely, we define
p-viewed now as a linear map from 'XI into 'Xl-by the formula .

..,
(w,pv) = ~(w ® ej, 'I')('I',v ® e;)

;-1

(14.3.3)

for all v, w E 'Xl, where {ell is an orthononnal basis of 'X2 and the inner product
on the left-hand side of equation (14.3.3) is taken in 'XI, while the inner products on
the right side are taken in 'Xl ® 'X2• It follows immediately that for any observable
o for the first system we have

('It,0'l') = tr(pO) (14.3.4)

where tr denotes the trace of the linear map pO. Since the probabilities for the
possible outcomes of any measurement can be expresssed in terms of the expectation
values of projection operators, it follows that all information about the first system
can be recovered from p. In our case, we can "trace out" the degrees of freedom
corresponding to particles which enter the black hole and thereby obtain a density
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matrix describing the particles which propagate out to infinity. This density matrix
does not depend on the choice of definition of "positive frequency" used in the
construction of ~out.bh for the following reason. A change in the definition of positive
frequency on the black bole horizon will induce a Bogoliubov transformation on the
annihilation and creation operators associated with the states representing particles
which en~er the black bole, but will leave .unchanged the annihilation and creation
operators associated with the states representing particles which propagate to
infinity. This will cause the expression for the "out" state vector
'I' E ~out = ~s(~out...) ® ~S(~out.bh) to change to '1" = [1'1' with [I of the form
[I = 11 X S2, where It is the identity operator on~s(~t.oo) and S2 is a unitary
operator on ~(~out.~. Consequently, by equation (14.3.3) the density matrix p'
associated with '1" will agree with the density matrix p associated with '1'. Hence one
obtains unambiguous·physical predictions for the particle creation seen by a distant
observer at late times.

Thus, the density matrix, p, describing the spontaneously created particles which
escape to infinity can~ un$llbiguously determined as follows. First, we choose any
convenient definition of "positive frequency" on the black hole horizon and construct_
~out.bh' Then we obtain the operators C and D by solving for the classical scattering
ofKlein·Gordon waves in the spacetime ofFigure 12.2. Then we obtain '1'0 = S lOin)
from equation (14.2.20). Finally, we calculate p from '1'0 as described above.

It might be expected that particles would be created during the dynamic phase of
the collapse (the details of which would depend upon the details of the collapse) but
that after the Schwarzschild black bole has "settled down" to its final static state, the
particle creation would cease; However, this is not what Hawking (1975) found. An
observer at infinity always "sees" dynamical aspects of the collapse, and the classical
scattering of positive frequency waves to negative frequencies continues to occur at
arbitrarily late times.

We begin our analysis of this particle creation effect by noting the following
behavior of solutions of the. Klein-Gordon equation in the extended Schwarzschild
spacetime of Figure 6.9 orFigore 12.3 which have time dependence e- i01l in region
I. From equation (14.3.1) it follows that near the horizon (r. -+ -00) each such
solu!ion behaves as a ''free wave" a exp(-iwu) + b exp( -icuv) in (t, r.)-space
where u =' t - r. and v = t + r•. The solutions with b = 0 are referred to as purely
"outgoing" at the horizon. By su~ing solutions with b = 0 with different
frequencies, we may produce nonsingular wave packets which vanish on the black
hole horizon (u -+ 00). However, each individual outgoing mode of frequency w
possesses an "infinite oscillation" singularity on the black bole horizon. Indeed, in
terms of the K.ruskal coordinate U= :-",['"' [where K = 1/(4M) is the surface
gravity of the blackboleJ,thebehaviQr()f~ solq.tlons is a exp[iwK- 1 In(-U)].
Let 'Y be anYgeodesicwbich enters theblack bole from region I and let Abe its affine
parameter, with A =0 cllos<tn tQ COJTeSpond to the intersection of the geodesic with
the horizon. ~iIlCeAdependsstlloothlyon U and satisfies dU/ dA =1= 0 on the horizon
(U = 0), it follows that Deltt A == 0 ~h outgoing mode oscillates as a function of
A as exp[i€l)K-1 In(-aA)], where a = dU/dA I), = O. Thus, the frequency of each
mode as locally determined by a freely falling observer entering the black hole
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diverges at the horizon in this characteristic manner. This divergence is related to the
fact that even for static observers. the gravitational redshift effect (calculated in
section 6.3) becomes infinite on the horizon.

The nature of the classical scattering relevant to the quantum particle creation
effect is best analyzed by considering the propagation of waves backward in time.
In particular, consider the solutions tPOIim in extended Sehwarzscbild spacetime wbich
have time dependence e-i01l , angular dependence Yzm(l~, tP) and are purely outgoing
at the horizon. We may view this solution as "starting" from 9+. As this wave
propagates into the past, part of it,will be scattered back to 9- and part of it will be
scattered into the white bole as illustrated in Figure 14:2. Now consider the same
"initial" wave at 9+ propagatingjn the spacetime of Figure 12.2, where collapse to
a Sehwarzschild black hole has occurred, rather than in the extended Sehwarzschild
spacetime. Again, part of the wave will be scattered directly back to 9- , but we are
mainly interested in the portion of the wave corresponding to the part which goes into
the white hole in the extended Scbwarzscbildspacetime. Now this part of the wave
will propagate through the collapsing matter and end upat:J - , as illustrated in Figure
14.3. We can obtain the approximate form·of this wave at9- as follows. Letp..be
a null geodesic generator of thehoriZOll and, for convenience, set equal to zero the
advanced time Vo at which its continuation into the past intersects 9-, Va = 0: Since
the locally measured frequency of the wave becomes infinite at p, in the
"Schwarzschild portion" of the. spacetime,·the geometricaloptics approximation (see.
chapter4) will hold in the vicinity of II. for the propagation of the wave from the black
bole horizon back to 9 -. Thus,to an approximation which becomes more and more
exact 8fl one approaches p" the wave will have the form tPoe is wbere<;o is constant,
and the surfaces of constant phase, S,are null. Hence, the pattern made by the wave
near v = 0 at :J- can be obtained by continuing the null geodesic generators of the
surfaces of constant S back to 9> -. However. the behavior of the geodesics

Fig. 14.2. A conformal diagram of the extended Schwarzschild spacetime (see Fig.
12.3) showing the oscillations of a wave of frequency (I), i.e., 4cf>= -iwcf>. The
apparent iQl;reasein oscillation fiequency ShQwD in the figure on ,r at late retarded
time (which also occurs on~~. at ear.lY ~ded timt=and on r at late and early
adyanced times) i$ merely an artifac~ ?fthe.coJUormal diagram caused by the
behavior of the conformal factor there. However, the increase in frequency shown on
the white hole horlzohnear its crossing point with the black hole horizon represents

. apbySical "infulite bJueshift" singularitY of the wave.
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Fig. 14.3. A conformal diagram of a spherically symmetric spacetime in which
gravitational collapse to a Schwarzschild black hole occurs, showing the oscillations
of a wave which behaves as e- I

- on '+. If one propagates this wave backward into
the past starting from '+, the part of the wave which propagates through the
collapsing matter will produce an "infinite blueshift" singularity-of the same nature
as shown On the white hole horizon in Figure 14.2-at a,dvanced time Do on r.

sufficiently near to fJ. will be accurately described by a geodesic deviation vector 11°,
i.e., thedeviation from fJ. of neighboring geodesics propagates linearly along fJ..
Consequently, choosing the direction of 11° at 9 - to be along the null geodesic
generator of j-, we see that near v =0 the solution 4J will behave as a function of
advanCed time v on 9- in the same way as 4J behaves as a function of affine
parameter Aalong the geodesic tangent to 11d at any other point of fJ.. However, this
latter behavior has already been determined above on the horizon of the
"Schwarzschild portion" ofthe spacetime. !fence, we conclude that near v = 0 on
9-, the time dependence of the solution is given by

</ltv) = {~. exp[i: In(-OV)] ~::~: (14.3.5)

The crucial point is that although we started with the purely positive frequency mode
e-iOJU at 9 +, the solution at 9 - is not purely positive frequency. Indeed, it is not dif~
ficult to show that the Fourier transform, 4>. of tP with respect to v satisfies for (T > 0

. 4>(-0') = -e--/I<4>(O') (14.3.6)

(see, e.g., appendix A of Wald 1975)~ so the magnitude of the negative frequency
part of4J at 9 - is the faetore -:;ff6Il'( tiJpes the magnitude of the positive frequency part
of 4J. Note that the derivation of (14.3.5) is independent of the details of collapse.
Note also that the decomposi~of. into poSitive and negative frequency parts at
9 - obtained in the case of9Olblp~ to' a black hole is equivalent to the decomposition
one would obtain in thee~Schwarzschild spacetime using the affine parameter
(rather than the Killing paranieter, or any other choice) to define the notion of
positive frequency on the white hole horizon.
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To obtain the scattering operators on the one~particle Hilbert space, one should
work with normalized Wave packets. Consider a positive frequency wave packet at
9 + composed mainly of frequencies near (s) and centered on retarded time u. For
large u (Le., after the black hole appears to an observer at infinity to have "settled
down" to its final static state), the analysis given above can be applied to this packet
and equation (14.3.6) will continue to holdY It follows directly from general
properties derived in problems 2, 3, and 5 that the expected number of particles
spontaneously created in the state represented by this packet is (Hawking 1975)

e-2
-

IK
(N) = /t12 1 _ e-2-IK (14.3.7)

Here /t /2 is the square of the Klein-Gordon norm of the part of the wave packet which
would enter the white hole in the extended Schwarzschild solution. But this is equal
to the absorption cross. section of the black hole for. that mode. Thus, equation
(14.3.7) is pfeciselYthe formula whicb would bold for a perfect blackbody emitter
at temperature given by

Le.,

kT= fiK =~
21TC 81TGM

(14.3.8)

(14.3.9)

where k is Boltzman'sconstant and we haverestored the G's and c's. This similarity
ofblack bole "emission" via particle creation with blackbody emission extends well
beyond the agreement (14.3.71 in expected numbers of particles: A complete anal
ysis of the density matrix describing the outgoing state at infinity shows that it is
identical in all aspects to a thermal density matrix at temperature (14.3.8) (Wald
1975; Parker 1975; Hawking .1976). Furthermore,. in the presence of incoming
particles me black hole continues to behave exactly like a blackbody (Panangaden
and Wald 1977). The significance of the fact that blaCk holes behave like perfect
blackbodies will be explored further in the next section.

Note that the temperture of the particles "emitted" by the black hole is inversely
proportional to the lI1ass of the black hole. Thus, if energy is added to a black hole,
the temperatul'e decreases, Le., a black hole has negative specific heat. Negative
specific heats are typical of self-gravitating systems. For example, in NeWtonian
gravity, a self-gravitating star composed of an ideal gas has a negative specific heat.

The main modification of the above analysis needed to treat the case of the Kerr
black hole ariSes from the fact that the Killing field XII = (a/8t)1l + OH(O!a4Jt,
equation (12.3.20), rather thanthestationarj Killing field (a/at)ll, is normal to the

13. One rather disturb~ng feature of the ~ysis should be pointed out. The mean frequency of the
wave packet atr increases withlldyanced time V.8$ ICe'" (see Wll1d 1976), which rapidly becomes very
large, in particular, much lar~r than the PlanckfrequeIK:Y''I'he~ultrahigh frequencies only enter the
intermediate stages ofcalculanon-they do not appear in an~ of the final physical predictions-but even
so, one may feel uncomfortable that during the calculation one considers conditions so extreme that the
classical wave propagation used would appear to be very difficult to justify.
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horizon in this case. Consequently, for an "initial!' wave at j + with time dependence
e-it.>u and angular dependence eim~, the dependence of the solution on affine param~

cter along a geodesic whicheDters the black hole is exp[i(w - mOH)k:-1 In( -aA)].
For the non·supenidianf modes, the only change in the final expression for the
matrix is the replacement of (J) by (J) - mOHo For the superrad1ant modes, the fonn
of the density matrix changes (Wald 1975), but equation (14.3.7) continues to hold
with (J) -+ (J) - mOH provided th.at It 12'1s interpreted to be negative. Because of the
frequency shiftw -+ lIJ ...;.; mOH in equation (14.3.7), the Kerr black hole preferen
tially loses angular momentum (see' Page 1976b for quantitative details).

If is noteworthy that the thennal natUre of black hole emission~ be related in
a direct mainler to the properties of the Euclidean Schwarzschild solution~ As
discussed briefly in section 14.1, in the Euclidean approach to quantum field theory
one seeks to define quantities on a "Euclidean section" and then obtain the physical,
spacetime quantities by analytic continuation. In particular, the Feymnan propagator
for a field on spacetime is obtained by analytic continuation of the Green's function
on the Euclidean section. (Since the equation for a free field is elliptic rather than
hyperbolic-on the Euclidean section, there often will exist a unique Green's function
on the Euclidean section satisfying natural boundary conditions;) In our case, one is
naturally led to examine the properties of. the Euclittean Schwarzschild solution
obtained by analytically continuing t to real values of T = it in equation (6.1.44),

dsi; = +(1 - ~)dT2 +(1 -~rl dr2+r2dfi2 (14.3;10)

In Euclidean Schw'afzschildspace, we again encounter a singularityin the coordinate
componen~of the ntetric atr .. =2M. As we.shall see below, this singularity is llgain
merely a cOOrdina~singularity but its nature is quite differentftom the Lorentzian
case. Toanaly~it, we. define a new coordinate R by

R = 4M(1 - 2M/r)lf2 (14.3.11)

Then, we have

ds~ =R2d(Tj4M)2 + (~rdR2 ~ r2d02 (14.3.12)

where DOW r is understood to be the function ofR detennined by equation (14.3.11).
From eql,llltion (14.3. 12),-itis manifest that the coordinate singularity atR = 0 (Le.,
r = 2M) is of the same na.ture~ the coordinate singularity that occurs at the origin
ofpolar coordinates on the'pUme, wher,e now R plays the role of the radial coordinate
and 'T/4MplaY~i~~le of the,angular COQtdinate. Therefore, a natural choice of
manifold stnK:ture for the EllC!id~an Sch~~i).d solution is to periodically iden
tify T/4M-with period 21T-in the region r >,2M and then "add in" a singlepointl4

in the "R-T plane" to ex~q4the space to R == 0.1n this way, one obtains a complete
Riemannian manifold <frl, 8~) \Vim topology M = lR2 X S2. Note that the Euclidea,l

14. Since the Schwmschildmanifold is the "R-T. plane" crossed with the "e-c/J 2-sphere," one, of
course, really is "adding in" a 2-sphere to the manifold when one adds a point to the R-T plane.
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Scbwarzschild manifold has no region corresponding to the region r < 2M in the
Lorentzian spacetime.

With the above interpretation of the Euclidean Schwarzschild solu~on, clearly
every continuous function on M is periodic in l' with period 81rM. In particular, any
Green's function will satisfy this property in each of its vaIjables. Hence, if the
Feynman propagator in the Lorentzian Schwarzschild solution is defined by analytic
continuation of a Euclidean Green's function, it autoU18tically will be periodic in
"imaginary time" l' = it. However, this property of periodicity in imaginary time is
characteristic ofa thermal state, as we now shall explain.

Suppose we have an ordinary quantum mechanical system with a time independent
Hamiltonian operator H. The state of thermal equilibrium of the system at tem
perature kT & {3-l is defined to be that described by the density matrix

p = e-IW/Z , (14.3.13)

where

(14.3.14)

(14.3.17)

Furthennore, in the Heisenberg rePresentation, every observable 0 evolves with
time by

O(to + t) = eiH,/lO(to)e-iHt/fl (14.3.15)

In quantum field theory, one in general cannot rigorously define a Hamiltonian
operator H and, in any case, e-IW would not define a normalizable density matrix.
However, at least itt. a formal sense, equation (14.3.13) still should describe a. state
of thermal equilibrium and the field operator~ should evolve with time via equation
(14.3.15). We define the th(#rmalFeynman propagator at temperature leT == ,,1 by

idT(x"x2) == tr[PT(~(Xl)4i(X2»] == Z-ltr[e-IWT(~(XI)~(X2»] (14.3.16)

where, on the right side of this equation, T denotes the time ordered product (see eq.
[14.2.22]). Now, suppose that we can analytically continue t to imaginary values,
t = -i1', such that equations (14.3.15) and (14.3.16) continue to hold. Consider the
case where 1'2 - {3fi < 1'1 < 1'2 and let XI denote the "imaginary time translate" of
Xl by {3fi, Le., XI has the same spatial coordinates as Xl but has imaginary time
coordinate 1'1 + {3A. Then, we have

idr(Xt,x2) = Z-ltr[e-IWT(~(xD~(X2»]

= Z-ltr[e-"IW~(xD~(X2)]
~ A A-

=Z- ltr[e-lW{e lW4>(XI)e-IJH}4>(X2)]

= Z-ltr[~(Xl)e-IW~(X2)]

= Z-ltr[e-IW~(X2)~(XI)]

< = rltr[e-IWT(~(XI)~(X2»]

= iAT(Xl,X2)
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where the cyclic property of the trace was used in the fiftbline. More generally, when
restricted to the strip I'1"1 - '1"21 < PIi, dT(xl ,X2) is periodic in each time variable
with period P == pli.

Thus, the Feynman·propagator on Schwarzschild spacetime obtained from the
Euclidean Schwarzschild solution is most naturally interpreted as a thermal Feynman
propagator f~ the field at temperature

kT = 13-1 = #i/P = 1i/81TM . (14.3.18)

This suggests the ex.istence of a state of thermal equilibrium of the quantum field at
temperature (14.3.18) in Schwarzschild spacetime. This state-or, more precisely,
density matrix-is knoWn as· the Hartle~Hawking vacuum (Hartle and Hawking
1976; Israel 1976) and it corresponds to what would result at late times if a thermal
distribution at temperature (14.3.18) rather than lOin> was sent in from !r. Ho~
ever, thermal equilibrium in Schwarzschild spacetime should not be possible unless
the Schwarzschild black hole behaves like a perfect blackbody. Thus, the thermal
nature of particle creation by a Schwarzschild black hole is strongly suggested by the
properties of the Euclidean Schwarzschild solution. Note that this argument for the
thermal properties of a Schwarzschildbiack hole is applicable to the case· of a
nonlinear (i.e., self-interacting) field {Gibbons and Perry 1976; Sewell 1982).

As a result of the thermal particle creation, it is clear that the quantum field carries
energy away from a Schwarzsc.hild blackbole. The full stress-energy. properties of
the quantum field in Schwarzschild spacetime can be obtained from its stress-energy
operator ··ttib. Since; the problem of determining Ttlb and using it to calculate ''back
reaction"effects of the .quantum fieldon the spacetime is of interest in many
applications (particularly,in cosmology), we first shall discuss these issues in the
general context ofquantum<fieldtheory in curved spacetime, and then return to the
partitular case ofablackhole.

It i$ natUral to postulate that the stress-energy operator of a quantum field: in curved
spacetime is given in terms of the field operator by the same formula as applies
classically, i.e., for theKlein~rd:onquantumfield,

(14.3.19)

Unfo@1D8tt;ly, thisformula;requ9.'es us toco~ two fiel(j operators at the same
spacetime point.. Sinct;, as mentioned ~ve, cfJ is welldefined only as a distri
bution on spacetime, this product is illdefined. Indeed, if9ne formally substitutes
the mode sum (14,2.15) for t/J into eqUation (14.3.19), the resulting expression one

. obtainsJor~di'Verges. ....• " .
This(iivergen~ in the e~pr~ssion for T""also~ in Minkowski spacetime. In

that case~ itis ll1~rp~tedas.~~ingfromthe sutl,l ofthe "zero-point energies" of the
infinite. number of modes of oscillation of the field. The divergence is cured by
subtracting this zero-pointene1'8Yft'om the formal expression for TtIb so that the
e~s~s..enetg)'of the vacuurtlstate"vanishes, (0 ITtIb 10) = O. This is equiv
aIentto normal ordering the expression fot TtIb, i.e., placing all annihilation operators
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to the right of creation operators in the fonnal mode sum obtained from equation
(14.3.19). In this manner, one obtains well defined, finite expressions for matrix
elements of Tab between physically reasonable states.

In curved spacetime, there is, in general, no meaningful notion of an
"instantaneous vacuum state" with respect to which one could "normal order" the
expression for Tab' Nevertheless, there exist a number of procedures for
"regularizing" Tab, i.e., separating it in a natural way into the sum of a divergent part
and a finite part. Many ofthese procedures-such as dimensional regularization (see,
e.g., Brown 1977) and zeta~functionregularization (Hawking 1977)-are rigorously
defined only on a Riemannian manifold (see Wald 1979c), but at least one of
them-namely, "point-spliUing'~-alsois well defined on Lorentzian spacetimes
(see Fulling 1983 for a summary of results). Unfortunately, the. "divergent part" of
Tab cannot be"~orbed" into parameters already present in the theory; i.e" the
determination of Tab suffers from the same ''non-renormalizability'' difficulty as is
present in full quantum gravity described in section 14.1 above. Consequently, one
find! that one must introduce two new, nonclassical parameters into the expression
for Tab corresponding to the freedom of adding in the identity Operatof times multiples
of the two conserved local curvature tenns1S of dimension (lengtlJ) -4. Thus, there is
a two-parameter ambiguity in the expression for Tab' However, t, satisfies a list of
physically reasonable properties which uniquely determine it up to this two
parameter ambiguity (Wald 1977b, 1978b), so it appears that this is the only ambi
guity present.

An impommt feature of the expectation value ('I' jt.1'I') of the quantum stress
energy operator Tab in a state 'I' is that it need not satisfy any of the energy conditions
thaunay be satisfied by theclassicalstress-energy tensor. Indeed, even in ftat
spacetime one can find states 'where- the expectation value of the normal ordered
Klein-Gordon stress-energy operator has negative energy density in a region of
spacetime, even though the energy density of the~classical stress-energy tensor of a
Klein-Gordon field is manifestly positive definite everywhere for all field
configurations (see problem 6). Thus, properties which hold in classical general
relativity by virtue of energy conditions satisfied by matter will not necessarily bold
fOf quantum fields. This has important consequences for the black hole area theorem,
as will be discussed further in the next section.

In the context ofquantum field theory in curved spacetime, it is natural to postulate
that the back-reaction effects of the quantum field on the gravitational field will be
governed by the semiclassical EinsteiD equation,

Gab =,'S1T{'I'jTab l'l') (14.3.20)

i.e., it is physically possible for the spacetime to be (M, gab) and for the quantum field
to be in state, 'I' on (M,Kab) if and only if equation (14.3.20) is satisfied. Actually,
equation (14.3.20) would not be expected to arise as the lowest approximation to a

15. These terms are the ones obtained by variation of the actions fR 2 and fRabR ab with respect to the
mettic (see appenQix E). Most regularization prescriptions yield a precise value for one combination of
these parameters, but since different prescriptions sometimes lead to different values, it probably is
wisest to regard both of tJ1em as undetennined.
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quantum field theory of gravity coupled to a matter field. This is because in the full
theory one would expect to have (Gab) = 81T(Tab ) hold exactly, where Gab is the
Einstein operator an4 the state implicit in the expectation values now includes tpe
degrees of freedom of the gravitational field. Furthermore, one would expect that Gab
would be·given in terms of the metric operator by the same formula as holds
classically, Gab = Gab!icd]' However, since Gab is a nonlinear function of gcd we

expect (Glib) :;: Gab[(tc~]' Indeed, if we ~te gab = g~j + tab- where g~ is a
classical solution of Einstein's equation andl!s the identlty operator-and if we keep
only terms quadratic in Yab in the formula for Gab, then (Gab) and Gab[(tab)] will differ
~y -81T(tab), w,!tere tab is given in terms of tab by a formula very similar to that for
Tab in terms of <1>. (See eqs. [4.4.54] and [4.4.51] for an explicit formula for tab in
the case g~ =,71ab') Consequently, in the lowest approximation to a full quantum
field theory of gravity coupled to matter, one would expect to get the additional term
81T(tab) appearing on the right-hand side of equation (14.3.20), and the contn'bution
from th~term should be comparable tolbat of (Tab)' One can interpret this fact as
saying thatc1:bequantum· back-reaction effects caused by gravitons (i.e., the quan
tized degrees of freedom of the linearized gravitational field) are as important as that
of any other quantum field, and thus should not be neglected in equation (14.3.20).
Nevertheless, one can justify equation (14.3.20) in terms of a systematic approxi
mation to a full quantum field theory including gravitation as follows. If we have N
matter fields present, then, roughly speaking, the effects of the matter fields will be
N times as important as that of the gravitons. Hence, in the limit of large N, the
neglect of the gravitons should be justified, and one will obtaillequation (14.3,20)
(With a coefficient ofN on~ right-hand side) as the lowest approximation in a "liN
expansion" of the full theory of quantum gravity coupled to matter. In any case,
equation (14.3.20) should at least provide a qualitative indication of the back reac
tion effects produced by quantum fields on the gravitational field.

Unfortunately, the dynamics predicted by equation (14.3.20) is drastically differ
ent from classical general relativity. There exist many unphysical solutions of equa
tion (14.3.20) in which the spacetime curvature is initially small but exponentially
grows with time with time scale .()forder of the Planck time. Indeed, Horowitz (1980)
has shown that for any massless quantum field, equation (14.3.20) predicts this type
of instability of Minkowski spacetime. Thus, the situation is very similar to that
which occurs"in the classical ~lectrodynamics of a point charge when radiation
reaction is taken into account (see, e.g., Jaclcson 1962). There, the "small" cor
rection to the· equatioQS .. of motion caused. by .radiation reaction leads to new
''runaway'' solutions. In the case of electrodynamics, one still can make physically
sensible predictions by simply disregarding these runaway solutions, although doing
so requires putting constrairlts on the. initial conditions of the point charge which
depen4 upon wbat ex4'mal forces areta be applied in the future. It appears that it
will be much more difficult to' develop procedures for extracting the physically
sensibl~ solutions ofequa#on (14.3.20).

In the ease of a Schwarzschild black hole (or, more generally, in any vacuum
spacetime, Rab .:= 0) the two local curvature tenos which enter the formula for Tab
with undetermined coefficients vanish identically. Hence tab is completely well
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defined in the Schwarzschild spacetime. The value of <Tab) in the "Hartle-Hawking
vacuum" has been calculated.analytically on the horizon by Candelas (1980) and
computed numerically near the black hole by Fawcett (1983). The magnitude of the
Kruskal coordinate components of <Tab) near the black hole are found to be of order
I/M4 in Planck units G = c = h = 1, as expected on dimensional grounds. Since
the background curvature is of order I/M2, for M » 1 (i.e., in cgs units,
M » 10-5 g), the quantum field should make only a small correction to the
structure of the black hole. The energy flux into the black hole is found to be
negative, as must be the case since the "Hartle-Hawking vacuum" is time indepen
dent and the energy flux at future null infinity is positive. Such a negative energy flux
is possible since, as mentioned above, (Tab) need not satisfy any of the classical
energy cooditions.

As discussed above, serious difficulties arise when one tries to use equation
(14.3.20) to calculate the back-reaction effects. However, on physical grounds,one
expects that the Jnain back-reaction effect of the quantum fielq will be to cause the
black hole to 1Qse mass at the same rate at which energy is radia~.to infinity by
particle creation. This can be calculated by multiplying (N), equation (14.3.7), by
lIJ and summing over modes. Since the emission is of a blackbody nature, if the
absorption cross section It12 for each mode were the same as for a black sphere of
radius R in Minkowski spacetime and ifkT » heR-I ,the energy flux for a massless
field. with. two degrees of.freedom would be given by Stefan's law,
dE/dt = uT4A =ur41rR2

, where u = '11'2k
4/6Oft3c2 is the Stefan-Boltzmann

constant. In the gcomC$icoptics approximation, the black hole does absorb just lik,e
a black sphere of radius R = 3312 M (see chapter 6). However, since the releV'l;lOt
modes in black hQle particle creation have frequencies of order M-1 (i.e., one has
kT ~ AcR-1) one must use physical opticsl6 (i.e., exact wave propagation) to com
pute Itl2 accurately. Nev~less, Stefan'S law provi~s a correct order of mag
nitude estimate for the energy flux from a black hole. Hence, ignoring numerical
factors...... we find that in Planck units, the mass loss rate of the black hole is
approximately

(14.3.21)

Thus, as the blackh~le loses mass, the increase in temperature more than compen
sates for thedecrease in area., and the energy loss due to particle creation occurs at
a faster rate. Integrating equation (14.3.21),·we obtain the striking conclusion that
a black hole should tadiate all ofits mass in a finite time T given in Planck units by

T ~ M 3 (14 ..3.22)

In cgs unitS,M3 is ~ 1071 (M/M0)3 s, so the lifetime for total "evaporation" ofablack
hole of a solar massotlatger is enormously greater than the age of the universe.

16. The failure ofgeometrical optics to accurately describe wave propagation wen outside the horizon
(where most of the SCJtteringoccurs) should be distinguished from the validity of geometrical optics to
describe wave propagation very near the horizon, as used above in the calculation of particle creation.
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Fig. 14.4. A conformal diagram of a spacetime in which a black hole is produced
by the conapse of matter and "evaporates" as a result of the particle creation process.

However, if any primordial black holes of mass -5 x 1014 g were produced in the
early universe, they would be undergoing the final stages of evaporation now (Page
197(6), and any primordial black holes of smaller mass would have already evapo
rated. Since the temperatunt of a black hole becomes large as evaporation occurs, a
significant amount of .,..hdiation would result if many black holes of mass
::55 x 1014 g were produced ,in the early universe. As already mentioned at the end
of section 12.1, no such contribution to the .,..ray background has been observed
(Page and Hawking 1976), so it appears that we do not have a sufficient number of
low mass primordial black holes in our universe to be able to observe the effects of
black hole evaporation.

By the time the black hole has evaporated down to the Planck mass, we cannot
expect the approximation of treating gravity classically to be valid, and a description
of what occurs at that stage will have to awaitto complete theory of quantum gravity.
However, it seems natural to expect that the black hole will totally disappear at the
endofthe process, rather than, say, leaving behind a Planck-size black hole remnant.
The causal structure of a spacetime in which a black hole is formed and then
evaporates completely is illustrated in Figure 14.4.

Assuming that total evaporation occur'S, we mention two important consequences.
First, it appears that conservation of baryons (andI~ leptons) can be grossly violated
in the process of collapse to a black hole followed by evaporation even if baryon
number (andlorlcptonnumber)is conserved locally; namely, We can fann the black
hole out ofmatter with a large net'baryonnumber (e.g., purely out of neutrons, with
no antineutrons); The black hole uniqueness theorems discussed at the end of section
12.3 strictly apply only to the case where certain classically describable fields are
present, but they strongly sugges~ that the· black hole produced by the collapse of
baryons will be indistinguishable from one produced by the collapse of antibaryOns.
Hence, in the partiCle creation process, there should be' no preferential production of
baryons over antibaryons and, indeed, in any case most of the mass of the black hole
should be radiated away by massless particles carrying no baryon number. Thus, at
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the end of the evaporation process, the net baryon number should be very nearly zero
and a large change in baryon number will have occurred.

Second, as discussed above, the particles reaching infinity during the evaporation
process are described by a density matrix. The use of a density matrix here is purely
for convenience, since the joint state of the particles entering the black hole together
with those reaching infinity is pure, provided, of course, that the incoming state is
pure. However, if the black hole evaporates completely as in Figure 14.4, then the
total state of the system should be described by a density matrix. Roughly speaking,
the correlations with the particles reaching infinity should propagate into the black
hole singularity and be lost forever when the black hole disappears. Thus, it appears
that in the process of black hole fonnation and evaporation, an initial pure state can
evolve to a final density matrix (Hawking 1976; Wald 1980; see Page 1980 for a
differibgview). This shoWs that a form of time reversal asymmetry must be present,
since an initial density matrix never can evolve to a final pure state, although a
physically meaningful form of time reversal symmetry may still hold (Wald 1980).
The existence of time reversal asymmetry in the laws o(quantum gravity has.been
suggested on other grounds by Penrose (1979). Furthe~,:theevolution of a pure
state to a density matrix in the process of black hole formation and evaporation may
be closely related to issues in quantum measurement theory (Penrose 1981).

Finally, we briefly describe a further result which shows a connection between
particle creation near a black hole and properties of the ordinary vacuum state ofa
quantum field.inMinkowski spacetime. This result also give$Jnsight into the phys
ical meaning of"particles" in curved spacetime and the reasons for the mathematical
aml>iguities in their definition;

The close mathematical analogy between the "Rindler wedge" of Minkowski
spacetime and.the region r :> 2M ofScbwarzschild spacetime alrelldy has been
displayed at the 'end of chapter 6. 1n<:I~, there we used the extension of Rindler
spacetime to Minkowski spacetime to motivate the Kruskal extension·of Schwarzs
child spacetime. One can define a quantum field theQry in Rindler spacetime by using
the Rindler tiQle coordinate, tR, rather thana Minkowski time translation coordinate,
tM, to define the notion of "positive frequency." In other words, we may "quantize"
the field in (a wedge of) Minkowski spacetime by using a "boOst" rather than an
ordinary time translation as our timelike Killing vector field. ~se two notions of
"positive frequ~ncy"differ, so one is led to distinct notions of "Rindler particles" and
"Minkow~ particles" (Fulling 1973). The relation between the characterization of
states of the quant\im field in tenns ()f Rindler particles as compared with, their
characterization in terms of Minkowski. particles can· be found by obtaining the
Bogoliubov transformation between Rindler and Minkowski annihilation and cre
ation operators, using. the same pr~ure as in the case of true particle creation
described in the previous section. Since the relation between R.indle.. time and
Minkowski time is essentially the same as that holding near the horizon between
Schwarzschild tin:teand l(Iuska1~me. it should not be surprising ~at.theMinkowski
positive anc;tnegative frequency parts ota solution which oscillates in Rindler time
like e-ioJtR are,again,related by.. equation (14.3.6). In close mathematical analogy
with the calculation of true particle creation in the Schwarzschild spacetime, it is
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fo~ here that the ordinary Minkowski vacuum 10) is formally represented by a
thennal density matrix of Rindler particles.

A physical interpretation of.this result was provided by Unruh (1976). He showed
that a particle detector which uniformly accelerates-i.e., travels along a trajectory
of a boost Killing field-is sensitive to the Rindler particles associated with that
Killing field. This is most easily seen by considering a simple model of a particle
detector consisting of an ordinary nonrelativistic quantum mechanical systelIl (e.g.,
a particle in a box) linearly coupled to the quantum field. Detection of a particle is
said'to occur if a transition to a higher energy state occurs ,in the quantum mec~ical

system. From or~time-dependent,perturbation theory, when the quantum field
is in the ordinary Minkowski v.acuumstate, 10), the rate (i.e., probability per unit
time) for a transition upward in energy by E for an accelerating point detector is found
to be (see Unruh 1976 or DeWitt 1979)

R(E) oc ~~ ~ fT fT e-~tR-tR)<OI4>[x(ta)~[x(tit)]IO) dtRdtit , (14.3.23)

where tR has been scaled so that it agrees with proper time along the world line, X(tR),
of the accelerating particle detector. Thus, the transition probability is directly
related to a Fourier transform of the vacuum expectation value of the product of field
openltors, where this Fourier transform picks out a positive frequency component
with respect to tit and a negative frequency component with respect to tR' However,
for an accelerating.deteetor these "positiveandnegative"frequency parts" are mea
sured with ~pectto Rindler time rather than Minkowski time •• Although by equation
(14.2.13), q, I0) has no positive frequency part with respect to Minkowski tiIt\eand
(014) has no negative frequency part (which accounts for why an inertial particle
detectordoes not detect particles), they do have such positive and negative frequency
parts with respcctto Rindler time. This corresponds preci$Clyto the above represen
tation ofthe Minkowski vacuum as a thermal state ofRindler particles. Thus, Unruh
(1976) found that an accelerating'particle, detector in Minkowski spacetime would
behave as though it were placed in a thermal bath of "real" particles, with tem
perature given by

fta
kT=-, .

2'1TC
(14.3.24)

Thus, the Qfdinary vacuum.state in Minkowski spacetime is seen by an accelerating
observer to p«>ssess thermal properties which are,formally v~ry similar to the thermal
effects re$ulting from truepat1icle creation bya black hole. 'Unfortunately, in cgs
UQits"equatWn (14.3.24) reads

T = 4 x 10-23a K , (14.3.25)

so it is clear thalthis effect is much too small to be perceived by an ordinary
laboratory detector. However, the effect of this thermal bath on the spin of acceler
ating electr()ns ma.Y.,,~ measurable (~U8lld Leinaas 1983).. Further discussi9n of
this effect from the viewpoint of an inertial observer is given by Unruh and Wald
(1984).



416 Quantum Effects in Strong Gravitational Fields

Thus, the "Rindler particles" defined by using a nonstandard notion of positive
frequency in Minkowski spacetime are seen to be associated with true physical
effects. Rindler particles are "real" to accelerating observers! This shows that differ
ent notions of "particle" are useful for different purposes. Therefore, in a general
curved spacetime where no timelike Killing field is present, it should not be sur
prising that there is no natural, universally applicable procedure for defining particles
and that, in a given spacetime, different constructions (such as constructions using
affine parameter or Killing parameter on the horizon of a black hole) will define
different notions of particles. Although the notion of particles is very convenient for
many purposes, it is not an essential ingredient of quantum theory. Physical predic
tions always can be expressed in terms of matrix elements(eIll 0 1'If) of an operator
o between states ell and 'If, such as in equation (14.3.23) or equation (14.3.20).
These predictions will not depend upon how ell and 'If are labeled in terms of particle
states.

A sinnlar analysis of the behavior of a particle detector in Schwarzschild space
time shows that when the field is in the Hartle-Hawking vacuum state, a stationary
detector at any radius r > 2M wilLbehave as though immersed in a thermal bath at
temperature

Ii,K
kT = 2'1TCV ' (14.3.26)

where V = (_~a~)1/2 is the redshift factor appropriate to that radius. Far from the
black hole (r~ ac) we have V -+ 1; and the effect may be interpreted as the response
of the detector to the "real" particles produceci by the black hole (as well as those
incoming from ~-:-). Near the black hole (r~ 2M) we have K!V~ a, where 4 is .
the proper acceleration of the detector (see eq. [l2,S.18]), and the effect (which
becomes divergent atthehorlzon) may be interpreted as being due to the acceleration
of the detector. A freely falling detector sees essentially no particles Deaf the bIack
hole (Unruh 1977), in accordance with the negligible stress-energy (Tab> of the
quantum field near the horizon.

14.4. Black Hole Thermodynamics
bl section· 12.5 we obtained a remarkable mathematical analogy between the

ordinary laws of thennodynamics and laws applying to black holes which were
derived from classical general relativity. As can be seen from Table 12.1, if one
makes the formal replacements E·~ M, T~ aK, and S~ A!81Ta in the laws of
thermodynamics, one obtains valid laws applying to black holes. A hint that this
relationship might be more than just a formal analogy already arose from the fact that
the analogous quantities E and M actually represent the same physical quantity,
namely, total energy. However, since the thermodynamic temperature of a black
hole in classical general relativity is absolute zero, the physical analogy appeared to
end there.

However, we now have seen that.when quantum effects are taken into account,
then in a very real sense the thermodynamic temperature of a black hole is not zero
but is K!21T in units where k = Ii, =. G = ~ = 1. A blade hole absorbs and "emits"
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(14.4.1)

particles exactly like a perfect blackbody at that temperature. Thus, T and K/2'1f' are
not merely analogous quantities but again represent the same physical quantity. Set
ting a = (21f)-1, we~ that the remaining analogous quantities are Sand !A. Does
!A physically represent the entropy of a black hole?

We now shall argue that the answer to this question appears to be yes. The
ordinary second law of thermodynamics slates that the total entropy ofmatter in the
universe never decreases. However, if a black hole is present, one would like to
restrict a~ti()n to matter outside black holes, since matter thatfalls in is "swallowed
up'~ by tile singularity within the black hole and, in any case, it cannot be measured
by an external observer. However, one easily canmake the total entropy, S, of matter
outside black holes decrease by dropping matter into a black hole. On the other hand,
the area theorem of classical general relativity slates that the surface area, A, of a
black hole never decreases. However, on account of the quantum particle creation
process, this law can be violated since (Tab> does not satisfy the energy condition
assumed in the proof of the area theorem. Indeed, as discussed in the previous
section, an isolated black hole eventually "evaporates" completely, thereby de
creasing its &rea to zero. Thus, when black holes are present and -quantumeff'ects are
taken into account, both the ordinary second law and the area theorem can be
violated. However, in the processes where as < 0 due to loss of matter into a black
hole, we increase the black hole area, .M > O. Similarly, in the evaporation process
where M < 0, we increase the entropy of matter outside black holes, as > 0, by
the emission of thermal nuiiation. Therefore, let us define the generalized entropy,
S' ,by (Bekenstein 1973b, 1974)

S' = S +! k c
3
A

4 Gft

where we 'have restored the constants k, ft, G, and c in this formula. The faCt that
a decrease in S ~ll'JSalways to Pe compensated by an increase in A and, similarly,
a decrease in A seems always to be compensated by an increase inS, suggests that
in any process the geru:raliied second law,

as' ~ 0 (14.4.2)

may be valid.
In fact, the law (14.4:2) was first proposed by Bekenstein (with an undetermined

. numeriCalfaetOfin the coefficient of A in eq. [14.4-.l}) prior to the discovery of the
quantum particle creation effects. However,··in the contextof pUrely classical general
relatiVity, equation (14.4.2) could be violated by putting a black hole in a thermal
bath at a temperature lower than that f«mally assigned to the black hole, thereby
producing heat flow from a cold body (the bath) to a hotter body (the black hole).
Alternatively, one could put matter in a box and carefully lower the box to the
horizon of the black hole before dropping it in. By this latter procedure, the entropy
of matter inside the box still would be lost, butby "redshifting away" the energy in
the box, the area increase oftheblaek hole could be kept arbitrarily small. However,
when thequantunleffectl are taken into-account, these methods for violating the
generalized second law dO. not wOtk.In the"first example, the black hole will radiate
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more than it will absorb, so heat actually flows from the black hole to the bath. In
the second example, the effects of the radiation-described at the end of the previous
section-which is felt by any stationary body near the black hole alters the transfer
of energy into the black hole injust such a way as to ensure that the area increase
of the black hole always is large enough to keep equation (14.4.2) satisfied (Unroh
and Wald 1982). Thus, the generalized second law appears to hold, at least insofar
as it can be tested by· gedankenexperiments.

However,the generalized second law has a natural and simple interpretation. It
can be viewed as nothing IllOfe than the ordinary second law of thermodynamics
applied to a system containing a black hole. In order to maintain this view, one must
take the final step of assigning 1A as the physical entropy of a black hole. If this final
step is taken; the analogy between the laws of thermodynamics and the laws of black
hole physics no longer would be an analogy at all. The laws of black hole thermo
dynamics (including the generalized second law) would be seen as being nothing
more than the ordinary laws of thermodynamics applied to a self-gravitating quan
tum system containing a black hole.

Thus, the apparent validity of the generalized second law strongly suggests that
!A is the thermodynamic entropy of a black hole. However, the underlying physical
basis by which!A arises as the black hole entropy remains unclear. Since the entropy
of an ordinary physical system is essentially the logarithm of the number of micro
scopic states compatible with the observed macroscopic state, the assignment of iA
as the black hole entropy seems .to indicate that in a full quantum theory of gravity
the number of "internal states" of a black hole will be N - eA/4.However, general
arguments for the validity of the second law of thermodynamics for ordinary systems
are based on notions of the "fraction of time" a system spends in a given macroscopic
state. Since the nature of time in general relativity is drastically different from that
in nongravitationalphysics, it is not clear precisely how the generalized second law
will arise even inA is a measure of the number of internal states.ofa black hole.

Thus, we appear to be in a situation with regard to black hole thermodynamics
which is very similar to the situation with regard to ordinary thermodynamics prior
to the discovery of the underlying basis of these laws arising from statistical physics.
We have discovered the laws of black hole thermodynamics-in this case by calcu
lations and gedankenexperiments rather than by laboratory eX~f:nts-but the
underlying basis of these laws. is not known and presumably will not be fully
understood until we have a quantum theory of gravitation. Nevertheles8,Jbe exis
tence of the laws of black. bole thermodynamics indicates the likelihood of a deep
connection between gravitation, quantum theory, and statistical physics. It remains
for future investigations to explore this connection further.

Problems
I. Let V be the collecti<!n of infinite sequences of complex numbers
{a;} = (a .. a2, ... ,) such that only finitely many of the at are nonzero. Define
addition and scalar multiplication on Vby {ail + {btl = {a; + bi}and c{at} = {cat}..
to make Va vector space over C. Define ({a;}, {b;}) = ~ aibi.

i=1
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a) Sbow that ( , ) is an inner product, thus making Van inner product space.
b) Show that V is incomplete and thus is not a Hilbert space.

c) Let V' be the collection of sequences satisfying .f 1aj 12 < 00, Define a vector
.=1

space structure and inner product on V I in the same way as for V. Show that V I is
complete and thus defines a Hilbert space, usually denoted 12• (You may use the fact
that C is complete in your proof.)

2. a) Show that the annihilation and creation operators defined by equations
(14.2.10) and (14.2.12) satisfy the commutation relations

[a(u), a (p)] = 0

[at(O'),at(p)] = 0

[a(u), a t(p)] = (0', p)J

for all 0', P E CX, where the commutator of two operators is defined by
[A,B] = AB - BA, and J is the identity operator on ~s(cx).

b) Show that the operator

N(O') = at(O')a(u)

can be interpreted as the number operator for the (normalized) state 0' E CX, Le., the
eigenstates of N(O').are the states with a definite number of particles in state 0', and
the eigenvalues of N(O') in these eigenstates.are the number of such particles.

3. Define the operators A:CXout -+ CXm, B:CXout -+ CXin by the "time reverse" of the
definitions of C and D given in the text, Le., for T E CXout , AT is the state.in CXin
obtained by propagating into the past the solution f which agrees with T in the future
and taking its positive frequency part in the past, while BT is the state in Wlin
associated with its negative frequency part~ the past. Use the independence of the
Klein-Gordon inner product, equation (14.2.5), on the choice of Cauchy surface
together with the fact that in the asymptotic future or past the Klein-Gordon inner
product of any positive. frequency solution with any negative frequency solution
vanishes to prove that the following relations are satisfied by A, B, C, D:

AtA - BtB = J

BtA = At'B

ctc - DtD = J

DtC =' CtD

At = C, Bt = -15

Note that the relation DtC = CtD implies that E = DC-1 is symmetric, Et = E.

4. Consider a conformally invariant field (see appendix D) in a spacetime of the
form illustrated in Figure 14.1 which, in addition, is conformally flat, Le.,
gab = 02 71ab everywhere. Show that no particle creation can occur.
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5. With A and B defined asin problem 3, it is clear that by "time reversal symmetry"
equation (14.2.17) must continue to hold if we interchange "in" and "out," replace
C and D by A and B, and replaceS by S-I.

a) Using this modification of equation (14.2.17) and the results of problem 2(b),
show that the expected number of particles in state u E ~OUI spontaneously created
from the "in" vacuum state is given by

(N(u» = !IBo-II2

b) Using equation (14.3.6) as well as the result of part (a) and the relations proven
in problem 3, derive equation (14.3.7) for particle creation by black holes.

6. The classical Klein-Gordon stress-energy tensor (4.3.10) has manifestly positive
energy density everywhere; Le., for any timelike vector t a at any point we always

. have Tab tatb ~ o. Show that this property does not carry over to quantum field theory
by finding a state, 'fI, of the free Klein-Gordon field in Minkowski spacetime for
which the normal ordered stress..energy operator satisfies ('fI1 tab l'¥) tatb < 0 over a
region of spacetime. (Hint: Consider a state 'fI obtained by superposing the vacuum
state wid! a small admixture of a two-particle state.) Note, however, that total energy
E = fI(Tab)fan b

, where fa is a time translation Killing field, always is nonnegative
for the free ~in-Gordon field in Minkowski spacetime.

7. Consider a box of volume V filled with blackbody radiation and possibly also
containing a black hole. Ignore the influence of the black hole on the distributionol
radiation in the box. Suppose that the total energy contained in the box (Le., the mass
of the black hole plus theenergyi>fthe radiation) is E.

a) Write down the formula for the total generalized entropy, S' , of the box as a
function· of themass..energy M apportioned to the black hole.
. b) By extretnizing.5' with respect to M. determine the conditions which must be

satisfied by E and Vin order that equilibrium between the black hole and radiation
be possible (Gibbons and Perry 1918). For V = 1 meter3, evaluate the miniinum
value of E needed for equilibrium. In the case where equilibrium is possible,
determine which· of the extrema of S' are locally stable by computing the second
derivative of S'.

c) Estimate the conditions on E and V such that the configuration of (globally)
maximum generalized entropy will contain a black hole rather than be pure radiation.



APPENDIX A

TOPOLOGICAL SPACES

In mathematics, many different proofs and arguments are based on the same or a
similar set of ideas. An important goal of mathematics is to isolate the key ideas in
as general a form as possible, since if one can derive general results about these ideas
in the abstract, one then may apply them to the cases of interest without duplication
of effort. The notion of a topological space provides a beautiful illustration of this
program. One starts with a very simple, abstract definition and ends up proving many
powerful results that have a very wide range of application. Our main interest here
in topological spaces arises from the fact that in general relativity spacetime has the
structure of a topological space. Indeed, spacetime has a great deal more structure,
and we circumvented the mention of topological spaces in chapter 2 by defining the
notion of a manifold directly. However, the purely topological arguments and results
discussed in this section play an important role in many of the constructions and
proofs of chapters 8 and 9. Therefore, we collect in this appendix many of the key
definitions and theorems concerning topological spaces.

A topological space (X, 9T) consists of a set X together with a collection 9T of
subsets of X satisfying the following three properties:
(1) The union of an arbitrary collection of subsets, each of which is in 9T, is in 9T:
If 0" E 9T for all a, then U 0" E 9T.

"(2) The intersection of a finite number of subsets in 9T is in '3: If 0 1, • • • ,On E 9T,
then

n

no; E 9T.
;=1

(3) The entire set X and the empty set ~ are in 9T.
9T is referred to as a topology on X, and subsets ofX which are listed in the collection
9T are called open sets.

Any set X can easily be made into a topological space by taking 9T = {all subsets
of X} (the discrete topology) or by taking 9T = {X,~} (the indiscrete topology). A
much more interesting example of a topological space is obtained by taking X = IR,
the set of real numbers, and defining 9T to consist of all subsets of IR which can be
expressed as unions of open intervals (a, b). (Thus, with this choice of 9T on IR an
open interval is an open set; historically, this example is the reason why the termi
nology "open set" is used in the discussion of an abstract topological space.) More

423
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generally, for any metric space, the collection of all subsets which can be expressed
as unions of open balls yields a topology.

If (X, '3") is a topological space and A is any subset of X, we may make A itself
into a topological space by defining the topology, ~, on A to consist of all subsets
of A which can be expressed as intersections of elements of '3" with A,
~ = {U IU = A no, 0 E '3"}. ~ is called the induced (or relative) topology.

If (XI. '3"1) and (X2 , '3"2) are topological spaces, we can make the product space
XI x X2 == {(XI.X2)!XI E XI, X2 E X2} into a topological space (XI x X2,'3") by
defining '3" to consist of all subsets of XIX X2which can be expressed as unions of
sets of the form 0 1 x O2 with 0 1 E '3"1 and O2 E '3"2. '3" is called the product
topology, and using the above definition of a topology on IR, we can use the
construction of the product topology to define a topology on IRn. The topology we
get is the same one as would be obtained by directly defining '3" to consist of all
subsets of IRn which can be expressed as unions of open balls.

If (X, '3") and (Y,~) are topological spaces, a map f :X - Y is said to be con
tinuous if the inverse image,f-I[O] == {x E X If(x) EO}, of every open set 0 in
Y is an open set in X. For functions from IR into IR, it is easy to verify that with the
above definition of a topology on IR, this definition of continuity is equivalent to the
usual € - 5 definition. Iff is continuous, one-to-one, onto, and its inverse is con
tinuous,fis called a homeomorphism and (X, '3") and (Y, ~) are said to be homeo
morphic. Homeomorphic topological spaces have identical topological properties.

If (X, '3") is a topological space, a subset C of X is said to be closed if its
complement X - C == {x E X Ix f:. C} is open. Thus, for example, a closed inter
val [a, b] of IR (with the standard topology on IR) is a closed set. From the topological
space axioms it follows immediately that the intersection of an arbitrary collection
of closed sets is closed and the union of a finite number of closed sets is closed. Note
that a subset may be neither open nor closed (e.g., the half-open interval [a, b) in IR)
or may be both open and closed (as are all subsets in the discrete topology). Indeed,
the possibility of having subsets which are both open and closed gives rise to a
topological definition of connectedness: A topological space (X, '3") is said to be
connected if the only subsets which are both open and closed are the entire space X
and the empty set~. IRn with the standard topology defined above is connected.

If (X, '3") is a topological space and A is an arbitrary subset of X, the closure, A,
of A is defined as the intersection of all closed sets containing A. Clearly, A is closed,
contains A, and equals A if and only if A is closed. The interior of A is defined as
the union of all open sets contained within A. Clearly the interior of A is open, is
contained in A, and equals A if and only if A is open. The boundary of A, denoted
A, consists of all points which lie in A but not in the interior of A.

A topological space (X, '3") is said to be Hausdorff if for each pair of distinct points
p, q E X,p *" q, one can find open sets Op, Oq E '3" such thatp E Op, q E Oq, and
Op n Oq = ~. It is easy to check that IRn with the standard topology is Hausdorff.

One of the most powerful notions in topology is that of compactness, which is
defined as follows. If (X, '3") is a topological space and A is a subset of X, a collection
{Oa} of open sets is said to be an open cover of A if the union of these sets contains
A. A subcollection of the sets {Oa} which also covers A is referred to as a subcover.
The set A is said to be compact if every open cover of A has a finite subcover (i.e.,
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'a subcover consisting of only a finite number of sets). Thus, for example, in any
[topological space a set consisting of a single point is compact. On the other hand,
ithe open interval (0, 1) in IR (with the standard topology) is not compact since the
: sets On = (lin, 1) for n = 2, 3, ... , yield an open cover of (0,1) which admits
.no finite subcover.
; The following theorems describe the implications of compactness and show the
utility of this notion. Proofs of the theorems can be found in nearly any textbook on

!topology (e.g., Hocking and Young 1961; Kelley 1955).
Perhaps the most important theorem concerning compact subsets of IR is the

Heine-Borel theorem:

THEoREM A.l (Heine-Borel). A closed interval [a, b] of real numbers is compact
(with the standard topology on IR).

The general relation between compact and closed sets is described by the follow
ing two theorems, the proofs of which are straightforward:

THEOREM A.2. Let (X, 5") be Hausdorffand letA C X be compact. Then A is closed.

THEOREM A.3. Let (X, 5") be compact and let A C X be closed. Then A is compact.

Combining the above three theorems, we arrive at the following strengthened
statement on the compactness of subsets of IR:

THEOREM AA. A subset A of real numbers is compact ifand only if it is closed and
bounded.

The property of compactness is easily proven to be preserved under continuous
maps. We have:

THEOREM A.5. Let (X, 5") and (Y,~) be topological spaces. Suppose (X, 5") is
compactandf:X~ Yiscontinuous. Thenf[X] == {y E Yly =f(x)} is com
pact.

Because of the properties of compact subsets of IR given by Theorem A.4, we have
as a corollary

THEOREM A.6. A continuous function from a compact topological space into IR is
bounded and attains its maximum and minimum values.

The following theorem gives an immediate extension of results on compactness for
IR to results for IRn.

THEOREM A.7 (Tychonofftheorem). Let (Xl> 5"\) and (X2 , 5"2) be compact topological
spaces. Then the product space Xl x X2 is compact in the product topology.
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Theorem A. 7 can be generalized to apply to the product of infinitely many
topological spaces, but the axiom of choice is needed for this generalization.

A corollary of this and the above theorems is

THEOREM A.8. A subset, A, of IRn is compact if and only if it is closed and bounded.

Thus, for example, the n-dimensional sphere sn (defined as the set of points in
IRn+ 1 satisfying XI + . . . + x~+ 1 = 1) in the induced topology is compact, since it
is easily seen to be a closed and bounded subset of IRn+l.

A further notion we shall need is that of convergence of sequences. A sequence
{xn } of points in a topological space (X, 9T) is said to converge to point X if given any
open neighborhood 0 of x (i.e., an open set 0 containing x) there is an N such that
Xn E 0 for all n > N. The point x is said to be the limit of this sequence. It is easy
to check that for IR (with the standard topology) this agrees with the usual definition
of convergence. A point y E X is said to be an accumulation point (or limit point)
of {xn } if every open neighborhood of y contains infinitely many points of the
sequence. If {xn} converges to x, then x clearly also is an accumulation point of the
sequence. However, in a general topological space, if y is an accumulation point of
{xn}, it may not even be possible to find a subsequence {Yn} of points of the sequence
{xn} such that {Yn} converges to y. However, the extraction of a subsequence con
vergent to y will always be possible if (X, 9T) is first countable, that is, if for each
p E X there is a countable collection {On} of open sets such that every open neigh
borhood, 0, ofp contains at least one member of this collection. IRn with the standard
topology is first countable; indeed, it satisfies the stronger requirement of second
countability: there is a countable collection of open sets such that every open set can
be expressed as a union of sets in this collection. For IRn, the open balls with rational
radii centered on points with rational coordinates compose such a countable col
lection of open sets.

An important relation between compactness and convergence of sequences is
expressed by the Bolzano-Weierstrass theorem:

THEOREM A.9 (Bolzano-Weierstrass theorem). Let (X, 9T) be a topological space and
let A ex. If A is compact, then every sequence {xn} of points in A has an
accumulation point lying in A. Conversely, if (X, 9T) is second countable and
every sequence in A has an accumulation point in A, then A is compact. Thus,
in particular, if (X, 9T) is second countable, A is compact if and only if every
sequence in A has a convergent subsequence whose limit lies in A.

Finally, we define the notion of paracompactness, a property which manifolds are
required to satisfy in order to prevent them from being "too large." Let (X, 9T) be a
topological space and let {Oa} be an open cover of X. An open cover {\.P} is said to
be a refinement of {Oa} if for each "p there exists an Oa such that \.p C Oa. The cover
{\.P} is said to be locally finite if each x E X has an open neighborhood W such that
only finitely many "p satisfy W n "p *" ~. The topological space (X,9T) is said to
be paracompact if every open cover {Oa} of X has a locally finite refinement {\'p}.
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It is not difficult to show (see, e.g., Hocking and Young 1961) that any Hausdorff
topological space which is locally compact (i.e., such that every point has an open
neighborhood with compact closure) and which can be expressed as a countable
union of compact subsets is paracompact. Thus, ~n, sm and their products are easily
verified to be paracompact. Indeed, it is not easy to construct examples of topological
spaces which satisfy all the requirements for a manifold but are not paracompact; the
"long line" (see Hocking and Young 1961) is perhaps the simplest example, although
the axiom of choice is required to define it.

For a manifold, M, paracompactness has a number of important consequences. It
can be shown (see Kobayashi and Nomizu 1963) that paracompactness implies that
(1) M admits a Riemannian metric and (2) M is second countable. This latter result
implies, incidentally, that we can cover M by a locally finite, countable family of
charts (l/Ji' OJ with each OJ compact. Conversely, if M satisfies all the requirements
of a manifold (see chapter 2), then either of properties (1) or (2) implies that M is
paracompact.

Probably the most important consequence of paracompactness for a manifold is the
existence of a partition of unity. Given a locally finite open cover {Oa} of M, a
partition of unity subordinate to {Oa} is a collection of smooth functions {fa} such
that (i) the support of fa (i.e., the closure of the set where fa is nonvanishing) is
contained within Oa, (ii) 0 :5 fa :5 1, and (iii) z.fa = 1. [Since only finitely many
fa are nonvanishing at any point, the sum in pro~rty (iii) is only a finite sum.] It can
be shown (Kobayashi and Nomizu 1963) that every locally finite open cover {Oa} of
Msuch that each Oa is compact admits a subordinate partition of unity. The existence
,f a partition of unity allows us to globalize many local results. For example, we can
,rove the above mentioned result that a paracompact manifold admits a Riemannian
netric by covering it with a locally finite family of charts (l/Ja, Oa) with Oa compact,
lefining a Riemannian metric (ga)ab on each local coordinate neighborhood, and
letting gab = z.fa(ga)ab, where {fa} is a partition of unity subordinate to {Oa}.
limilarly, as discussed in appendix B, the existence of a partition of unity allows us
o define integration over a paracompact manifold.



APPENDIX B

DIFFERENTIAL FORMS, INTEGRATION, AND FROBENIUS'S
THEOREM

In this appendix we shall collect a number of results related to differential forms and
integration. Most of these results require only manifold structure; specifically, they
do not require the presence of a metric or a preferred derivative operator. Thus, they
are basic results of very general applicability in differential geometry.

B.1 Differential Forms
Let M be an n-dimensional manifold. A differential p-form is a totally anti

symmetric tensor of type (O,p), i.e., wa1 ''' ap is ap-form if

(B.1.l)

We denote the vector space ofp-forms at a point x by A~ and the collection ofp-form
fields by AP. Note that A~ = {O} if P > n and dim A~ = n!/p!(n - p)! for
o~ p ~ n. If we take the outer product of a p-form wa1 ... ap and a q-form JLbl" 'bq,

we will get a tensor of type (O,p + q); but since this tensor will not, in general, be
totally antisymmetric, it is not a (p + q)-form. However, we can totally anti
symmetrize this tensor, thus producing a map 1\: A~ x A1 ~ A~+q via

- (p + q)!
(w 1\ JL)al···a bl···b - " W[al ... apJLbl"·bq] (B.l.2)

p q p.q.

(If p + q > n, this tensor, of course, will be zero.) We define the vector space of
all differential forms at x to be the direct sum of the A~,

n
Ax = E8 A~ (B. 1.3)

p=o

The map 1\ :Ax x Ax ~ Ax gives Ax the structure of a Grassmann algebra l over the
vector space of one-forms.

If we are given a derivative operator, Va' we could define a map from smooth
p-form fields to (p + I)-form fields by

wa1 · .. ap~ (p + l)VrbWa\" .ap] (B. 1.4)

If instead we were given another derivative operator Va' we would obtain the map

wa1 "' ap ~ (p + l)V[bWal ... ap] (B. 1.5)

1. See, e.g., Bishop and Crittenden (1964) for the definition of a Grassmann algebra.
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However, according to equation (3.1.14), we have

- p

VrbWal" .ap] - VrbWal" 'ap] = 2: Cd[bajWal" ·Idl·· .ap] = 0
j=1

since CCab is symmetric in a and b. Thus the map defined by equation (B. 1.4) is
independent of derivative operator, Le., it is well defined without the presence of a
preferred derivative operator on M. We denote this map by d. In particular, we may
use the ordinary derivative, aa, associated with any coordinate system to calculate
d.

Since the index structure of differential forms is trivial, it is customary to drop the
indices when writing them; e.g., we write w instead of Wa1 .· 'ap and write w 1\ IL
instead of (w 1\ p..)al" .bq • (The only disadvantage in doing so is that we must
remember the dimensionality of the forms with which we are dealing.) We shall use
boldface letters for forms to avoid confusion with functions. We denote the
(p + I)-form resulting from the action of the map d: AP~ AP+l on the p-form w
by dw.

An important property of the map d is that d 2 = dod = O. This result, known as
the Poincare lemma, follows from the fact that we can compute d using an ordinary
derivative operator. Indeed, restoring the indices, we have for an arbitrary smooth
p-form w,

(d 2
w)bca l" 'ap = (p + 2)(p + l)Qbacwal' "ap] = 0 (B. 1.7)

because of the equality of mixed partial derivatives in lRn .

Conversely, it can be shown (see, e.g., Flanders 1963) that if one has a closed
p-form, i.e., a p-form a satisfying da = 0, then locally (Le., in any open region
diffeomorphic to lRn) this form is exact, Le., there exists a (p - I)-form fJ such that
a = dfJ. However, in general this result is not valid globally. Indeed, an important
theorem in algebraic topology due to de Rham establishes that the dimension of the
vector space of closed p-forms modulo the exact p-forms equals a topological
quantity: the pth Betti number of the manifold. 2

B.2 Integration
Let M be an n-dimensional manifold. At each point x E M, the vector space of

n-forms will be one-dimensional. If it is possible to find a continuous, nowhere
vanishing n-form field E = E[al" . an] on M, then M is said to be orientable and E is
said to provide an orientation. 3 Two orientations E and E' are considered equivalent
if E = fE', where f is a (strictly) positive function, so any orientable manifold

2. Roughly speaking, the pth Betti number of M is the number of independent p-dimensional
boundaryless surfaces in M which are not themselves boundaries of (p + I)-dimensional regions. For
more details, including a complete statement and proof of de Rharn's theorem, see, e.g., Warner (1971).

3. For the case where M is an n-dimensional surface in the Euclidean space [R"+1, this definition of
orientability is equivalent to the more intuitive notion that there exists a consistent (i.e., continuous)
choice of normal vector u· to M: If a continuous nonvanishing u a exists, then E = i., ... ••+, u·' provides
an orientation of M, where i is an orientation of [Rn+l. Conversely, if M is orientable, then
i a, .. .••+, E., ..•• provides a continuous normal vector.
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possesses two inequivalent orientations, usually referred to as "right handed" and
"left handed." It is easy to check that the manifolds [Rn and sm are orientable. Indeed,
it is not difficult to show that every simply connected manifold is orientable. (As
discussed further in chapter 13, a topological space is said to be simply connected
if every closed curve can be continuously deformed to a point. [Rn and sm for m 2': 2
are simply connected.) Furthermore, the product of any two orientable manifolds is
orientable. Thus, we obtain a wide class of examples of orientable manifolds. On the
other hand, the Mobius strip [defined as [R2 with the identification
(x,y) = (x + 1, -y)] provides a simple example of a nonorientable manifold.

We will define the integral of a continuous (or, more generally, a measurable4
)

n-form field a over an n-dimensional orientable manifold (with respect to the orien
tation E) as follows. We begin by considering an open region U C M covered by a
single coordinate system l/J. If we expand E in the coordinate basis of l/J, we will
obtain

E = hdx I 1\ ... 1\ dx n (B.2.!)

(i.e. Ea1 .. 'a
n

= n! h(dx I)[al ... (dxn)a
n
]), where the function h is nonvanishing. If

h > 0, the coordinate system, l/J, is said to be right handed with respect to E; if
h < 0, l/J is called left handed. We may also expand a in the coordinate basis,
thereby obtaining

a = a(x l
, •.• , xn)dx l 1\ ... 1\ dx n

If l/J is right handed, we define the integral of a over the region U by

(B.2.2)

(B.2.3)

(B.2.5)

r a = r adx I. . . dx n
Ju J",[U]

where the right-hand side is the standard Riemann (or Lebesgue) integral in [Rn. If
l/J is left-handed, we define f u a to be minus the right-hand side of equation (B.2.3).

First, we note that fu a is independent of the choice of coordinate system, «/I,
covering U; namely, if we had used a different coordinate system l/J' to cover U, then
the expansion of a in the new coordinate basis would be

a = a'dxl\ 1\ ... 1\ dx,n (B.2.4)

But it follows from the tensor transformation law, equation (2.3.8), that

(
axlJ-)a' = adet -ax'v

The standard law for transformation of integrals in [Rn then shows that our definition,
equation (B.2.3), is coordinate independent.

To define the integral of a over all of M, we use the paracompactness property of
M. As discussed at the end of appendix A, a paracompact manifold can be covered
by a countable collection {OJ of locally finite coordinate neighborhoods such that

4. Q is said to be measurable if for all charts its coordinate basis components are Lebesgue measurable
functions in IRn.
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each OJ is compact. Furthennore, a partition of unity {j;} subordinate to this covering
will exist. If ~ f",,{O;lj; Iaj Idx I ••• dx n < 00, we say a is integrable and we define

I

r a = 2: r j;a
JM i JO j

(B.2.6)

It can be shown that this definition is independent of the choice of covering {OJ} and
partition of unity {j;} and thus properly defines fMa.

We can use the above definition of integration on manifolds to define the integral
ofp-fonns on M over well behaved, orientable p-dimensional surfaces in M. First,
we must define more precisely the notion of a "well behaved surface." Let S be a
manifold of dimension p < n. If c/J: S~ M is Coo, is locally one to one-i.e., each
q E S has an open neighborhood 0 such that c/J restricted to 0 is one-to-one-and
cf>-I:c/J[O] ~ S is Coo, then c/J[S] is said to be an immersed submanifold of M. If,
in addition, c/J is globally one-to-one (i.e., c/J[S] does not "intersect itself"), then
cf>[S] is said to be an embedded submanifold of M. (In some references the additional
condition is imposed on embedded submanifolds that c/J:S~ c/J[S] is a homeo
morphism with the topology on c/J[S] induced from M. Roughly speaking, this
additional condition ensures that c/J[S] does not come arbitrarily close to intersecting
itself.) We shall use the notion of an embedded submanifold as our precise notion
of a "well behaved surface" in M. An embedded submanifold of dimension (n - 1)
is called a hypersurjace.

For an embedded submanifold, there is a natural manifold structure on c/J[S]
obtained via c/J from the manifold structure on S. Thus, at each q E c/J[S], the
tangent space l¥q for c/J[S] is defined. This tangent space is naturally identified with
ap-dimensional subspace of Vq, the tap.gent space of q in M. Thus, a p-fonn fJ in M
at q naturally gives rise to a p-fonn fJ on c/J[S] by restriction of the action of fJ to
vectors lying in l¥q. The integral o(fJ over the surface c/J[S] may then be defined as
simply the integral of the p-fonn fJ over the p-dimensional manifold c/J[S].

An important special case of an embedded submanifold arises when c/J[S] is the
(n - I)-dimensional boundary, N, of a closed region N C M such that N is a
"manifold with boundary." Here, the notion of an n-dimensional manifold with
boundary, N, can be defined in the abstract in the same way as a manifold (see
chapter 2) except that lRn is replaced by "half of lRn," i.e., by the portion of lRn with
Xl ~ O. The boundary, N, of N is composed of the set of points of N which are
mapped into x I = 0 by the chart maps. Note that these chart maps of N with x I set
to zero give N the structure of an (n - I)-dimensional manifold without boundary.
Note also that int(N) == N - N is an n-dimensional manifold without boundary.

If N is an orientable manifold with boundary, then an orientation on N induces a
natural orientation on the boundary as follows: We consider the coordinate systems
on N which arise from deleting the first coordinate, x I, of a right-handed coordinate
system on N in the family of charts that makes N into a manifold with boundary. We
wish to define an orientation on N which makes these coordinate systems be "right
handed." In order to do so, we verify first that the Jacobian, det(ax'l-'/ ax V

), is
positive in the overlap region of any two such coordinate systems. Then, we choose
a partition of unity (P;, V;) of N, where each Vj is a coordinate neighborhood of this
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type. Finally, we define Eon N by E = +F; dxt ... dx7. Then i is continuous and
I •

nonvanishing and thus defines the desired orientation of N. Having defined the
orientation of N, we may now state one of the most important results concerning
integration on manifolds, the proof of which can be found in many references (see,
e.g., Flanders 1963).

THEOREM B.2.1 (Stokes's theorem). Let N be an n-dimensional compact oriented
manifold with boundary and let a be an (n - l)lorm on M which is C'. Then

r da = r a
Jint(N) IN

(B.2.7)

Integration of functions on an orientable manifold M can be accomplished if one
is given a volume element, that is, continuous nonvanishing n-form E. (A volume
element differs from an orientation in that orientations are considered equivalent if
they differ by positive multiples whereas volume elements are not.) The integral of
j over M is defined by

(B.2.8)

where the integral of the n-formjE was defined previously.5
If one is given only the structure of a manifold, M, there is no natural choice of

volume element. However, if M has a metric, gab, defined on it, then a natural choice
of E is specified up to sign (i.e., up to choice of orientation) by the condition

(B.2.9)

where s is the number of minuses appearing in the signature of gab' (Thus, s = 0 for
a Riemannian metric, while s = I for a Lorentzian metric.) Note that differentiation
of equation (B.2.9) using the derivative operator, Va, associated with the metric
implies that

(B.2.1O)

which, in tum, implies that

(B.2.11)

since VbEa1 ... an is totally antisymmetric in its last n indices and Eal'" an is non
vanishing. It is also worth noting that

(B.2.12)

where sab is the identity map on the tangent space. Equation (B.2.12) follows from
the fact that the tensors of type (n, n) on an n-dimensional manifold which are totally
antisymmetric in all lower and all upper indices form a one-dimensional vector space
and thus must be proportional to the antisymmetrized product of sab tensors; the

5. Integration of functions on a nonorientable manifold can be defined by choosing a continuous
"n-form modulo sign" E' and performing integrals offE' over each of the local coordinate neighborhoods
by choosing the sign of E' which makes the coordinate system "right handed" with respect to it.
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constant of proportionality is fixed by the nonnalization condition (B.2.9). Con
traction of equation (B.2.12) over j of its indices yields

(B.2.13)

Equation (B.2.9) implies that the components of E in a right handed orthononnal
basis are

_ {(-It if all J.Li are distinct
E/J-l .. '/J-n - 0 otherwise,

where P is the signature of the pennutation (l, . . . , n) ~ (J.Lj, .
coordinate basis, the components of E satisfy

#.Lt •...• JJn

(B.2.14)

(B.2.15)

But the left-hand side of this expression is just (n!)(E\2'" n)2 times the detenninant of
the matrix (g/J-"), and det(g/J-") = l/det(g/J-v)' Thus, choosing the plus sign appropri
ate for a right handed coordinate system, we find

E\2"'n = [(-1)' det(g/J-v)]1/2 = VTiT (B.2.16)

where g = det(g/J-v)' Thus, in any (right handed) coordinate basis, the natural volume
element defined by equation (B.2.9) takes the fonn

E = "\/jgj dx'/\ ... /\dx n (B.2.17)

Using the natural volume element E associated with a metric, we can convert
Stokes's theorem, equation (B.2.7), into a "Gauss's law" fonn. Let Nbe an oriented,
compact n-dimensional manifold with boundary. Let gab be a metric on N with
associated volume element E. Given any C' vector field va, we obtain an
(n - 1)-fonn a by

We have

(da)ca\"'an_l = nV[C<Elblal"'an_IlV
b

)

= nEb(al" .an_lVc]V
b

(B.2.18)

(B.2.19)

where equation (B.2.11) was used. On the other hand any totally antisymmetric
tensor of type (0, n) must be proportional to E, so

(B.2.20)

The function h may be evaluated by contracting with E ca1 '" an-! and using equation
(B.2.13). We obtain

(B.2.21)

Thus, we find

(B.2.22)
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and thus Stokes's theorem states that

(B.2.23)

where the natural volume element E on N is understood in the integral on the
left-hand side of equation (B.2.23).

The right-hand side of equation (B.2.23) can be reexpressed as follows. The
metric gab on N induces a tensor field hab on IV by restriction of gab to vectors tangent
to IV. If hab is nondegenerate-which will be the case if IV is not a null surface-we
may use it to define a volume element i on IV. It is not difficult to show that

I _
;; Ea1'·'a. = n[alEa2"'a.] (B.2.24)

where nb is the unit normal to N and is chosen to be "outward pointing" if spacelike
and "inward pointing" if timelike in order that E be of the orientation class used in
Stokes's theorem. Contracting va into both sides of equation (B.2.24) and restricting
the resulting (n - I)-forms to vectors tangent toN, We obtain

(B.2.25)

where we view both sides of this equation as forms on N. Thus, if N is not null, we can
express Stokes's theorem in the form.

Iinl(N) Vav
a = IN nav

a
(B.2.26)

for all CI vector fields va where the natural volume elements E and E on int(N) and
N, respectively, are understood. Of course, if N is null, equation (B.2.23) still
applies. Furthermore, in the null case, if we choose any E on N in the orientation class
used in Stokes's theorem and define na to be the normal to N such that equation
(B.2.24) holds, then Stokes's theorem again takes the form (B.2.26).

B.3 Frobenius's Theorem
Let M be an n-dimensional manifold. An issue which arises frequently is the

following: At each point x E M we are given a subspace l¥x C Vx of the tangent
space Vx with dim l¥x = m < n. The subspace l¥x is required to vary smoothly with
x in the sense that for each x E M we can find an open neighborhood 0 of x such
that in 0, W is spanned by Coo vector fields. We denote the collection of subspaces
l¥x by W. We wish to know whether we can find integral submanifolds of W, i.e.,
whether through each point x we can find an embedded submanifold S such that the
tangent space to this submanifold at each yES coincides with W. An important
special case of this general problem arises when one has a metric on M and wishes
to know if a vector field ~a is orthogonal to a family of hypersurfaces (see, e.g.,
section 6.1), Le., whether the (n - I)-dimensional subspaces, W, orthogonal to ~a

are integrable.
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If the subspaces W are one-dimensional, the above problem reduces to that of
finding integral curves of a smooth vector field va. As discussed in section 2.2, such
integral curves always can be found. However, if dim W > 1, it is possible for the
W-planes to "twist around" so that integral submanifolds cannot be found. To see that
this is the case, we note that if we could find integral submanifolds, we could span
W in a neighborhood of any point by coordinate vector fields xy, . . . ,X::' in M such
that [XI" Xv] = O. Since any two vector fields ya, za which lie in Wean be expressed
as linear combinations of these coordinate vector fields, this implies that for all ya,
za E Wwe have

(B.3.1)

If W satisfies the property that [y, z]a E W for all ya, za E W, then W is said to be
involute. We have just shown that a necessary condition for W to possess integral
submanifolds is that it be involute. Conversely, it can be shown (see, e.g., Bishop
and Crittenden 1964) that this condition is also sufficient. This result is known as
Frobenius's theorem.

THEOREM B.3.1 (Frobenius's theorem; vector form). A necessary and sufficient
condition for a smooth specification, W, of m-dimensional subspaces of the
tangent space at each x E M to possess integral submanifolds is that W be
involute, i.e., for all ya, za E W we have [y,z]a E W.

Frobenius's theorem also has a dual formulation in terms of differential forms.
Given l¥x C Vx as above, we can consider the one-forms bJ E Vx* which satisfy

(B.3.2)

for all xa E l¥x. It is not difficult to see that such bJ'S span an (n - m)-dimensional
subspace, T/ C Vx*, of the dual tangent space at x. Conversely, an
(n - m)-dimensional subspace T/ of Vx* defines an m-dimensional subspace l¥x of Vx
via equation (B.3.2). Thus, we may reformulate our above question in terms of T*:
Under what conditions does a smooth specification, T*, of (n - m)-dimensional
subspaces of one-forms at each point have the property that the associated tangent
subspaces W (consisting at each x of all vectors xa satisfying waXa = 0 for all
Wa E 4*) admit integral submanifolds?

According to Frobenius's theorem, integral submanifolds will exist if and only if
for all Wa E T* and all ya, za E W (so that Waya = waZa = 0), we have

(B.3.3)

(B.3.4)

To see what this implies for Wa, we substitute our expression (3.1.2) for the commu
tator in terms of an arbitrary derivative operator Va to obtain

o = Wa(ybvbza - Zbvbya)

= _zaybVbwa + yazbVbwa

= 2yaZb~bWa]
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However, equation (B.3.4) can hold for ya and za in the subspace annihilated by T'
if and only if ~aWb] can be expressed as

n-m

~aWb] = 2: /L a[aVab]

a=l

(B.3.5)

where each va is an arbitrary one-fonn and each IL a E T'. Thus, we can refonnulate
Frobenius's theorem in tenns of differential fonns as follows:

THEOREM B.3.2 (Frobenius's theorem; dual fonnulation). Let T' be a smooth
specification ofan (n - m)-dimensional subspace ofone10rms. Then the asso
ciated m-dimensional subspace W of the tangent space admits integral sub
manifolds ifand only iffor all wET' we have dw = ~ IL a 1\ va, where each
lL a E T'. a

The dual fonnulation of Frobenius's theorem gives a useful criterion for when a
vector field ~a is hypersurface orthogonal. Letting T' be the one-dimensional sub
space spanned by ~a = gabe, we see that ~a will be hypersurface orthogonal if and
only if ~a~b] = ~[aVb] (where we have set /La = ~a since T' is one-dimensional). This
latter condition is equivalent to ~[a Vb~c] = 0, and thus we see that the necessary and
sufficient condition that ~a be hypersurface orthogonal is

~[a Vb~c] = 0 (B.3.6)



APPENDIX C

MAPS OF MANIFOLDS, LIE DERIVATIVES, AND KILLING
FIELDS

This appendix deals with topics related to the maps induced on tensor fields by maps
between manifolds. As will be shown in section C.I, if we have a map, 4>:M -+ N,
between manifolds M and N, we can use 4> to bring upper index tensor fields from
M to N and lower index tensor fields from N to M. If 4> is a diffeomorphism, all types
of tensor fields can be carried from M to N or from N to M. An important special case
of this result occurs when 4>1: M -+ M is a one-parameter family of diffeomorphisms
generated by a vector field va. We can compare a given tensor field with the new
tensor field that arises from the action of 4>1 for small t. As will be shown in section
C.2, this gives rise to the notion of the Lie derivative with respect to the vector field
va. Finally, a vector field which generates a one-parameter group of isometries is
called a Killing vector field. Using the general formulas for Lie derivatives, an
equation for Killing fields is easily obtained and some important properties of them
are derived in section C.3.

C.1 Maps of Manifolds
Let Mand N be manifolds (not necessarily of the same dimension) and let

ljJ:M-+Nbe a Coo map. In a natural manner, 4> "pulls back" a functionf:N-+ IR on
N to the function fo4>:M-+ IR obtained by composing f with 4>. Similarly, in a
natural way, 4> "carries along" tangent vectors at p E M to tangent vectors at
ljJ(p) EN-i.e., it defines a map 4>': Vp -+ \1q,(p)-as follows: For v E Vp we define
ljJ'v E V<f>(p) by

(4)'v)(f) = v(fo4» (C.l.I)

for all smooth f: N -+ IR, where we have dropped the vector indices on v and 4>'v
since that notation is inconvenient here. It is easy to check that 4>'v satisfies the
properties required of a tangent vector at 4>(p) and thus equation (C.l.I) properly
defines the map 4>'. Note that 4>' is linear and may be viewed as the "derivative of
ljJ" at p. [The matrix of components of 4>' in the coordinate bases of a coordinate
system {XV} at p and a coordinate system {yIL} at 4>(p) equals the Jacobian matrix of
the map 4> between the coordinates, i.e., (4)')IL v = ayILjax V

.] By the implicit func
tion theorem, 4>: M -+N will be one-to-one in a neighborhood of p if 4>': Vp -+ V<f>(P)

is one-to-one.

437
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Similarly, we can use 4> to "pull back" dual vectors at 4>(p) to dual vectors at p.
We define the map 4>,: V;(p)~ Vp' by requiring that for all va E Vp,

(4),/L)ava = /La(4)'v)a (C. 1.2)

We can extend the action of 4>, to map tensors of type (0, I) at 4>(p) to tensors of
type (0, I) at p by

(4),T)al .. oaJVltl • .. (Viti = Tal· 0 oa/(4)'Vltl ... (4)'Vltl (C.l.3)

Similarly, we can extend the action of 4>' to map tensors of type (k, 0) at p to tensors
of type (k,O) at 4>(p) by

(4)'Tl I OOO bk(/Llhl • .. (/Lk)bk = T bl·oo bk(4),/LI)bl ..• (4),/Lk)bk (C.IA)

(By eq. [C.1.2], this is consistent with our original definition of 4>' on vectors.)
However, in general we cannot extend 4>* or 4>, to mixed tensors since 4>' does not
know how to "carry along" lower index tensors, while 4>, does not know how to "pull
back" upper index tensors.

As defined in chapter 2, a Coo map 4>:M~ N is said to be a diffeomorphism if it
is one-to-one, onto, and its inverse is Coo. If 4> is a diffeomorphism (which necessarily
implies dim M = dim N), then we can use 4>-1 to extend the definition of 4>' to
tensors of all types by using the fact that (4)-1)* goes from V<f>(p) to Vp. If TbioO obkal· 0 0al
is a tensor of type (k, I) at p, we define the tensor (4)'T)blo

0 obkalo ooal at 4>(p) by,

(4)'Tllooobkaloooal(/Llhl·· . (/Lk)bk(tlt l . .. (tltl

= Tblooobkaloooa/(4),/LI)bl··· ([4>- lrtl )al (C. 1.5)

Similarly, we could extend the map 4>, to all tensors. However, it is not difficult to
show that 4>, = (4)-1)*, so we need only consider 4>' and (4)-1)*.

If 4>:M~ M is a diffeomorphism and T is a tensor field on M, we can compare
Twith 4>'T. If 4>*T = T, then even though we have "moved T" via 4>, it has "stayed
the same." In other words, 4> is a symmetry transformation for the tensor field T. In
the case of the metric gab' a symmetry transformation-i.e., a diffeomorphism 4>
such that (4)'g)ab = gab-is called an isometry.

We have already remarked in chapter 2 that if 4>:M~ N is a diffeomorphism,
than M and N have identical manifold structure. If a theory describes nature in terms
of a spacetime manifold, M, and tensor fields, T(l), defined on the manifold, then if
4>:M~ N is a diffeomorphism, the solutions (M, T(i) and (N, 4>'T(i) have phys
ically identical properties. Any physically meaningful statement about (M, T(i) will
hold with equal validity for (N, 4>'T(i). On the other hand, if (N, T'(i» is not related
to (M, T(i) by a diffeomorphism and if the tensor fields T(i) represent measurable
quantities, then (N, T'(i) will be physically distinguishable from (M, T(i). Thus, the
diffeomorphisms comprise the gauge freedom of any theory formulated in terms of
tensor fields on a spacetime manifold. In particular, diffeomorphisms comprise the
gauge freedom of general relativity.

It is worth noting that an alternative viewpoint on diffeomorphisms can be taken.
Above, we have discussed diffeomorphisms without introducing or making any



(C.2.1)

C.2 Lie Derivatives 439

reference to coordinate systems. We have taken an "active" point of view by asso
ciating with 4> a map from tensors at p to tensors at 4>(p). However, if we are given
a coordinate system {x IL} covering a neighborhood, U, of p and a coordinate system
{yIL} covering a neighborhood, V, of 4>(p), we may take the following "passive"
point of view. We may use 4> to define a new coordinate system X'IL in the neigh
borhood 0 = 4>-I[V] of p by setting X'IL(q) = y/.L(4)(q)) for q E O. We then may
view the effect of 4> as leaving p and all tensors at p unchanged, but inducing the
coordinate transformation x lL -+ X'IL. This "passive" point of view on dif
feomorphisms is, philosophically, drastically different from the above "active" view
point, but, in practice, these viewpoints are really equivalent since the components
of the tensor 4>*T at 4>(p) in the coordinate system {yIL} in the active viewpoint are
precisely the components of T at p in the coordinate system {x' IL} in the passive
viewpoint.

C.2 Lie Derivatives
Let M be a manifold and let 4>, be a one-parameter group of diffeomorphisms. As

discussed in section 2.2, 4>, will be generated by a vector field, va. By the results of
the previous section, we can use 4>,* to carry along a smooth tensor field TOI ' . 'Okbl ' .'br
Comparison of TOI ' , .Okbl ... bl and 4>:, TOI " 'Okbl ' .. bl for small t gives rise to the notion
of the Lie derivative, iv, with respect to va. More precisely, we define £v by

{

,I.. * TOI'" Ok TOI ., 'ok }
£ TOI' "ok = l' '/'-' bl' "bl - bl'" 'bl

v bl' '"bl 1m
,....0 t

where all tensors appearing in equation (C.2.1) are evaluated at the same point p.
Note that the vector index on VO is dropped in the symbol £v since its presence could
lead to confusion.

It follows immediately from its definition, equation (C.2.1), that £v is a linear map
from smooth tensor fields of type (k, I) to smooth tensor fields of type (k, I). It also
is not difficult to show (see eq. [C.2.4] below) that £v satisfies the Leibnitz rule on
outer products of tensors. Furthermore, since VO is tangent to the integral curves of
4>" for functions f: M -+ IR we have

£v(f) = v(f) (C.2.2)

Note also that £v TOI .. 'Okbl ' .'bl = 0 everywhere if and only if for all t, 4>, is a symmetry
transformation for TOI ' , 'Okbl ' , ,br

To analyze the action of £v on an arbitrary tensor field, it is helpful to introduce
a coordinate system on M where the parameter t along the integral curves of v ° is
chosen as one of the coordinates x I , so that v° = (a/ax It. (This always can be done
locally in any region where VO *' 0.) The action of 4>-, then corresponds to the
coordinate transformation x l -+ Xl + t, with x 2, • . . ,xn held fixed. From the paren
thetical remark below equation (C.l.l), we have (4)*)ILv = i)ILv and hence, the coor
dinate basis components of 4>:, TOI ' .. Okbl ' .'bl at the point p whose coordinates are
(Xl, ... ,xn) are

( ,I.. * TILl'" ILk )( I n) - TILl'" ILk (I + t 2 n)'/'-' VI'" VI X , ... ,X - vI'" VI X , X , ... ,X , (C.2.3)
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Consequently, the components of the Lie derivative of Pl' .. Okbl ... bl in a coordinate
system adapted to VO are simply

(//'IL I ... ILk
£ TILl'" ILk = VI' .• vI

v VI'''V/ ax l (C.2A)

Thus, in particular, 4>1 will be a symmetry transformation of Pi ... Okbl ... bl if and only
if the components TILl" .ILkv1 ..• VI in a coordinate system adapted to v °are independent
of the integral curve coordinate Xl.

We can obtain a coordinate independent expression for the Lie derivative of a
vector field WO by noting that in an adapted coordinate system we have by equation
(C.2A),

(C.2.5)

On the other hand, since VO = (aj axly and WO = L wIL(aj axILy, the commutator of
VO and WO is given by IL

(C.2.6)

Thus, we find that the components of £vw° and [v, w]O are equal in an adapted
coordinate system. However, since both of these quantities are defined in a
coordinate-independent manner, we obtain

£vwo = [v,w]O (C.2.7)

which is the coordinate-independent formula we sought for the Lie derivative of a
vector field.

The action of the Lie derivative on all other types of tensor fields is determined
by equations (C.2.2), (C.2.7) and the Leibnitz rule. For example, for a dual vector
field, JLo, we have by equation (C.2.2)

£v(JLoWO) = v(JLoWO) (C.2.8)

where WO is an arbitrary field. On the other hand, by the Leibnitz rule and equation
(C.2.7), we have,

(C.2.9)

From the equality of the right sides of equations (C.2.8) and (C.2.9) we obtain a
formula which determines £vJLo' This formula is most conveniently expressed in
terms of a derivative operator. If Vo is an arbitrary derivative operator on M, we have
by properties (4) and (2) of the definition of derivative operator (see section 3.1)

v(JLoWO) = VbVb(JLoWO)

(C.2.1O)
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On the other hand, we showed previously (see eq. [3.1.2]) that

[v, w]a = VbVbW a - WbVbV a

Thus, we find

VbWaVbtLa + VbtLa Vbw a = w a£vtLa + tLaVbVbWa - tLaWbVbVa

Le. ,

(C.2.11)

(C.2.12)

(C. 2.13)

More generally for an arbitrary tensor field Pi'" akbl ' , .bl we find by induction that
k

£ T al" 'ak = ct"7 Tal" ,ak _ ~ Tal' "C'· 'ak t"7 aiv bl"'b/ V Vc bl'''bl L.. bl"'b/VcV
i=1

(C.2.14)

Again, we emphasize that equation (C.2.14) holds for any derivative operator Va'
Finally, we already remarked in section C.I above that if 4>: M~M is a dif

feomorphism, then (M, gab) and (M, 4>*gab) represent the same physical spacetime. If
we consider a one-parameter family of spacetimes (M,gab(A», then (M, 4>;gab (A»
represents the same physical one-parameter family, where 4>A is an arbitrary one
parameter group of diffeomorphisms. If, as in sections 4.4 and 7.5, we consider the
first order perturbation of gab IA=O obtained by differentiating gab(A) with respect to
A at A = 0, we find that 'Yab = dgab/dAIA=O and 'Y~b = d(4);gab)/dAIA=O represent
the same physical perturbation. But, it is not difficult to see that

(C.2.15)

where va is the vector field which generates 4>A and gab = gab(A = 0). Thus, the
gauge freedom in perturbations, 'Yab, is given by £vgab, where va is an arbitrary vector
field. Furthermore, by equation (C.2.14) we have

£vgab = vCVcgab + gcbVav c + gac Vbv c

(C.2.16)

where the second line of equation (C.2.16) holds when v" is the derivative operator
associated with gab. Thus, the gauge transformations of linearized general relativity
about a solution gab are

(C.2.17)

This is closely analogous to the gauge freedom Aa~A; = Aa - VaX of electro
magnetism.

C.3 Killing Vector Fields
If 4>1:M~M is one-parameter group of isometries, 4>1* gab = gab, the vector field

ga which generates 4>1 is called a Killing vector field. As already remarked below
equation (C.2.2), the necessary and sufficient condition for 4>1 to be a group of
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isometries is £ggab = O. Thus, according to equation (C.2.16), the necessary and
sufficient condition that ga be a Killing field is that it satisfy Killing's equation

(C.3.1)

where Va is the derivative operator associated with gab.
One of the most useful properties of Killing vector fields is given in the following

proposition.

PROPOSITION C.3.l. Let ga be a Killing vector field and let 'Y be a geodesic with
tangent ua. Then gaua is constant along 'Y.

Proof. We have

=0 (C.3.2)

since the first term vanishes by Killing's equation (C.3.1) and the second term
vanishes by the geodesic equation. D

Since in general relativity timelike geodesics represent the spacetime motions of
freely falling particles and null geodesics represent the paths of light rays, proposi
tion C.3.1 can be interpreted as saying that every one-parameter family of sym
metries gives rise to a conserved quantity for particles and light rays. This conserved
quantity enables one to determine the gravitational redshift in stationary spacetimes
and is extremely useful for integrating the geodesic equation when symmetries are
present (see section 6.3).

Another useful formula relates the second derivative of a Killing field to the
Riemann tensor. By definition of the Riemann tensor, we have

Va vbge - Vb vage = Rab/gd (C.3.3)

On the other hand, by Killing's equation, we can rewrite equation (C.3.3) as

Va vbge + Vb vega = Rab/gd (C.3.4)

If we write down the same equation with cyclic permutations of the indices (abc),
and then add the (abc) equation to the (bca) equation and subtract the (cab) equation,
we obtain

2Vb vega = (Rabe d + Rhead - Reab d)gd

= -2Reab dgd (C.3.5)

where the symmetry property (3.2.14) of the Riemann tensor was used in the last
equality. Thus, for any Killing field ga, we obtain the formula

Va vbge = -Rhe/gd (C.3.6)

An important consequence of equation (C.3.6) is that a Killing field, ga, is
completely determined by the values of ga and Lab == vagb at any point p EM;
namely, if we are given (ga, Lab) atp, then (ga, Lab) at any other point q is determined
by integration of the system of ordinary differential equations
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vavagb = vaLab (C.3.7)

vaVaLbc = -Rbc/gdva (C.3.8)

along any curve connecting p and q, where va denotes the tangent to the curve.
Immediate corollaries of this result are (i) if a Killing field and its derivative vanish
at a point, then the Killing field vanishes everywhere, and (ii) on a manifold of
dimension n, there can be at most n + n(n - 1)/2 = n(n + 1)/2 linearly indepen
dent Killing fields [and, thus, at most an n(n + 1)/2 parameter group of isometries],
since this is the dimension of the space of initial data for (ga, Lab)'

It is worth noting that if we contract equation (C.3.6) over a and b, we find

(C.3.9)

Thus, in a vacuum spacetime, Rc d = 0, ga satisfies the source-free Maxwell equation
(4.3.15) for a vector potential in the Lorentz gauge. (There is a sign difference in the
Ricci tensor term between eqs. [4.3.15] and [C.3.9], so Maxwell's equation is not
satisfied when Rab *" 0.) The Lorentz gauge condition vaga = 0 is also satisfied
because of Killing's equation, and thus all Killing fields in vacuum spacetimes give
rise to solutions of Maxwell's equation. Some solutions of physical interest can be
obtained in this way (Wald 1974b).

In the case of a hypersurface orthogonal Killing vector field, Xa
, we can obtain a

simple formula for v"Xb • By Frobenius's theorem B.3.2, there exists a vector field
va such that

(C.3.1O)

(C.3.11)

Assuming that Xa is not null, we may choose va to be orthogonal to Xa. Contracting
equation (C. 3.10) with Xb, we obtain

In b _ 1 b"2 Va (X Xb) - - "2 vaX Xb

Hence, by solving equation (C.3.11)for va and substituting the result in equation
(C.3.1O), we find that an arbitrary hypersurface orthogonal Killing field xa with
xaXa *" 0 satisfies

(C.3.12)

Finally, we mention two generalizations of the notion of Killing vector fields.
First, a conformal isometry, 4>, on a manifold, M, with metric, gab, is defined to be
a diffeomorphism 4>: M -+ M for which there is a function n such that
4>'gab = n2gab. (The fact that 4> is a diffeomorphism implies that n is nonvanishing.
The case n = 1, of course, corresponds to an ordinary isometry.) The infinitesimal
generator, tfI', of a one-parameter group, 4>/0 of conformal isometries is called a
conformal Killing vector field. Clearly, the Lie derivative of gab with respect to rfJa
must be proportional to gab' Thus, tfI' satisfies

(C.3.13)
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where v" is the derivative operator associated with gab. Taking the trace of equation
(C.3.13), we evaluate the function a, thus obtaining

Varf!b + Vbrf!a = '!:.(vcrf!c)gab
n

where n = dim M. Equation (C.3.14) is known as the conformal Killing equation.
In Proposition C. 3.1, we proved that for any geodesic with tangent u a and for any

Killing field ga, the inner product, gaua, is constant along the geodesic. The same
calculation for a conformal Killing field yields

1
UbVb(rf!aUa) = -(vcrf!c)UbUb (C.3.15)

n

Thus, in general, rf!aua is not constant along a geodesic. However, for a null geodesic
we have UbUb = 0, so the right-hand side of equation (C.3.15) vanishes. Thus,
conformal Killing fields give rise to constants of motion for null geodesics.

The second generalization we mention of a Killing vector is that of a Killing
tensor. A Killing tensor field of order m on a manifold M with derivative operator
Va is defined to be a totally symmetric m-index tensor field, Kal ·· 'am = K(al" .a,,;),
which satisfies the equation

(C.3.16)

Although equation (C.3.16) is a natural generalization of Killing's equation (C.3.1),
it should be noted that (aside from Killing vectors or Killing tensors formed from
products of Killing vectors) Killing tensor fields do not arise in any natural way from
groups of diffeomorphisms of M. However, Killing tensors share with Killing
vectors the property of giving rise to constants of the motion: A repetition of the
proof of Proposition C. 3.1 shows that for any geodesic y with tangent u a, the
quantity Ka! ... amual ... u am is constant along y. The Kerr metric (see chapter 12)
possesses a nontrivial Killing tensor Kab , and the constant of motion to which it gives
rise (together with the constants obtained from the two Killing vectors) enables one
to obtain all the geodesics explicitly.



APPENDIX D

CONFORMAL TRANSFORMATIONS

Let M be an n-dimensional manifold with metric gab of any signature. If n is a
smooth, strictly positive function, then the metric gab = nZgab is said to arise from
gab via a conformal transformation. It should be emphasized that a conformal trans
formation is not, in general, associated with a diffeomorphism of M. [As discussed
at the end of Appendix C, a diffeomorphism r/J:M -+ M for which (r/J*g)ab = nZgab
is called a conformal isometry.] Conformal transformations occur in many contexts
in general relativity, in particular, in the definiton of asymptotic flatness (chapter 11).
The derivative operator and curvature of gab are related in a relatively simple way to
those of gab' In this appendix we derive these relations and also discuss the behavior
under conformal transformations of solutions to some equations.

First, we note that in the case where gab is a Lorentz metric, a vector va is timelike,
null, or spacelike with respect to the metric gab if and only if it satisfies the same
property with respect to gab' Thus, (M, gab) and (M, gab) have identical causal struc
ture. Conversely, if the light cones of two Lorentz metrics gab and gab coincide at a
point p E M, then at p, gab must be a multiple of gab, gab = nZgab . [Proof-Let to,
x?, ... , x~-J, be an orthonormal basis of gab' Then to ± xf is null with respect to
gab and hence with respect to gab, which implies that, with respect to gab, to and xf
are orthogonal and their norms have the same magnitude. The fact that
to + 2- 1/ Z(xf + xj) is null for i =1= j then shows that xf is orthogonal to xj. Thus,
apart from a constant multiple, to, x?, ... , X~-l is an orthonormal basis of gab']
Consequently, if the spacetimes (M, gab) and (M, gab) have identical causal structure,
then gab must be related to gab by a conformal transformation.

Since in the situation under consideration two metrics, gab and gab, are present,
confusion can arise as to which metric is being used to raise and lower indices. We
shall deal with this problem by explicitly writing the metric in all formulas in which
indices are raised or lowered. We shall denote the inverse metric to gab as gab and
the inverse metric to gab as gab. Clearly, we have gab = n-Zgab, since then
gabgbc = gabgbc = i)ac. Note that gab is not equal to gab with indices r!lised by gab.

Let Va denote the derivative operator associated with gab, and let Va denote the
derivative operator associated with gab. The relation between Va and Va is given by
equations (3.1.7) and (3.1. 28). Reversing the roles of Va and Va in these equa
tions (so that CCab now is defined by VaWb = VaWb - CCabWc), we find

(0.1)
445
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However, since Vagbc = 0, we have

Vagbc = Va(,{Vgbc) = 2ngbc Van (0.2)

Hence, we obtain

CCab = n-lgcd{gbdVan + gadVb n - gob Vdn}

= 2i)c(a Vb)In n - gabgcdVd In n (0.3)

which expresses CCab in terms of n and gab.
We can use equation (0.3) to compare the geodesics with respect to v:. with

those with respect to Va' The tangent, va, to an affinely parameterized geodesic 'Y
with respect to Va satisfies

Hence, we have

VaVav b = VaVav b + vaCbaevc = 2v bv cVc In n - (gacvaVc)gbdVd In n . (0.5)

Thus, in general 'Y fails to be a geodesic with respect to Va' However, in the case of
a null geodesic, gacvavc = 0, equation (0.5) is just the (non-affinely parameterized)
geodesic equation (3.3.2) with a = 2v cVc In n. Thus, null geodesics are con
formally invariant, Le., the null geodesics with respect to Va coincide with those
with respect to Va, with the affine parameter ~ for Va-geodesics related to the affine
parameter A for Va-geodesics by

(0.6)

where c is a constant.
The relation between the curvature, Robc d, associated with Va and the curvature,

Rob/, associated with Va is given by equation (7.5.8). Hence, using our formula
(0.3) for CCob , we find

Rabc d = Robcd - 2VraCdb]c + 2Cec[aCdb]e

= Robcd + 2i)d[a V\,]Vc In n - 2g de gc[a Vb]v" In n

+ 2(V[a In n)i)db]vc In n - 2(Vra In n)gb]cg~ In n

- 2gc[ai)db]gef (v" In n)~ In n (0.7)

Contracting over b and d, we obtain

Rae = Rae - (n - 2)VaVc In n - gaegdeVd v" In n

+ (n - 2)(Va In n)Vc In n - (n - 2)gaeg de(Vd In n)Ve In n (0.8)

Contracting equation (0.8) with gae = n-zgac , we obtain

R = n-Z{R - 2(n - l)gaeVaVc In n
- (n - 2)(n - l)gac(Va In n)Vc In n} (0.9)
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where R == gabRab andR == gabRab . Finally, from the definition of the Weyl tensor,
equation (3.2.28), we find that Cabe d is unchanged by a conformal transformation of
the metric,

Cabe d = Cabe d (0.10)

(0.13)

(Note, however, that because it would be natural to use different metrics to raise and
lower indices on Cabe d and Cabe d, the equality of Cabe d and Cabe d depends crucially
on the index positions. For example, we have Cabed == gdeCabe e = 02gdeCabe e =
02Cabed.) Equations (0.8)-(0.10) are the desired formulas expressing how curvature
is changed by conformal transformations.

Next, we analyze the conformal invariance of certain equations involving the
metric. An equation for a field 'I' is said to be conformally invariant if there exists
a number s E IR (called the conformal weight of the field) such that 'I' is a solution
with metric gab if and only if~ = OS'I' is a solution with metric gab = 0 2gab. Many
equations for physical fields are conformally invariant, and the study of the behavior
of equations under conformal transformations also is useful for many mathematical
purposes.

As a first example, we show that the equation

gab'Va Vb</J = 0 (0.11)

for a scalar field is not conformally invariant if dim M '* 2. (In the case of a
Riemannian metric, eq. [0.11] is a natural generalization of Laplace's equation to
curved space. For a Lorentz metric, eq. [0.11] is the massless Klein-Gordon equa
tion considered in chapters 4 and 10.) We have

gabVaVb (4)) = O-ZgabVa[Vb(OS</J)]

= o-Zgab['Va Vb (os</J) - CabVe(os</J)]

= os-ZgabVaVb</J + (2s + n - 2)0s-3gab'VaOVb</J

+ sOs-3 </Jg ab'Va Vb 0

+ s(n + s - 3)os-4</Jgab'VaOVbO (0.12)

Thus, if n = 2, we may choose s = 0 and equation (0.12) then implies
gabVaVb 4> = 0 if and only if gabVaVb</J = O. However, if n '* 2, no choice of swill
make gabt Vb 4> vanish whenever gabVaVb</J vanishes. Thus, equation (0.11) is not
conformally invariant except in two dimensions.

However, for n > 1, it is possible to modify equation (0.11) in a simple manner
so that it becomes conformally invariant. First, if we choose s = 1 - n/2 then
'VaOVb</J term in equation (0.12) will be eliminated. Using this choice of s and the
behavior of the scalar curvature, R, under conformal transformations given by
equation (0.9), we find that for n '* 1 the addition of the term aR</J to equation
(0.11) will cancel the </JgabVaVbO term and the </JgabVaOVbO in equation (0.12)
provided we choose a = -(n - 2)/4(n - 1). Thus, the equation

ab'M 'M n - 2 R...I. - 0
g Va Vb</J - 4(n - 1) '1'-



(D.17)

(D.15)

(D.16)
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is conformally invariant, with weight s = 1 - n/2, since we have

(gabVaVb - 4~ -=- 21) R)[Ol-n/Z¢J=

O-I-n/Z[gabVV. - n - 2 RJA. (D. 14)
a b 4(n - 1) 'f'

Thus, equation (D.13) provides a conformally invariant generalization to curved
geometry of the Laplace and Klein-Gordon equations in flat spaces.

Next, we demonstrate that Maxwell's equations,

gac'Vc Fab = 0

~aFbc] = 0

are conformally invariant in four dimensions. We have

gacVc(osFab) = O-zgac{Vc(osFab) - CdcaosFdb - CdcbosFad}

= OS-Zgac'VcFab + (n - 4 + S)os-3 gacFab VcO

On the other hand, we have

\1a<osFbc]) = OS~aFbc] + sOS-I(~aO)Fbc] (D.18)

Thus, inspection of equations (D.17) and (D.18) shows that for n '* 4 Maxwell's
equations fail to be conformally invariant, but in the physically relevant case of four
dimensions, conformal invariance holds with conformal weight1 s = O.

Finally, we note the conformal invariance properties of the conservation equation,

Va Tab = 0 (D.19)

for a symmetric tensor field Tab = TOO. We have

Va(OSTab) = Va(OSTab) + CaacosTcb + CbacosTac

= osv"Tab + (s + n + 2)f!s-ITabv"O - OS-lgOOTv"O (D.20)

where T = gcdTcd. Thus, we see that equation (D.19) is not conformally invariant.
However, if we impose in addition to equation (D.19) and Tab = TOO the requirement
that T = 0, then equation (D.19) becomes conformally invariant with s = -n - 2.
Conversely, suppose that the stress-energy tensor of a conformally invariant field is
itself conformally invariant in the sense that Tab -+ jab = OWTab under conformal
transformations of the metric and field variables. (This will be the case if Tab is
obtained by functional differentiation of a conformally invariant action with respect
to the metric [see appendix E]. We use the notation w rather than s here because the
conformal weight of Tab need not be equal to the conformal weight of the field.) Then

1. Note that for a tensor field, the assignment of conformal weight depends on index positions; i.e.,
the confonnal weight of Fob would be s = -4. An invariant notion of confonnal weight is
s' = s - Nt + N., where Nt is the number of "lower indices" and N. is the number of "upper indices"
of the tensor. Thus, the invariant conformal weight of the Maxwell field is -2.
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the conservation equation must be satisfied in both the original and conformally
transformed spaces. Hence, equation (0.20) shows that we must have T = 0 (as well
as w = -n - 2). Thus, if the stress tensor of a conformally invariant field is
conformally invariant, its trace must vanish identically.



APPENDIX E

LAGRANGIAN AND HAMILTONIAN FORMULATIONS OF
GENERAL RELATIVITY

The dynamical content of general relativity is fully expressed by Einstein's field
equation, Gab = 87TT.,b. Nevertheless, even in a purely classical (Le., non-quantum)
context, it is convenient and useful for many purposes to have Lagrangian and
Hamiltonian formulations of general relativity. For example, as we shall see below,
Einstein's equation can be derived from a very simple and natural Lagrangian, thus
contributing further to the aesthetic appeal of general relativity. The Hamiltonian
formulation yields insights into the nature of dynamics of general relativity. Indeed,
although we analyzed the initial value formulation of general relativity in chapter 10
using only the field equation, the viewpoint that Einstein's equation describes the
evolution of the spatial metric, hab , with "time" is perhaps best motivated via the
Hamiltonian formulation. In addition, the Hamiltonian formulation also motivates
the definition given in chapter 11 of the total energy at spatial infinity of an asymp
totically flat spacetime.

However, an even stronger reason for studying the Lagrangian and Hamiltonian
formulations of general relativity arises from the desire to obtain a quantum theory
of gravitation. Although the entire content of a classical field theory is expressed by
the field equation, most prescriptions for formulating a quantum field theory associ
ated with the classical theory require that the classical theory be expressed in a
Lagrangian or Hamiltonian form. In particular, the path integral formulation requires
that one have an action principle at the classical level-i.e. , it requires a Lagrangian
formulation of the classical theory-while the canonical quantization procedure
requires that the classical field theory be cast in Hamiltonian form. Thus, the
Lagrangian and Hamiltonian formulations of general relativity may play an im
portant role in the development of a quantum theory of gravity (see chapter 14).

E.1 Lagrangian Formulation
We begin our discussion by explaining what we mean by a Lagrangian formulation

of a field theory. Consider a theory involving a tensor field (or collection of tensor
fields) defined on a manifold M. We shall suppress all indices and denote the field
(or fields) by 1/1. Let S[I/I] be a functional of 1/1, Le., S is a map from field
configurations on M into numbers. Let 1/1>. be a smooth one parameter family of field
configurations starting from 1/10 which satisfy appropriate boundary conditions. We
denote dl/l>./dA I>'=0 by 51/1. Suppose dS/dA at A = 0 exists for all such one-parameter

450
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families starting from l/Jo. Suppose, furthennore, that there exists a smooth tensor
field X [which is dual to 1/1, i.e., if 1/1 is a tensor field of type (k, l), then X will be
of type (l, k)] such that for all such families we have

d8 L- = X ~I/I
dA. M

(E.l.l)

where contraction of all indices in the integral is understood. Then we say that 8 is
functionally differentiable at 1/10' We call X the functional derivative 1 of 8 and denote
it as

X = ~I ~o
Consider, now, a functional 8 of the fonn

8[1/1] = L':£[1/1]

(E.l.2)

(E.l.3)

where .:£ is a local function of 1/1 and a finite number of its derivatives, i.e.,

.:£ Ix = .:£( 1/1(x) , V1/1(x) , ... , Vk 1/1 (x» (E.l.4)

(E. 1.5)

Suppose that 8 is functionally differentiable and that the field configurations 1/1 which
extremize 8,

58 I 0~I/I ~ =

are precisely the ones which are solutions of the field equation for 1/1. Then 8 is called
an action, .:£ is called a Lagrangian density, and the specification of such an .:£ is
what we mean by a Lagrangian fonnulation of the field theory.

Thus the notion of a Lagrangian fonnulation of a field theory is closely analogous
to that of a Lagrangian fonnulation in ordinary particle mechanics. In particle
mechanics one specifies an action functional of the particle path as an integral of a
Lagrangian function over the path. The variational problem analogous to (E.I.5) is
made precise by focusing attention on paths of finite length and extremizing the
action wih respect to path variations which keep the path endpoints fixed. By
analogy, to make our variational problem in the field case precise, we shall focus
attention on a compact region, U, of M and will consider one-parameter families I/IA
which keep fixed the value of 1/1 on the boundary, V.

As a simple example, we give a Lagrangian fonnulation of the theory of a
Klein-Gordon scalar field ¢ in Minkowski spacetime. We define

(E.l.6)

1. More generally, if there exists a tensor distribution X such that dS/ dA 1.=0 = X[lll{JJ, we also say
that S is functionally differentiable and refer to X as the functional derivative of S at 1/10.
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(Here, the normalization of 5£KG is chosen for later convenience in defining conjugate
momenta [see section E.2].) We obtain

~~G IA=O = - f [aa¢oaa(5¢) + m
2
¢o(5¢)]

(E.l.?)

(E.l.8)

(E.l.9)

where the natural volume element on Minkowski spacetime is understood in the
integrals, and the boundary term in the integration by parts does not contribute on
account of our boundary condition on ¢A, which requires 5¢ = 0 on the boundary.
Thus, SKG is functionally differentiable and we have

~¢G = aaaa¢ - m 2¢

Consequently, equation (E.l.5) is just the Klein-Gordon equation (4.2.19), as de
sired. Similarly, the function

5£EM = -~.FabFab = -qaAb]a[aAb]

of the field variable Aa is a Lagrangian density for Maxwell's equations in Minkowski
spacetime. Indeed, equations (E.I.6) and (E.I.9) often are taken as the starting point
for the study of Klein-Gordon and Maxwell fields: One writes down the simple and
natural scalar functions 5£KG or 5£EM and obtains the field equations via equation
(E.l.5).

For general relativity, the field variable is the spacetime metric, gab, defined on a
four-dimensional manifold, M. In this case, a slight awkwardness results from the
fact the natural volume element to use in the integrals (E. I. I) and (E.I.3) is the
volume element Eabcd determined from gab via equation (B.2.9). Consequently, the
volume element itself depends on the field variable, and hence its variation must be
taken into account when calculating functional derivatives. One way to handle this
situation would be to define 5£ to be a totally antisymmetric four-index tensor rather
than a scalar, i.e., to incorporate the volume element into 5£. This would require us
to make a similar modification of our definition of functional derivatives. Instead we
shall follow the considerably less cumbersome procedure of introducing a fixed
volume element eabcd = e[abcd] on M and defining all integrals over M to be with
respect to eabcd rather than Eabcd' One way to do this (at least over a portion of M)
would be to choose a coordinate system and take eabcd to be the associated coordinate
volume element, but we emphasize that the introduction of a coordinate system is not
necessary. Since any two volume elements differ at each point by at most a scalar
factor, we have

Eabcd = feabcd (E. l. 10)

In any basis where the nonvanishing components of eabcd have the values ± I, the
calculation which led to equation (B.2.16) for the case of a coordinate basis and its
associated volume element shows thatf = v=:g, where g denotes the determinant
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of the matrix of components, gll-P' of the metric in that basis. Hence, we shall follow
the same notational convention as used for coordinate bases in section 3.4a and
denotefas Y=g. Given the volume element eabcd on M, we define a tensor density
Ta" .bc... d to be a tensor which can be expressed in the form

Ta· .. b - ~ r-T~a···b (E 1 11)c···d - v -g c···d ..

where fa ... bc". d is a tensor whose value does not depend on the choice of eabcd. In
order that the action, S, of general relativity be independent of eabcd, it is necessary
that the Lagrangian density 5£ be a scalar density. Similarly, in order for dS/dA. to
be independent of eabcd, the functional derivatives of S must be tensor densities.

We now shall demonstrate that---except for boundary terms to be dealt with
later-the scalar density

5£G = Y=gR (E. 1.12)

(E.l.13)

is a Lagrangian density for the vacuum Einstein equation. The corresponding action

S[gab] = J5£Ge

is known as the Hilbert action. Here we have written e (using the differential forms
notation of appendix B) in order to emphasize our use of this volume element. In
addition, for convenience, we have taken the inverse metric gab as the field variable
rather than gab. For a one-parameter variation we define 5g ab to be dg ab/ dA.. How
ever, in order to use without modification the results of section 7.5 where gab was
used as the independent variable, we shall define 5gab = dgab / dA.. Thus, we warn the
reader that, since gac gcb = 5\. we have 5gab = - gacgbd5gcd, Le., in this section we
will not use the unperturbed metric to raise and lower indices of the metric per
turbations. Note also that since gab and hence 5gab must be symmetric, one can add
an antisymmetric tensor to any functional derivative with respect to gab without
affecting equation (E.1.1). We eliminate this arbitrariness by requiring that all such
functional derivatives be symmetric.

For a one-parameter family starting from gab, we have

From equation (7.5.14) of chapter 7, we have

gab 5Rab = Vava

where

Va = Vb(5gab) - gCdv,,(5gcd)

In addition, using equation (9.3.11), we have

5(Y=g) = ~Y=ggab5gab

= _!Y=ggab5gab
2

(E. 1. 14)

(E.1.15)

(E.1.16)

(E.1.17)
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Thus we obtain

The first term in equation (E.l.18) is the integral of a divergence, vava, with respect
to the natural volume element E = v=g e. Hence, by Stokes's theorem this integral
contributes only a boundary term. In fact, this term does not vanish for general
variations where gab is held fixed on the boundary, although it does vanish for
variations where the first derivatives of gab also are held fixed. However, in order to
simplify the discussion here, we shall ignore this contribution for the present. (At the
end of this section we shall calculate this term and show how to modify SG to cancel
its contribution.) Thus discarding the boundary term, we find

:~ = v=g (Rab - ~Rgab)

and equation (E. 1.5) is seen to be equivalent to Einstein's equation in vacuum, as
desired. Thus, from the Lagrangian viewpoint, Einstein's equation arises in a very
natural way, since the Lagrangian density of equation (E.l.12) is unquestionably one
of the simplest scalar densities which can be constructed from the spacetime metric.

It is interesting to note that instead of viewing the metric alone as the field variable
for general relativity, we could view the metric and the derivative operator v" as
independent variables. Remarkably, if we use the same Lagrangian density (E.l.12)
but now view Rab as a function of the derivative operator alone (Le., independent of
gab) and vary the Palatini action,

g'G[gab, Va] = Jv=gRabgabe (E. 1.20)

with respect to both gab and Va, we recover Einstein's equation (E.l.19) together with
the metric compatibility condition Vcgab = 0 on the derivative operator. To prove
this we begin by noting that since v" can be expressed in terms of an arbitrary fixed
derivative operator Va and a tensor field C Cab (see section 3.1), variation of Va is
equivalent to variation of Ccab. In considering one parameter variations of gab and v",
it will be convenient to choose Va to be the derivative operator compatible with gab
at A = O. The key change from the previous calculation is that we must use equation
(7.5.10) rather than equation (7.5.14) to evaluate SRab . We find at A = 0

d~G = -2 JgabVraSCcc]b v=ge + J(Rab - ~Rgab)sgabv=ge

-2 Jgab\1a SCcc]b v=g e

+ Jgab[CdabSCCcd + CCcdSCdab - 2CdcbSCcad]v=ge

+ J(Rab - ~Rgab)Sgabv=ge



(E.l.21)
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= f [C bdd«5aC+ CddCgab - 2Cbca]«5ccab V"=g e

+ f (Rab - kRgab)«5gab V"=ge

Here, the first term on the right side ofthe second line vanishes by Stokes's theorem,
since Va is the metric compatible derivative operator. (In this case there is no
boundary term since we require «5Ccab to vanish on the boundary.) The vanishing of
«5':JG/«5ccab requires the term in brackets in the final equality of equation (E.l.21) to
vanish when symmetrized over a and b, which, after some algebra, implies
crab = 0, i.e., Va = Va' The vanishing of «5':JG /«5g ab yields Einstein's equation as
before.

The non-vacuum Einstein equation with matter fields such as the Klein-Gordon
scalar field or the Maxwell field also can be obtained from a Lagrangian formulation
in a very simple and natural manner. First, we must find a suitable Lagrangian
density 5£M for the matter fields in curved spacetime. In particular, for the Klein
Gordon field it is easily verified that functional differentiation with respect to ¢ of
the action, SKG, obtained from the Lagrangian density,

(E.l.22)

yields the Klein-Gordon equation (4.3.9) in curved spacetime. Similarly,

1
5£EM = -"4V"=g gacgbdFabF::d = -V"=ggacgbd~aAb]~cAi] (E.l.23)

yields Maxwell's equations in curved spacetime. To obtain the coupled Einstein
matter field equations, we construct a (total) Lagrangian density, 5£, by adding
together the Einstein Lagrangian density 5£G with a multiple of the Lagrangian
density, 5£M, for the matter field,

5£ = 5£G + aM5£M (E.l.24)

where aM is a constant. Since 5£G does not depend on the matter field, variation of
the total action, S, with respect to it will yield the same equation as variation of SM
alone. Variation of S with respect to gab yields the equation

1
Gab = Rab - 2,Rgab = 87TTab (E.l.25)

where the tensor Tab is given by

aM 1 SSM
Tab = -- ...~- (E.l.26)

87T v -g «5g ab

For the Lagrangian densities (E.l.22) and (E.l.23), it is easily verified that for
appropriate choices of aM, Tab agrees, respectively, with equations (4.3.10) and
(4.3.14). Thus, the Lagrangian density (E. 1.24) with 5£M = 5£KG and aKG = 167T
yields the coupled Einstein-Klein-Gordon equations, whereas (E.l.24) with
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5£M = 5£EM and aEM = 4 yields the Einstein-Maxwell equations. More generally, if
one takes a Lagrangian density 5£M as the starting point in the definition of a matter
field theory, then equation (E. 1.26) may be used to define the stress-energy tensor,
Tab, of that field. If the Lagrangian density for the matter field does not depend on
the choice of derivative operator v", then the Einstein-matter equations also may be
derived from variation of the sum of the Palatini action and matter action.

The matter action SM must be invariant under diffeomorphisms, i.e., iffA :M -+ M
is a one-parameter family of diffeomorphisms, we have SM[gab,I/IJ =
SM[J/gab,J/I/IJ, wheref/ is defined in appendix C. Hence, for such variations, we
have

(E. 1.27)

Recall from appendix C that for such variations, 5g ab has the general form
£wg ab = 2v(aw b), where wais an arbitrary vector field. Suppose, now, that 1/1 satisfies
the matter field equations. Then 58M / 51/1' o/J = 0 and the second term in equation
(E. 1.27) makes no contribution. Thus, using the definition (E. 1.26), we find that if
1/1 satisfies the matter field equations, then for all smooth w a of compact support, we
have

(E.I.28)

which implies that

(E.I.29)

Thus, for a diffeomorphism invariant action, Tab always is conserved by virtue of the
matter field equation. This reinforces the interpretation of Tab as representing the
stress-energy-momentum tensor of the matter field. Note also that by applying the
above argument to SG, it follows that (independent of any field equation) we have

(E. 1.30)

(E.1.3l)

Thus, in the Lagrangian formulation of general relativity, the contracted Bianchi
identity may be viewed as a consequence of the invariance of the Hilbert action under
diffeomorphisms.

In Minkowski spacetime ([R4, T/ab) there exists an alternative procedure for defining
a stress-energy tensor associated with a field 1/1 starting from its Lagrangian 5£.
Consider, for simplicity, the case where 5£ is a local function of T/ab, 1/1, and aal/l but
no higher derivatives of 1/1. Then, the equation of motion for 1/1 is

58 a5£ [a5£]o = 51/1 = al/l - aa a(aal/l)
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Here, in the case where l/Jis a scalar field a:£/a(aal/J) means the vector field va which
at each point x satisfies

(E.l.32)

(E.I.34)

for all smooth one-parameter variations of l/J which keep fixed at x the value of all
quantities upon which :£ depends except aal/J. (The components of va in a basis are
just the partial derivatives of :£ with respect to the corresponding dual basis com
ponents of aa l/J.) If l/J is a tensor of type (k, l), then va = a:£/ a(aa l/J) will be a tensor
of type (l + 1, k), with contraction of all indices understood in equation (E. 1.32).
Partial derivatives of:£ with respect to other tensor variables are defined similarly.
For an arbitrary smooth one-parameter family (l/J>., (ll>.)ab) of fields l/J>. and flat metrics
(ll>.)ab, we have

d:£ a:£ a:£ a:£
5:£ == dA = al/J 5l/J + a(aal/J) 5(aal/J) + allab 51lab (E. 1.33)

where no boundary conditions on the varied quantities need be assumed here.
Consider, now, the variations of :£ produced by a one-parameter family of dif
feomorphisms generated by a vector field gao Then equation (E. 1.33) becomes

a:£ a:£ a:£
5:£ = £~:£ = gaaa:£ = al/J£~l/J + a(aal/J/~aal/J + alla/~llab

Now restrict attention to the case where ga is a Killing field. Then the last term in
equation (E. 1.34) vanishes, and in the second term we have £~aal/J = aa(£~l/J). Using
equation (E.1.3l) to substitute for a:£/al/J, we obtain

aa[a(~~l/J/~l/J - ga:£] = 0 _.~_. (E.I.35)
----

This result is known as Noether's theorem as applied to the Poincare group of
symmetries. In particular, the validity of equation (E.l.35) for all translational
Killing fields implies that the tensor

(E.l.36)

known as the canonical energy-momentum tensor, is conserved, aasab = O. For the
Klein-Gordon field, we find that Sab agrees with Tab (up to a numerical factor), where
Tab is defined by equation (E.l.26) evaluated at Minkowski spacetime using the
curved space Lagrangian density (E.l.22). However, this agreement does not occur
for higher spin fields. Indeed, in the case of a Maxwell field, sab is not even gauge
invariant. Furthermore, in general Sab is not symmetric, nor does it naturally gener
alize to a conserved tensor in curved spacetime (Kuchar 1976). Thus we adopt Tab
as our definition of the stress-energy tensor. It is the quantity which naturally appears
on the right-hand side of Einstein's equation (E. 1.25) in a Lagrangian formulation
of the Einstein-matter field equations.

We conclude this section by evaluating the boundary term occurring in the vari-
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ation (E.I.18) of the Hilbert action when 5g ab is required to vanish on the boundary
but no conditions are placed on the derivatives of 5g ab . We have

(E. 1.37)

where na is the unit normal to the boundary 0 (which is assumed to be non-null) and
the natural volume element on 0 is understood (see appendix B). Using equation
(E.1.16), we have on 0

vana = nag bc[Vc,(5gab) - Va(5gbc)]

= nahbc[Vc(5gab) - Va(5gbc)]

= -nah bcVa(5gbc) (E. 1.38)

where hab = gab ± nanb is the induced metric on 0 (see chapter 10) and we have
h bcVc(5gab) = 0 because 5gab = 0 on O. However, the right-hand side of equation
(E.I.38) is related to the variation of the trace of the extrinsic curvature of the
boundary. We have

and hence

5K = ha
b(5C)bacn c

= ~nchabghd[Va(5gcd) + Vc(5gad) - Vd(5gac)]

I= '2nChadVc(5gad)

(E. 1.39)

(E. 1.40)

Thus, under variations of the metric for which 5gab = 0 on 0 we obtain from
equations (E.1.18), (E. 1.38), and (E. 1.40)

~: = -2 Iv 5K + Iv Gab 5g
ab

E (E.I.4I)

In fact, equation (E.I.4l) continues to hold if we allow variations of gab for which
only the induced metric on the boundary is held fixed, 5hab = O. This can be verified
directly or deduced from the fact that if 5hab = 0 on the boundary, we can find a
gauge transformation Vrah) with lb = 0 on the boundary which makes 5gab = O.
Since equation (E.1.4l) holds for all variations with 5gab = 0 on 0 and since all
terms in equation (E.1.41) are invariant under such gauge transformations, this
equation must continue to hold for variations which merely sati~fy 5hab = O.

Thus, the extremization of SG with respect to variations with 5gab = 0 or 5hab = 0
on the boundary contains an additional, unwanted term. However, this can be
remedied by modifying SG' We define

S~ = SG + 2 Iv K (E. 1.42)
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Then extremization of S~ yields the desired result since variation of the boundary
term in equation (E.1.42) cancels the boundary term in (E.IAI). Thus, when
boundary terms are taken into account, S~ is the appropriate action to use for general
relativity.

E.2 Hamiltonian Formulation
A Lagrangian formulation of a field theory is "spacetime covariant." One specifies

on the spacetime manifold an action functional of the field t/J whose extremization
yields the field equations. On the other hand, a Hamiltonian formulation of a field
theory requires a breakup of spacetime into space and time. Indeed, the first step in
producing a Hamiltonian formulation of a field theory consists of choosing a time
function t and a vector field t a on a spacetime such that the surfaces, Ito of constant
t are spacelike Cauchy surfaces and such that taVat = 1. The vector field t a may be
interpreted as describing the "flow of time" in the spacetime and can be used to
identify each It with the initial surface I o. In Minkowski spacetime the choice of t
and ta usually is made via a global inertial coordinate system, but in curved space
time there may not be any preferred choice. In performing integrals of functions over
M it would be natural for most purposes to use the volume element Eabcd associated
with the spacetime metric. Similarly, in performing integrals over It, it would be
natural in most cases to use the volume element (3)Eabc = Edabcnd, where n d is the unit
normal to It. However, these volume elements will, in general, be "time dependent"
in the sense that £tEabcd '* 0 and £P)Eabc '* O. The use of a time-dependent volume
element on It is particularly inconvenient if we wish to identify It with I o in order
to view dynamical evolution as the change of fields on the fixed manifold I o.
Therefore, we shall introduce a fixed volume element eabcd on M satisfying
£teabcd = O. [One way to do this-at least locally-would be to introduce coordi
nates Xl, X 2, X 3 in addition to t such that t a = (a / att and to take e to be the coordinate
volume element dt /\ dx 1 /\ dx 2 /\ dx 3.] On each Ito we define (3)eabc = edabctd.

Unless otherwise stated, all integrals over M will be performed using the volume
element eabcd and all integrals over It will be with respect to the volume element
(3)eabc. Thus, in particular, in order that our results be independent of our choice of
eabcd, the Lagrangian density must be a scalar density on M and the momentum 77'

(defined below) must be a tensor density on It. As previously noted in our discussion
of the Einstein Lagrangian, the introduction of eabcd could be avoided by incorpo
rating the volume element into the definition of ::e, 77', and other quantities, but we
choose not to do so since this procedure is rather cumbersome.

The next step in giving a Hamiltonian formulation is to define a configuration
space for the field by specifying what tensor field (or fields) q on It physically
describes the instantaneous configuration of the field t/J. The space of possible
momenta of the field at a given configuration q then is taken to be the "cotangent
space," Vq*, of the configuration space at q. Since the set of possible configurations
of the field is infinite-dimensional, we shall not attempt here to give a precise
definition of Vq*. However, in the case where the allowed infinitesimal variations
(i.e., "tangent vectors") 5q at q are represented by tensor fields on It of type (k, l),
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we shall take the space of momenta to consist of tensor fields, 7T, of type (l, k) on
It> so that 7T maps Sq into IR via Sq~ II

t
7TSq, where contraction of indices is

understood. A prescription must then be given for associating a momentum 7T to the
field t/J on II' The final and most nontrivial step required for a Hamiltonian formu
lation of a field theory is the specification of a functional H[q, 7T] on It> called the
Hamiltonian, which is of the form

H = r ~
)It

(E.2.l)

(E.2.2)

where the Hamiltonian density ~ is the local function of q, 7T and of their spatial
derivatives up to a finite order, such that the pair of equations,

q == £Iq = 5H
57T

(E.2.3)

(E.2.4)

is equivalent to the field equation satisfied by t/J.
Given a Lagrangian formulation of a field theory, there is a standard prescription

for obtaining a Hamiltonian formulation which is closely analogous to the well
known procedure in ordinary particle mechanics. First, one takes q to be simply the
field t/J evaluated on II' Then one views the Lagrangian density as a function of q,
its time derivatives, and its space derivatives. Assuming that ::e does not depend on
time derivatives of q higher than first order, we take the momentum, 7T, associated
with t/J on II to be

a::e
7T= -

aq
Next, we attempt to solve equation (E.2.4) for qas a function of q and 7T. If this can
be done, we define

~(q, 7T) = 7Tq - ::e (E.2.5)

(E.2.6)

where q = q(q, 7T) is understood in this equation both in its explicit appearance and
in its implicit appearance in::e. With this choice of~, equations (E.2.2) and (E.2.3)
are equivalent to equation (E. 1.5). To see this, we define

1
12

112 L 1
12 LJ = H dt = dt ~ = -s + dt 7Tq

I( 11 It 11 It

Then, for a smooth one-parameter variation of t/J which satisfies 5t/J = 0 at t = t1 and
t = t2, we have
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L
t
2 L dS= dt [-1r&j + q57T] - -d

t1 I, A
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(E.2.7)

(E.2.8)

where an integration by parts was performed in the last line. Thus, comparing the
first and last line of this equation, we see that 5S/ 5t/! = 0 if and only if equations
(E.2.2) and (E.2.3) are satisfied. Thus, ~ is a Hamiltonian density for t/!.

The above procedure yields in a straightforward manner a Hamiltonian formu
lation of the theory of a Klein-Gordon field in Minkowski spacetime. We choose a
global inertial coordinate system to obtain t and ta and choose eabcd to be the natural
volume element Eabcd since £tEabcd = O. We choose q on It to be c/J evaluated on It
and write :£KG' equation (E. 1.6), as

:£KG = ~(~2 - Vc/J . Vc/J - m2c/J2)

where we use ordinary three-dimensional vector notation on It. We find

a:£KG •
7T=-.-=c/J

ac/J

Hence, we define the Hamiltonian density by

(E.2.9)

. I 2 -+ -+ 2 2
~KG = 7Tc/J - :£KG = "2(7T + 'Yc/J . 'Yc/J + m c/J) (E.2.1O)

It then may be verified that for H KG = II ~KG' equations (E.2.2) and (E.2.3) indeed

are equivalent to the Klein-Gordon equation. Note also that the numerical value of
H KG is just the total energy of the Klein-Gordon field.

For the case of the electromagnetic field in Minkowski spacetime, it is not as
straightforward to obtain a Hamiltonian formulation by this procedure. We pro
visionally take q to be the vector potential Aa evaluated on It and decompose it into
its normal and tangential parts,

v = -Aana

(3)Aa = ha bA b

(E.2.11)

(E.2.12)

where n a is the unit normal to It and hab = Tfab + nanb is the induced spatial metric
on It. In ordinary three-dimensional vector notation, the Lagrangian density, equa
tion (E. 1.9) is

1~ ---+ ~ ---+ 1-+ -+ -+ -+

:£EM = "2(A + 'YV) . (A + 'YV) - "2('Y x A) . ('Y x A) . (E.2.13)

Hence the momentum conjugate to A is

17- = A+ VV == -e (E.2.14)

However, V does not appear in :£EM, so the momentum 7Tv conjugate to V vanishes
identically,

7Tv = 0 (E.2.15)
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Thus, we do not obtain an invertible relation between 7T and q. Consequently, if we
define ~ by equation (E.2.5), we will not be able to eliminate q in favor of 7T and
q, and our general prescription for obtaining a Hamiltonian formulation breaks
down. This difficulty is directly related to the fact that there is gauge arbitrariness
in Aa , and hence we cannot expect to get deterministic dynamics for Aa of the form
(E.2.2), (E.2.3).

However, this difficulty can be resolved by the following considerations. The fact
that 7Tv vanishes identically suggests that we should not view V as a dynamical
variable. It suggests that we should take the configuration field q to be simply A.
Therefore, we define ~EM by

~EM = 1f . A - :£EM

1 1-+ -+ -+
= -1f . 1f + - B . B - 1f . VV

2 2

1 1-+ -+ -+ -+
= -1f . 1f + - B . B + VV . 1f - V . (V1f)

2 2
(E.2.l6)

(E.2.l9)

(E.2.20)

where B == Vx A. The last term on the right-hand side of equation (E.2.l6) is a
total divergence and thus contributes only a boundary term to HEM = II

t
~EM which

vanishes in the limit as the boundary goes to infinity for the asymptotic conditions

usually imposed on V and 1f = - E. Hence we shall discard this term.
We now view HEM as a functional of A and 1f, with V effectively playing the role

of a Lagrange multiplier, i.e., we append the equation

5~~M = 0 (E.2.l7)

to the equations (E.2.2) and (E.2.3) for it and i-. Equation (E.2.l7) yields

V. E = 0 (E.2.l8)

whereas equations (E.2.2) and (E.2.3) yield, respectively,

~ 5HEM -+ -+-+
A =-- = 1f - VV = - E - vv

51f

. ~ 5HEM -+ -+ -+
1f = - E = - -=+ = - V x (V x A)

5A

Thus, we see that the system of equations (E.2.l8)-(E.2.20) is equivalent to
Maxwell's equations. Furthermore, we obtain from this formulation a natural
breakup of Maxwell's equations into the constraint (E.2.l8) and the evolution
equations (E.2.l9), (E.2.20). Note that, again, the numerical value of HEM for a
solution of Maxwell's equations is proportional to the total energy of the electro
magnetic field.

Thus, we have obtained a Hamiltonian formulation of Maxwell's equations in
Minkowski spacetime which has the feature that a non-dynamical variable appears
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in '1Ii and effectively plays the role of a Lagrange multiplier enforcing the constraint
(E.2.17). This type of Hamiltonian formulation is called a constrained Hamiltonian
formulation. As will be discussed further below, it can be expected to arise in any
theory where the field variabies have a gauge arbitrariness.

We turn, now, to the task of obtaining a Hamiltonian formulation of Einstein's
equations. As in the previous cases, we choose a time function t and a "time flow"
vector field taon M satisfying taVat = 1. Note, however, that in this case one cannot
interpret t and t a in terms of physical measurements using clocks until one knows the
spacetime metric, which, of course, is the unknown field variable in Einstein's
equation. Given a metric gab, it is convenient to decompose ta into its normal and
tangential parts with respect to the surfaces, It, of constant t. As in chapter 10, we
define the lapse function, N, by

(E.2.2l)

and the shift vector Na by

(E.2.22)

where again na is the unit normal to It and hab = gab + nanb is the induced spatial
metric on It. Thus, N measures the rate of flow of proper time, T, with respect to
coordinate time, t, as one moves normally to It, whereas Na measures the amount
of "shift" tangential to It contained in the time flow vector field t a (see Fig. 10.2 of
chapter 10). In terms of N, N a, and ta, we have

and hence the inverse spacetime metric can be written as

gab = hab _ nan b = h ab - N- 2(ta - Na)(tb - Nb)

(E.2.23)

(E.2.24)

It is convenient to choose as our field variables the spatial metric, hab , the lapse
function N, and the covariant form of the shift vector, Na = habNb rather than the
inverse metric, gab, which was used as the field variable in the previous section. The
requirements that hachcb be the identity operator on the tangent space to It and that
habVbt = 0 allow us to compute hab from hab and thence obtain Na = habNb. Thus,
from equation (E.2.24) we see that the information contained in (hab, N, Na) is
equivalent to that contained in gab.

Again, we shall use a fixed volume element eabcd on spacetime satisfying
£teabcd = 0 and will use the volume element (3)eabc = edabctd on It. We note in
analogy with the remarks below equation (E.1.IO), we have (3)Eabc = vh(3)eabc.
where h is the determinant of the matrix of components, hp.v, of hab in a basis where
the nonvanishing components of (3)eabc have the values ± 1. It then follows that

v=g = Nvh (E.2.25)

The first step in obtaining a Hamiltonian functional for general relativity is to
express the gravitational action in terms of (hab , N, Na) and their time and space
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derivatives. To simplify the discussion here, we will defer the analysis of boundary
terms until the end of this section. Thus, we start with the Hilbert action (E. 1.13)
rather than (E.I.42) and for the present will discard the boundary terms which arise
in subsequent calculations. We express the scalar curvature, R, as

R = 2(Gabnan b - Rabnanb) (E.2.26)

From equation (10.2.30) we have

Gabnan b = ~[(3)R - KabKab + K 2
]

where Kab is the extrinsic curvature of It and K = Kaa. On the other hand, from the
definition of the Riemann tensor, we have

- Va(naVcn C) + Vc(nav"n C)

= K 2 - KacKac - Va(naVcn C) + Vc(naVan C) (E.2.28)

The last two terms on the right-hand side of equation (E.2.28) are divergences and
thus will be discarded. Hence, from equations (E. 1.12) and (E.2.25)-(E.2.28), we
obtain

(E.2.29)

(E.2.30)

The extrinsic curvature, Kab, is related to the "time derivative," Jiab == hachbd fAd of hab by

Kab =~fnhab = ~ [nCVchab + hacVbnc + hcbVanC]

I -1' ]="2N [hab - DaNb - DbNa

where Da is the derivative operator on It associated with hab (see chapter 10) and
equation (E.2.23) was used to go from the second line to the third line. Thus,
substitution of equation (E.2.30) into equation (E.2.29) expresses the gravitational
action in the desired form given by Amowitt, Oeser, and Misner (1962).

The momentum canonically conjugate to hab is

(E.2.31)



E.2 Hamiltonian Formulation 465

However, :£G does not contain any time derivatives of Nor Na , so their conjugate
momenta vanish identically. In analogy with the electromagnetic case, we interpret
this fact as telling us that Nand Na should not be viewed as dynamical variables.
Hence, we redefine our configuration space to consist of Riemannian metrics, hab on
It. We define our Hamiltonian density by

'tIiG = 7TOOhab - :£G

= -h 1/2N(3)R + Nh- 1/2[ 7Tab 7Tab - 47T2] + 27TabDaNb

= h 1/2{N[ -(3)R + h- I7TOO 7Tab - 4 h- I7T2 ] - 2Nb[Da(h-l/27TOO)]

+ Wa(h-1/2Nb7TOO)} (E.2.32)

where 7T = 7Taa. Again, the last term in equation (E.2.32) contributes only a bound
ary term to HG = J 'tIiG (3)e and will be dropped. Variation of HG with respect to N
and Na yields the equations

I
-(3)R + h- l 7Tab 7Too - -h- I7T2 = 0

2

Da(h-l/27Tab) = 0

(E.2.33)

(E.2.34)

which, with the substitution (E.2.31), can be recognized as the initial value con
straint equations (10.2.28) and (10.2.30) found in chapter 10. The dynamical equa
tions (E.2.2) and (E.2.3) obtained fromHG are (Arnowitt, Oeser, and Misner 1962)

hoo = ::~ = 2h-1/2N( 7Tab - 4hab7T) + W(aNb) (E.2.35)

irab = _ 5HG = -Nh1/2(3)R OO _ .!.(3)RhOO )
5hoo 2

+ 4Nh-l/2hab(7Tcd7Tcd - 47T2)

- 2Nh-1/2( 7Tac 7Tcb - 4 7T7Tab)

+ h 1/2(D aD bN - hOODcDcN)

(E.2.36)

where, again, boundary terms have been ignored and equation (E.2.34) was used.
Equations (E.2.33)-(E.2.36) are equivalent to the vacuum Einstein equation,
Roo = O. Thus, we have succeeded in giving a constrained Hamiltonian formulation
of Einstein's equation.
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The presence of constraints in our Hamiltonian fonnulations of Maxwell's equa
tions and Einstein's equations indicates that we have not isolated the "true dynamical
degrees of freedom" in our choice of configuration space. Even though we already
have eliminated V and N and No as dynamical variables, the constraints tell us that
our phase space still is "too large." This, in tum, is directly related to the gauge
freedom pr~sent i~oursonfiguration variables X and hob, respectively. In the Max
well case, A and A - VX represent the same physical configuration. This suggests
that we should take our configuration space to be not simply the space of vector
potentials, X, but the space of equivalence classes, X, of vector potentials, where
two vector potentials are equivalent if they differ only by a gauge transfonnation.
The "cotangent space" at Xthen would be the space of linear functions of variations
of X which depend only on the equivalence class. Thus, the momenta would be
represented by vector fields 1f having the property that

However, this property holds if and only if

-+ -+
V'7T=O

(E.2.37)

(E.2.38)

Thus, with our new choice of configuration space, the momentum space consists
precisely of the divergence-free vector fields on It. But this me!Ds that the constraint
(E.2.l8) is automatically satisfied! We may drop the tenn V(V . 1f) from equation
(E.2.l6) and take the Hamiltonian density to be simply

oW 1-+ -+ -+-+
c1{,EM = -(7T . 7T + B . B)

2
(E.2.39)

where, again, B == Vx A. (Note that B_depends only on the equivalence class of
Xand hence is a well defined function of X.) Hamilton's equations of motion (E.2.2)
and (E.2.3) yield

it 5HEM ..,.
= 51f = 7T

;jf = - 5H;:, = _Vx B
5A

(E. 2.40)

(E.2.4l)

The equivalence classes appearing on both sides of equation (E.2.40) can be elimi
nated by taking the curl of this equation. It then easily may be verified that equations
(E.2.40) and (E.2.4l) with E == -1f are equivalent to Maxwell's equations, where
we remin~ thtUeader that V. B = 0 follows automatically from the definition of B,
whereas V . E = 0 follows automatically from our construction of the space of
momenta. Thus, by eliminating the gauge degrees of freedom in our configuration
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space by working with it rather than A, we have succeeded in giving a constraint-free
Hamiltonian formulation of Maxwell's equations. 2

Similarly, in the case of Einstein's equation there is gauge arbitrariness in our
choice of configuration field h ab . If ljJ is any diffeomorphism of !." then h ab and ljJ*h ab

represent the same physical configuration. This suggests that we should take the
configuration space of general relativity to be the set equivalence classes, hab, of
Riemannian metrics on !." where two metrics are considered equivalent if they can
be carried into each other by a diffeomorphism. This configuration space is known
as superspace (Wheeler 1968). Using superspace as the configuration space, we find
that for any vector field wa on !., the conjugate momenta 7T

ab now must satisfy

f 7T
ab

( ohab + D(aWb») = f 7T
ab

ohab

which implies that 7T
ab automatically satisfies

Da(h-l/27Tab) = 0

(E.2.42)

(E.2.43)

Thus, the constraint (E.2.34) is eliminated by the choice of superspace as the
configuration space.

However, the constraint (E.2.33) remains. This constraint may be viewed as
resulting from the gauge arbitrariness involved in the choice of how to "slice"
spacetime into space and time. It is very closely analogous to the constraint which
arises when one "parameterizes" an originally unconstrained theory in a fixed,
background spacetime, i.e., when one introduces into the Lagrangian a time
function-which defines the choice of hypersurfaces, !." with respect to a reference
surface !.-and treats this time function as a dynamical variable (Kuchar 1973,
1981). In the case of such parameterized theories, the constraint analogous to
(E.2.33) is linear in the momentum conjugate to the time function. One then can

2. The relation between the constraint v· If = 0 and the gauge transformations A~A - VX can be
obtained more systematically as follows. Given a function f on phase space, we may associate with it
a vector field V on phase space by the requirement that for any function g on phase space, we have
V(g) = {f, g}, where the Poisson bracket {f, g} is defined by

{f,g} = J(Sf Sg _ Sg Sf).
};, l3q S7T l3q S7T

(We have not defined infinite-dimensional manifolds here or vector fields on them, so these remarks
are intended only as heuristic.) One may verify i1irectly that the vector field V associated in this manner
with the "constraint function" f = J~t xV·E (where X is an arbitrary function on L t) is just
the infinitesimal generator of the one-parameter family of transformations on phase space associated
with the gauge transformations A~A - VX. Thus, in this sense, in electromagnetism, the constrair,t
"generates" the gauge transformations. By restricting to the "constraint submanifold" V· If = 0 and to
the space of orbits of V on this submanifold, we obtain a consistent, constraint-free Hamiltonian
formulation on a "reduced phase space." Similarly, in the gravitational case, the vector field associated
with the constraint function 2h 1/2 tbDa(h--1/2 7Tab ), where t a is an arbitrary vector field on Lt , generates
the one-parameter family of diffeomorphisms on Lt associated with gao Thus. one is led to choose as the
new configuration space the metrics on L, modulo diffeomorphisms (or, more precisely, modulo dif
feomorphisms which can be continuously deformed tr, the identity; see Friedman and Sorkin 1980).
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"deparameterize" the theory by solving the constraint for this momentum. However,
in the case of Einstein's equation, the constraint (E.2.33) is quadratic in the momen
tum, and a similar deparameterization does not appear to be possible. Thus, it does
not appear possible to find a choice of configuration space for general relativity such
that only the "true dynamical degrees of freedom" are present in its phase space. The
presence of the constraint (E.2.33) appears to be an unavoidable feature of the
Hamiltonian formulation of general relativity. This provides a serious obstacle to the
formulation of a quantum theory of gravitation by the canonical quantization ap
proach (see chapter 14).

Finally, we return to the issue of boundary terms in the Hamiltonian formulation.
Consider, first, the case of a closed universe, i.e., M = IR x !., where!' is compact.
Consider the region, U, of M bounded by two constant time hypersurfaces !.] and
!.2. Then the modified gravitational action S~, equation (E. 1.42), will receive bound
ary contributions from !.I and !.2. However, these boundary terms will be canceled
by the contributions of the third term on the right-hand side of equation (E.2.28).
Note that the fourth term in equation (E.2.28) yields no boundary contributions since
naVan c is orthogonal to the normal, n C

, to II and !.2. In addition, the last term in
equation (E.2.32) makes no contribution since there is no spatial boundary. Thus,
in the case of a closed universe, our final answer for HG is unchanged when all
boundary terms are reinserted. Note that because of equations (E. 2. 33) and (E. 2. 34),
the numerical value of HG vanishes for every solution. This suggests that we should
define the total energy of a closed universe to be zero. In other words, it suggests
that there does not exist a nontrivial notion of total energy in a closed universe.
However, this argument is not conclusive, since one always can "parameterize" a
theory in the manner mentioned above so as to make its Hamiltonian vanish. If
general relativity could be "deparameterized," a notion of total energy in a closed
universe could well emerge.

Consider, now, the case of asymptotically flat spacetimes. Again, consider a
region ofM bounded by two hypersurfaces !.l and !.2. As before, we wish to consider
metric variations for which hab is held fixed on !.I and !.2, but now the most natural
spatial boundary condition is that the variations preserve asymptotic flatness rather
than that the induced metric be held fixed on a distant spatial boundary. This new
boundary condition requires the addition of further boundary terms into the grav
itational action (E. 1.42). Furthermore, the boundary terms3 from equations (E.2.28)
and (E.2.32) now will contribute to HG • Instead of keeping careful account of all
these terms, we shall proceed by calculating the boundary terms arising from vari
ations of HG and then modifying HG to get rid of these terms. Introduce on !'t
asymptotic Cartesian coordinates as described in problem 2 of chapter 11. We
consider the case where t a asymptotically becomes a time translation at spatial
infinity, i.e., we take N ~ 1 and Na ~ 0 as r~ 00. Let S denote a coordinate sphere
of radius r. Then, only the term -h 1/2N(3)R in equation (E.2.32) produces a non-

3. To avoid confusion, we remaind the reader that in equation (E.l.42) K is the trace of the extrinsic
curvature of the boundary, whereas in equation (E.2.28) Kab is the extrinsic curvature of Lt.
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vanishing boundary tenn on S in the limit r~ 00 when HG is varied. But the
calculation of this tenn is the three-dimensional analog of the calculation of the
boundary tenn in the gravitational action given at the end of the previous section,
except that we no longer require the metric to be held fixed at S. Thus, using equation
(7.5.14) (or, even better, using the three-dimensional analog of the first line of eq.
[E. 1.38]) we find that for a one-parameter variation of hab and 7T

ab which preserves
asymptotic flatness, we have (Regge and Teitelboim 1974)

dHG
= L [A 07Tab - Baboh ] - DCdA ab abI,

Here Aab and B ab are given by the right-hand sides of equations (E.2.35) and
(E.2.36), respectively, and the boundary tenn DC is given by

(E.2.45)

where ra is the unit nonnal to S and the natural volume element on S is understood.
We can rewrite DC in coordinate component fonn as

DC = lim ±L(aOh ILv
- aOhw)r IL

r-->oo v= 1 S ax v axIL

= O{lim ±L(ah IL v
- ahw)r IL } (E.2.46)

r-->OO v= 1 S ax v ax IL

where we have discarded tenns which do not contribute in the limit as r~ 00. Thus,
in order to get a Hamiltonian whose variation produces no boundary tenns from
spatial infinity, we define a new gravitational Hamiltonian H ~ by

(E.2.47)

where ex is the tenn inside the braces in equation (E.2.46). The right-hand sides of
equations (E.2.35) and (E.2.36) then truly are the functional derivatives ofH~ with
respect to hab and 7T

ab for variations which preserve asymptotic flatness.
The numerical value of Hb for a solution of Einstein's equation is just ex. This

suggests that ex should be interpreted as proportional to the total energy of an
asymptotically flat spacetime. This provides the motive for the definition given in
chapter 11, equation (11. 2. 14) . (The constant of proportionality between ex and
energy can be detennined by evaluating ex for the Schwarzschild solution.) Similarly,
the definition of total momentum, equation (11.2.15), can be motivated by exam
ining the boundary tenns in HG which occur when we take N ~ 0 and require Na to
go to a translation as r ~ 00. Indeed, a notion of angular momentum (see problem
6 of chapter 11) arises from consideration of more general asymptotic behavior of
the lapse and shift (Regge and Teitelboim 1974).



APPENDIX F

UNITS AND DIMENSIONS

Geometrized Units
In this book, we have used "geometrized units," where the gravitational constant

G, and speed of light c, are set equal to one. All quantities which in ordinary units
have dimension expressible in terms of length L, time T, and mass M, are given the
dimension of a power of length in geometrized units. Since G = c = 1, all factors
involving G and c may be omitted from formulas, and, indeed this is why it is
convenient to use geometrized units in general relativity. However, if one wishes to
evaluate quantities in ordinary, "nongeometrized" units, the factors of G and c must
be reinserted. This is easily done as follows.

In "nongeometrized" units, the dimension of c is LIT and the dimension of GIc 2

is LIM. Hence, the "conversion factor" relative to geometrized units for a quantity
with dimension of time is c, while the conversion factor for a quantity with dimen
sion of mass is GI c 2. More generally, a quantity with dimension LnTmMP in ordinary
units has dimension L n+m+p in geometrized units and the conversion factor is
cm(Glc 2)P. The dimensions and conversion factors for some frequently encountered
quantities are given in Table F.l.

In order to convert a formula written in geometrized units to one which is valid
in nongeometrized units, one first must identify the nongeometrized dimension of all
quantities appearing in the equation. Then one simply obtains the conversion factor
for each quantity from Table F.1 or computes it by the above formula. If one then
multiplies each quantity appearing in the equation by its conversion factor, the
resulting equation will be valid in nongeometrized units.

Planck Units
For calculations involving quantum effects in general relativity, it is natural to

employ Planck units where h is set equal to 1 in addition to G = c = 1. In Planck
units, all quantities which in ordinary units have dimension expressible in terms of
L, T, and M now become dimensionless. In particular, all lengths are expressed as
dimensionless multiples of the Planck length, lp = (Ghl C 3)1/2. To convert a formula
valid in Planck units to one valid in ordinary units, we simply identify the non
geometrized dimension of all quantities appearing in the equation. Then we multiply
each such quantity by its conversion factor, which equals its conversion factor for

470
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Table F.l

CONVERSION FACTORS TO GEOMETRIZED UNITS

Nongeometrized Geometrized Conversion
Quantity Dimension Dimension Factor

Acceleration LT-2 L -I c-2

Angular momentum L 2T-'M L 2 G/c 3

Electric charge (cgs) L 3/2T-1 M'/2 L G' /2/C 2

Energy L2T- 2M L G/c'

Energy density L-IT-2M L -2 G/c'

Force Lr2M G/c'

Length L L

Mass M L G/c 2

Mass density C 3M L -2 G/c 2

Pressure L -IT-2M L-2 G/c'

Time T L c

Velocity Lr' c- I

geometrized units divided by l~, where U is the geometrized dimension of the
quantity.

In Planck units, the fundamental scales of length, time, mass, and other quantities
(with respect to which all physical quantities are expressed as dimensionless ratios)
are just the inverses of the above conversion factors. For the convenience of the
reader, we list some of these fundamental scales below, together with their values
in cgs units, calculated using the values c = 3.00 X 1010 em s-I, G = 6.67 X

10-8 cm3 g-I S-2, andh = 1.05 X 10-27 erg-sec.

length:
time:
mass:
energy:
mass density:
temperature:

/p = (Gft/C 3)'/2 = 1.6 X 10-33 cm,
tp = /p/c = 5.4 X 10-44 s,
mp = /pc 2/G = 2.2 x 10-5 g,
Ep = /pc'/G = 2.0 x 10'6 ergs = 1.3 x 10'9 GeV,
fJp = /;2 C2/G = 5.2 x 1093 g cm- 3

,

1P = Ep/k = /pc'/Gk = 1.4 x 1032 K.
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Acceleration: absolute, 69, 158; relative, 47
Acceleration radiation, 414-416, 418
Accumulation point, 426
Achronal set, /92
Action principle, 45/; Hilbert, 453;

Palatini, 454
Adjoint, of operator, 39/
ADM mass, 293, 469; positivity of,

294-295
Affine parameter, 4/
Age of universe, 115
Algebraic classification of spacetimes,

179-180, 373-374
Angular momentum: of particle, 139; of

spacetime, 296-297, 469
Annihilation operator, 393
Antilinear map, 347
Antisymmetrization of tensors, 26
Apparent horizon, 3//
Area theorem, 312; energy extraction limits,

326-327; thennodynamic analog, 330,
336-337,416-418

Asymptotic flatness, 269-297; at null
infinity, 282; at spatial infinity, 28/,
282, 295; at spatial and null infinity,
276

Asymptotic predictability, 299
Asymptotic simplicity, 282
Asymptotic symmetry group, 283-285
Axisymmetric, /62

Back reaction, quantum effects, 409-414
Baryon: nonconservation in black hole

evaporation, 413-414; production in
early universe, 109-110

Bases: bundle of, 361-362; coordinate, /6,
47-49; dual, /9; of Hilbert space, 391;
orthononnal, 23, 49-53; of tensors, 2/

Bel-Robinson tensor, 90
Bending of light, 143-146

Betti number, 429n
Bianchi classification, 174
Bianchi identity, 39-40; relation to

diffeomorphism invariance, 456; role
in initial value fonnulation, 259-260

Big bang, 99, 109
Binary pulsar, 88
Binding energy: of last stable circular orbit

around black hole, 142,321; of
spherical star, 126

Birkhoff's theorem, 125
Black holes, 155-157,298-339,399-418;

definition of, 300, 308; area theorem,
312,417; cosmic censor conjecture,
302-305; detection of, 306-308;
energy extraction from, 324-330, 338;
evaporation of, 412-414; event
horizon, 300, 312; fonnation of,
305-307; general properties of,
308-312; initial data for, 265; Kerr
family, 312-324; particle creation near,
399-416; Schwarzschild black hole,
155-157; surface gravity, 330-334;
thennodynamics of, 330-337,
416-418; uniqueness theorems,
322-324

Bogoliubov transfonnation, 396
Bolzano-Weierstrass theorem, 426
Bondi mass, 291-292; positivity of,

294-295
Bondi-Metzner-Sachs group, 283-285
Boundary, 424; causal, 213; of future of

set, 192, 194-195,233; of manifold,
431; singular, 213-214

Canonical quantization, 384-385
Casimir operator, 357n
Cauchy horizon, 203, 204; instability of in

Reissner-Nordstrom, 304, 318
Cauchy surface, 20/
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Cauchy-Kowalewski theorem, 246
Causal boundary, 213-214
Causal curves, 190, 192-193; topology on

set of, 206, 208
Causal future, 190
Causality conditions, 195-199; violation of

near Kerr ring singularity, 315
Caustics, 220
Charged Kerr black holes, 312-324
Chart, 12
Christoffel symbol, 34, 36, 48
Chronological future, 190
Circular orbits: of Kerr, 320-321; of

Schwarzschild, 140-142
Closed set, 424
Closed universe, 95; evidence for or

against, 113-116
Closure of set, 424
Commutation relations in tetral approach,

51
Commutator, 18, 31,440
Compact set, 424-426
Complex conjugate space, 347
Components of tensors, 21
Conformal invariance, 447-449
Conformal Killing vector, 443-444
Conformal (Weyl) tensor, 40; behavior

under conformal transformations, 447;
principal null directions of, 179, 187,
223n, 374

Conformal transformations, 445-449
Congruence, 216-217
Conjugate points, 223-233
Connected set, 424
Connection, 34-35
Connection I-forms, 50
Conservation of energy, 63, 69-70, 70n,

292-294
Constant curvature spaces, 94-95
Constraint equations: in electromagnetism,

253, 254, 268, 462, 466; in general
relativity, 259, 265, 266, 465,
467-468

Continuous function, 424
Continuous tirnelike or causal curve,

192-193
Contraction, 20
Contravariant vector, 21
Convergence, 426; of sequence of curves,

193. See also Expansion
Convex normal neighborhood, 191
Coordinate basis, 16, 47-49
Coordinate systems, 12; Gaussian normal

(synchronous), 42; harmonic, 260;
Riemannian normal, 42

Cosmic censor conjecture, 302-305
Cosmic microwave radiation, 111-112
Cosmological constant, 99
Cosmological redshift, 101-104, 116
Cotangent vectors, 21
Countability properties, 426
Covariant derivative, 30-31; metric

compatible, 35-36
Covariant quantization, 383-384
Covariant vector, 21
Creation operator, 394
Creation of particles, 395-397, 399-406
Cross section, 364
Curvature, 36-41; conformal transformation

behavior, 446-447; Einstein tensor,
40-41; extrinsic, 230. 256, 464;
methods for calculating, 47-53; Ricci
tensor, 40; Riemann tensor, 37; scalar
curvature, 40; spinor analysis of,
370-374; Weyl tensor, 40

Curve, 17; null, 44; space1ike, 44; tirnelike,
44

Cygnus X-I, 307

de Sitter spacetime, 116
Deceleration parameter, 113
Decoupling of matter and radiation, 111,

112
Degeneracy pressure: electron, 132;

neutron, 134
Degrees of freedom: of gravitational field,

265-266; of particle systems, 245
Density matrix, 402; production of during

black hole evaporation, 414
Derivative operator (covariant derivative),

30-31; metric compatible, 35-36; on
spinors, 369

Deuterium synthesis, 111, 115-116
Deviation vector, 46
Diffeormorphism, 14, 438-439;

one-parameter group of, 18
Differential form, 26. 428-429
Dirac equation, 359, 375, 377
Direction-dependent limit, 277
Domain of dependence, 200-201
Dominant energy condition, 219
Dragging of inertial frames, 89, 187, 319
Dual of a differential form, 88
Dual vector, 19
Duality rotation, 89

Eddington-Finkelstein coordinates, 153n
Edge, 200
Einstein static universe, 116, 273
Einstein tensor, 40-41



Einstein's equation, 72-73; Hamiltonian
fannulation of, 463-465, 467-469;
initial value formulation of, 255-267;
Lagrangian formulation of, 453-456,
457-459; linearized, 185-186;
reduced, 261; semiclassical, 410-411

Electromagnetic field, 64, 70. See also
Maxwell's equations

Embedded submanifold, 431
Endpoint of curve, 193
Energy, 84, 285-295, 468-469; ADM,

293, 469; Bondi, 291-292;
conservation of, 63, 69-70, 70n,
292-294; extraction from black holes,
324-330, 338; of gravitational
radiation, 84-88, 292; of particle, 61,
69, 139; positivity of, 294-295

Energy conditions: dominant, 219; strong,
219; weak, 219, 219n

Energy-momentum 4-vector, 61, 69; ADM,
293

Entropy of black hole, 418
Equations of motion, 73-74, 78
Equations of structure, 52
Equivalence principle, 8, 66-67
Ergosphere, 319, 323, 324-325
Euclidean section, 386, 407-409
Evaporation of black holes, 412-414
Event, 4
Event horizon, 300, 311-312; angular

velocity of, 320, 331; surface gravity
of, 330---334

Expansion: of null geodesics, 222; of
timelike geodesics, 217

Expansion of universe, 98-100
Exponential map, 42
Extendibility of curves, 193
Extensions of spacetimes, 215; Kerr,

315-318; Schwarzschild, 148-157
Extrinsic curvature, 175-176,230. 256,

464

Factor group, 368n
Feynman propagator, 398-399,407-409
Fiber bundle: associated, 363; bundle of

bases, 361-362; cross sections of, 364;
principal, 361; spinor bundle,
365-366; tangent bundle, 364

Four-velocity, 61, 68
Frequency, 65-66
Friedmann universe, 101
Frobenius's theorem, 434-436
Functional derivative, 451
Fundamental group, 345

Index 487

Future: causal, 190; chronological, 190
Future directed: curve, 190; vector, 189

Gauge freedom, 260, 438, 467n; for
perturbations, 75, 80, 185-186,441

Gauss-Codacci relations, 258
Gaussian normal coordinates, 42
Gauss's law, 89, 433-434
General covariance, 57-58, 60
Generalized second law, 417-418
Generation of solutions, 180-182
Generic condition: null, 232; timelike, 227
Geodesic derivation equation, 46-47
Geodesic hypothesis, 67, 73-74
Geodesics, 41-47; conjugate points,

223-233; extremal properties of,
44-45,227-229; incompleteness, 215;
of Kerr spacetime, 320-321; null
congruences, 221-223; of
Schwarzschild spacetime, 136-148;
timelike congruences, 217-221

Geometrical optics approximation, 71,
404-405

Geometrized units, 470-471
Global inertial coordinates, 6
Global time function, 198, 209
Globally hyperbolic spacetime, 201
Goldberg-Sachs theorem, 223n
Gravitational collapse, 134-135, 155-157,

305-306
Gravitational radiation, 78-88; detection

methods, 81-82, 88; energy carried by,
83-88, 292; limit for black hole
collision, 327; production in linearized
gravity, 82-83

Gravitational redshift, 136-138
Graviton, 411
Group, 168; representation of, 344

Hamiltonian formulation of field theories,
459-469; electromagnetic field,
461-463,466-467; general relativity,
463-465, 467-469; Klein-Gordon
field,461

Harmonic coordinates, 260
Harmonic function, 53
Hartle-Hawking vacuum, 409
Hausdorff space, 424
Hawking radiation (particle creation by

black holes), 399-416
Heine-Borel theorem, 425
Helium synthesis: in early universe, 111; in

stars, 135
Hilbert action, 453-454, 457-459
Hilbert space, 390
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Homeomorphism, 424
Homogeneity of universe, 92, 106-107,

112
Homogeneous cosmologies, 168-179
Homomorphism, 344
Homotopic, 344
Horizon: apparent, 311; Cauchy, 203, 204;

event, 300, 311-312; particle, 104-107
Hubble's constant, 98, 114
Hubble's law, 98, 104, 114
Hydrostatic equilibrium equation, 127
Hyperbolic equation, 250; system, 251
Hyperboloid geometry, 95
Hypersurface, 431
Hypersurface orthogonality, 436, 443

Immersed submanifold, 431
Incompressible fluid stars, 128-129
Index notation, 23-26
Inertial observers (special relativity), 6
Inflationary universe, 107, 109
Initial data set, 256, 264, 266
Initial value constraints: in

electromagnetism, 253, 254; in general
relativity, 259, 265, 266

Initial value formulation, 243-268; of
Einstein's equation, 255-267; of
Klein-Gordon field, 245-252; of
Maxwell field, 252-254, 267-268

Inner horizon, 316-318
Integral curve, 18
Integration on manifolds, 429-434
Interior of set, 424
Irreducible mass, 326-327
Isometry, 438; conformal, 443
Isotropic radial coordinate, 157
Isotropy of universe, 92-93, 106-107, 112

Jacobi field, 223
Jacobi identity, 27, 169-170

Kasner solutions, 176-179
Kerr black holes, 312-324; particle creation

near, 406-407
Killing tensor, 444; of Kerr solution, 321
Killing vector field, 441-443; conformal,

443-444
Klein paradox, 330
Klein-Gordon field, 63, 70; behavior under

conformal transformations, 447-448;
Hamiltonian formulation, 461; initial
value formulation, 245-252;
Lagrangian formulation, 451-452;
quantum theory of, 392-399

Komar mass, 289
Kruskal extension, 148-157

Lagrangian formulations, 450-459;
electromagnetic field, 452; general
relativity, 453-456, 457-459;
Klein-Gordon field, 451-452

Landau-Lifshitz pseudotensor, 85, 292
Lapse function, 255, 463
Left action, 360
Left invariant, 169
Left translation, 169
Length of curve, 43-44
Lense-Thirring effect, 89
Lie algebra, 170
Lie derivative, 439-441
Lie group, 168-169
Light bending, 143-146
Light cone, 189
Limit curve, 194
Limit of sequence, 426
Linearization stability, 184, 186-187
Linearized Einstein equation, 185-186
Linearized gravity, 74-88
LMC X-3, 307
Locally nonrotating observers, 187,319
Lorentz force law, 69
Lorentz transformation, 6, 350-352
Lorentzian metric, 23

M87,307
Mach's principle, 9, 71, 89, 187, 319
Manifold, 12; with boundary, 431
Marginally trapped surface, 310
Mass, 285-295; ADM, 293; Bondi,

291-292; formula for black holes,
334-336; Komar, 289; positivity of,
294-295; of Schwarzschild solution,
124, 140; of spherical star, 126, 296.
See also Energy

Mass density of universe, 114-115
Mass limits on spherical stars, 129-135
Matter dominated era, 112
Maximal Cauchy development, 264
Maximum length curves, 233-237
Maxwell's equations, 70, 89, 376;

conformal invariance of, 448;
Hamiltonian formulation of, 461-463,
466-467; initial value formulation of,
252-254, 267-268; Lagrangian
formulation of, 452

Metric, 22; of spacetime, 59
Microwave background, 111-112
Minimal substitution, 68, 70, 71



Mobius strip, 363
Moment of time symmetry, 265
Momentum: ADM fonnula, 293; conjugate

momentum of fields, 459-460, 461,
464, 466, 467. See also
Stress-energy-momentum tensor

Multipole moments, 270

Naked singularity, 301, 302-305, 315
Neutrinos, 110; cosmological limits on

mass, 112; cosmological limits on
number of species, 113; neutrino
equation, 359

Neutron star, 134
Newman-Penrose approach, 52, 372-373
Newtonian limit, 76-78, 127
Noether's theorem, 457
Nonnal neighborhood, 42, 191
Nonnal subgroup, 368n
Null cone, 189n
Null curve, 44
Null flag, 352, 354-355
Null hypersurface, 42, 65, 65n
Null infinity, 273,276, 282
Null tetrad, 52, 373

Open set, 423
Open universe, 95; evidence for or against,

113-116
Orbit, 18, 360-361
Ordinary derivative, 32
Orientation: of a manifold, 429; of space,

60, 600; of time, 60, 189
Orthononnal basis (tetrad), 23, 49-53
Outer product, 21
Outer trapped surface, 310

Palatini action, 454-455
Paracompact space, 426-427
Parallel transport, 34
Parallelizability, 364
Parameterized field theory, 467-468
Particle horizons, 104-107
Particles in quantum theory: definition of,

392, 397-399, 414-416; creation of,
395-397, 399-406

Partition of unity, 427
Path integral quantization, 385-387
Pauli spin matrices, 351
Peeling property, 285
Penrose process, 324-326, 327
Perfect fluid, 62, 69
Perihelion precession, 142-143
Perturbations, 183-187

Index 489

Planck length, 378
Planck units, 470-471
Poincare group, 283-285, 343-346,

353-354; representations of, 357-359
Poincare lemma, 429
Poisson bracket, 467n
Positive action theorem, 387n
Positive frequency, 392, 397-399,

401-403, 415
Precession of elliptical orbits, 142-143
Primordial black hole, 306, 307-308, 413
Principal null directions, 179, 187, 223n,

374; of Kerr metric, 313
Principal spinor, 374
Proper time, 44
Pseudotensor, 292
"Pull back" of map, 437-438
Pulsars, 135, 305; binary pulsar, 88

Quadrupole radiation approximation, 82-83,
86-88

Quantum effects, 378-420; accelerating
particle detectors, 414-416;
back-reaction, 409-414; particle
creation by black holes, 399-416;
quantum fields in curved spacetime,
389-399; quantum gravity, 380-389

Quasilinear equations, 251

Radial coordinate: isotropic, 157;
Schwarzschild, 120; tortoise, 152

Radiation dominated era, 107-112
Radiation gauge, 80-81
Raychaudhuri equation, 218
Recombination, 111, 112
Redshift: cosmological, 101-104, 116;

gravitational, 136-138
Redshift factor, 104, 138
Reduced Einstein equation, 261
Regge-Wheeler coordinate, 152
Reissner-Nordstrom solution, 158, 313,

317-318, 338
Renonnalizability, 381, 383-384, 388,410
Representation, 344; irreducibility, 357
Ricci rotation coefficients, 50
Ricci tensor, 40; behavior under confonnal

transfonnations, 446
Riemann tensor, 37, 39-40; behavior under

confonnal transfonnations, 446;
methods for calculating, 47-53; spinor
decomposition, 370-371

Riemannian metric, 23
Riemannian nonnal coordinates, 42
Riesz lemma, 390-391
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Right translation, 170
Rindler spacetime, 149-152; quantization

in, 414-416
Robertson-Walker model, 95-96

Scalar curvature, 40; behavior under
conformal transformations, 446

Schwarzschild interior solution, 128-129
Schwarzschild radial coordinate, 120
Schwarzschild radius, 124-125
Schwarzschild solution, 118-158; derivation,

119-125; Euclidean, 407-409;
geodesics of, 136-148; Kruskal
extension, 148-157; particle creation
near, 399-416

Shear of geodesics: null, 222; timelike, 217
Shift vector, 255, 463
Signature of metric, 23
Simple tensor, 21, 21n
Simply connected, 344
Simultaneity, 4-6
Singular boundaries, 213-214
Singularities, 211-242; definition, 212-216;

big bang, 99, 109; conical, 214; in
gravitational collapse, 239-241,
301-305; in Kerr solutions, 314-315;
naked, 301; in Schwarzschild solution,
152-157; theorems on, 237-241; in
universe, 99, 237-238, 240-241

SL(2,C), 348; relation to Lorentz group,
349-352

Slice, 200
S-matrix, 395-396
Smoothness: of maps between manifolds,

14; of tensor fields, 22; of vector
fields, 17

Sobolev norm, 249
Spacelike curve, 44
Spacetime interval (special relativity), 7
Spacetime metric, 59
Spatial infinity, 273, 276, 281
Special covariance, 58-59, 60, 342-343
Spherical symmetry, 120
Spi group, 285
Spin, 357; equations for spin-s fields,

358-359, 374-375; linearized gravity
as a spin-2 field, 75-76, 377

Spin coefficients, 52, 372
Spinor space, 347
Spinors, 340-377; bundle of, 365-366;

curvature expressed in terms of,
370-374; derivative of, 356, 369;
Dirac spinor, 359, 367n; relation to
vectors, 353-354, 367

Spin-spin force, 338
Stable causality, 198
Static spacetimes, 119-120
Stationary, axisymmetric solutions,

162-168, 182
Stationary spacetimes, 119
Stokes's theorem, 432, 433-434
Stress-energy-momentum tensor (stress

tensor), 61-62, 69, 455-456;
canonical, 457; energy conditions on,
219; of Klein-Gordon field, 70; of
Maxwell field, 70; of perfect fluid, 69;
of quantum fields, 409-412, 420

Stress tensor, 19
Strong asymptotic predictability, 299
Strong causality, 196
Strong energy condition, 219
Structure constant tensor, 169
Supergravity, 388
Supernova, 135, 305
Superradiant scattering, 327-330, 399-400
Superspace, 467
Supertranslations, 284
Surface gravity, 330-334
Symmetrization of tensors, 26
Synchronous (Gaussian normal) coordinates,

42

Tangent bundle, 364
Tangent vector, 15; classification into

timelike, spacelike, and null, 44; field,
17

Tensor, 20; field, 22; transformation law,
22

Tensor density, 453
Tetrad, 49
Teukolsky equations, 322
Thermal emission by black holes, 406
Thermalization in early universe, 108-109
Thermodynamic laws for black holes,

330-337, 416-418
Tidal friction, 323n
Time delay effect, 146-148
Time orientable, 189
Timelike curve, 44, 190, 192-193
Timelike infinity, 273
Tolman-Oppenheimer-Volkoff equation, 127
Topological spaces, 423-427
Torsion tensor, 31n, 53
Tortoise coordinate, 152
Transverse traceless gauge, 186
Trapped region, 310-311
Trapped surface, 239, 240, 309-310;

marginally trapped, 310; outer trapped,
310, 311



Twist: of null geodesic congruence, 222; of
timelike geodesic congruence, 217; of
vector field, 163, 181

Twistor, 387-388
Tychonoff theorem, 425-426

Uniform density stars, 128-129
Universal covering group, 345
Universal covering manifold, 345
Universal enveloping algebra, 357n
Universe: age of, 115; dynamics of,

96-101; evolution of, 107-116; mass
density of, 114-115

Vacuum state, 393, 409, 414-416
Vector, 15; dual vector, 19; vector field, 17
Vector potential, 64, 70-71

Index 491

Vector transformation law, 17
Virial theorem, 296
Volume element, 432-434

Weak asymptotic simplicity, 282
Weak energy condition, 219, 219n
Weyl solutions, 167-168
Weyl spinor, 371, 373-374
Weyl tensor, 40; behavior under conformal

transformations, 447; principal null
directions of, 179, 187, 223n, 374

White dwarf, 132-133
White hole, 155, 300n

X-ray sources, binary, 307

Zorn's lemma, 263


